

Considerations for Using Agile in DoD

Acquisition

Mary Ann Lapham

Ray Williams

Charles (Bud) Hammons

Daniel Burton

Alfred Schenker

April 2010

TECHNICAL NOTE

CMU/SEI-2010-TN-002

Acquisition Support Program – Air Force

Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

This report was prepared for the

SEI Administrative Agent

ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the

interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally

funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN ―AS-IS‖ BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-

nal use is granted, provided the copyright and ―No Warranty‖ statements are included with all reproductions and

derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in

written or electronic form without requesting formal permission. Permission is required for any other external

and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at

permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center. The Government of the United States has a royalty-free government-purpose license to

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,

for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI publications, please visit the library on the SEI website (www.sei.cmu.edu/library).

mailto:permission@sei.cmu.edu
http://www.sei.cmu.edu/library

i | CMU/SEI-2010-TN-002

Table of Contents

Acknowledgments vii

Abstract ix

Organization of This Report xi

Executive Summary xiii

1 Overview 1
1.1 Original Tasking and Approach 1
1.2 What Is Not Addressed 2

2 What is Agile? 3
2.1 Agile Manifesto and Principles—A Brief History 3
2.2 A Practical Definition 5
2.3 Example Agile Method 5
2.4 Waterfall and Agile Methods Compared 6

2.4.1 Frequency of Usable Releases 6
2.4.2 Executable and Testable Product 7
2.4.3 Internal Integration and Test Group 9

3 Interview Observations and Findings 11
3.1 Overview of Common Topics 11
3.2 Acquisition 12
3.3 Knowledge of Agile 14
3.4 Culture 15
3.5 Oversight 16
3.6 End-User Involvement 18
3.7 Integration and Test 19
3.8 Infrastructure 20

4 DoD 5000 Series and Agile—Potential Issues and Conflicts 23
4.1 Use of Agile Is Not Prohibited by DoDD 5000.01 23
4.2 Regarding DoDI 5000.02 27

4.2.1 Agile Impact to Acquisition: Scenarios 27
4.2.2 Agile within the Acquisition Life Cycle Phases 28

4.3 Foundational Concerns 34

5 Considerations for Applying Agile in the DoD 35
5.1 Acquisition Life Cycle 36
5.2 Team Environment 37
5.3 End-User Access 39
5.4 Training and Coaching 40
5.5 Oversight 40
5.6 Rewards and Incentives 42
5.7 Team Composition 42
5.8 Culture 43

6 Conclusion 44

Appendix A: Examples of Agile Methods 46

ii | CMU/SEI-2010-TN-002

Appendix B: Common Objections to Agile 49

Appendix C: Areas for Consideration 52

Appendix D: Acronyms 54

Appendix E: FIST Manifesto 56

References/Bibliography 58

iii | CMU/SEI-2010-TN-002

List of Figures

Figure 1: Waterfall and Resulting Value/Time Curve 7

Figure 2: Agile/Incremental Build 8

Figure 3: Agile and Resulting Value/Time Curve 8

Figure 4: Notional Illustration of Agile Versus Waterfall Integration/Test Efforts 9

Figure 5: The Defense Acquisition Management System [6] 28

iv | CMU/SEI-2010-TN-002

v | CMU/SEI-2010-TN-002

List of Tables

Table 1: Agile Considerations for DoDD 5000.01 Guidance 25

Table 2: Analysis of Acquisition Life Cycle Phases and DoDI 5000.02 31

Table 3: Areas to Consider for Using Agile in the DoD 52

Table 4: Acronyms Used in This Report 54

vi | CMU/SEI-2010-TN-002

vii | CMU/SEI-2010-TN-002

Acknowledgments

The authors would like to express our appreciation to all those who took time out of their busy schedules

to allow us to interview them. Special thanks go to the Joint Mission Planning System (JMPS) Program

Management Office (PMO) and BAE Systems staff. Thank you to all the Carnegie Mellon Software

Engineering Institute (SEI) colleagues who provided articles, blogs, and encouragement.

To all those who tolerated endless questions during the 2009 Agile Development Practices Conference,

many thanks as you were all gracious and so willing to share your knowledge and excitement about Agile

concepts and application.

To our reviewers—your thoughtful and precise insights added great value, which we greatly appreciated.

We extend our sincerest thanks to the following people:

 Jim Highsmith, Signer of Agile Manifesto

 Linda Rising, Independent Agile Consultant

 Sean Mullen, Mitre

 Jim Corbin, BAE Systems, Geospatial Solutions Engineering Director

 Lt Col Daniel Ward, USAF

 Dr. Doug Buettner, Aerospace

 Joe Tatem, Raytheon

 Stephany Bellomo, SEI

 Nanette Brown, SEI

 John Foreman, SEI

 Dr. John Goodenough, SEI

 Harry Levinson, SEI

 Dr. Robert Nord, SEI

 Ipek Ozkaya, SEI

 Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

viii | CMU/SEI-2010-TN-002

ix | CMU/SEI-2010-TN-002

Abstract

This report explores the questions: Can Agile be used in the DoD environment? If so, how? Lessons

learned from actual DoD programs that have employed and are employing Agile are provided as well as

information gleaned from the myriad articles and books available on Agile. While this report does not

pretend to cover every paper or thought published about Agile in the DoD world, it provides an overview

of some challenges in using Agile; an overview of how some programs have addressed these challenges;

and some additional recommendations on dealing with these challenges. The intended audience is policy

makers, program office staff, and software development contractors who are contemplating proposing the

use of Agile software development methods.

It is the hope of the authors that this paper stimulates discussion about and appropriate adoption of Agile

in the DoD world. We hope to obtain further data so that our list of considerations can be updated and

expanded for use by all practitioners.

x | CMU/SEI-2010-TN-002

xi | CMU/SEI-2010-TN-002

Organization of This Report

This report is organized as follows:

Executive Summary (page xiii) contains highlights of this report, specifically Agile methods and their use

in the DoD.

Overview (page 1) describes the approach taken to develop this report, what is included and what is ex-

cluded.

What is Agile? (page 3) provides a definition/history of Agile, a generic Agile example, and a short com-

parison of Agile to Waterfall.

Interview Observations and Findings (page 11) presents the results from interviewing specific programs

and includes pitfalls, issues, and potential solutions.

DoD 5000 Series and Agile—Potential Issues and Conflicts (page 23) details the results of an analysis of

the DoD 5000 Series and how it impacts Agile use within the DoD.

Considerations for Applying Agile in the DoD (page 35) provides multiple considerations for applying

Agile in the DoD. It also includes discussions of various Agile concepts and addresses potential hurdles

for implementing them within DoD.

Conclusion (page 44) contains a summary of this report and suggestions for future research on using

Agile within the DoD.

Appendix A (page 46) provides a variety of Agile methods and their definitions.

Appendix B (page 49) identifies and debunks common objections to using Agile.

Appendix C (page 51) details areas of concern and their considerations for using Agile in the DoD.

Appendix D (page 54) defines acronyms used throughout this report.

Appendix E (page 56) contains the text of the ―FIST Manifesto.‖

xii | CMU/SEI-2010-TN-002

xiii | CMU/SEI-2010-TN-002

Executive Summary

In 2009 the SEI was tasked by Mr. Blaise Durante, Air Force Deputy Assistant Secretary for Acquisition

Integration (SAF/AQX), to assess the state of the practice of Agile development in government software

acquisitions. This team was assembled to complete that assessment.

This report is the result of this assessment, and is meant to debunk the prevalent myth that Agile and De-

partment of Defense (DoD) practices are incompatible. Our focus is on the software development arena,

basing our information on actual acquisition experience and a sampling of the relevant literature availa-

ble. We will not discuss specific Agile methods beyond describing Agile and providing a list of the most

common Agile methods. We do, however, provide some helpful hints on considerations that need to be

addressed when deciding to use Agile in the DoD environment.

The audience for this paper is:

 Senior DoD acquisition policy makers, to advise them on the practicality and policy pitfalls of en-

couraging the application of Agile software development methods in their programs

 Members of DoD program offices who may be challenged to undertake a software development ac-

quisition with a contractor who will be using Agile software development methods

 Software development contractors who are contemplating responding to a DoD Request for Proposal

(RFP) with a proposal based on using Agile software development methods

Agile and the DoD

Agile has existed for many years, and, in fact, is based on concepts that have been around for decades.

Agile achieved its greatest success in small- to mid-sized, commercial applications. There has been li-

mited documented usage in the DoD/government arena.

In recent years, Agile matured and personnel became skilled in applying Agile; some DoD contractors

started to build internal Agile capabilities and use Agile on DoD programs. Some DoD acquisition pro-

grams proposed and used Agile processes, attempting to take advantage of contractor capabilities, but

without (as yet) any formal DoD guidance, templates, or best practices.

Given this backdrop, can Agile produce a better product developed within cost and schedule parameters?

If barriers interfere with the DoD adopting Agile, how can they be addressed?

Our interviews and research into whether Agile can benefit the DoD resulted in a resounding, but quali-

fied, ―Yes.‖ Agile is another tool that can provide both tactical and strategic benefits. The tactical benefits

of lower cost within schedule and increasing quality are important; however, the strategic benefits of be-

ing responsive and being able to adjust to the current situation more rapidly might be of even greater val-

ue. This could be a huge factor in today‘s world, where the DoD needs to get results faster and be better

aligned with changing needs. In fact, reports
1
 available about Agile are impressive. Even if experience

1
 Several results show that by using Agile methods costs decrease from as little as 5 to as much as 61 percent, with sche-

dule decreasing from as little as 24 to as much as 58 percent, and cumulative defects decreasing from as little as 11 to
as much as 83 percent [8].

xiv | CMU/SEI-2010-TN-002

provides savings for DoD programs on the low-end of the spectrum, these savings can be significant over

time. We also found that there are no prohibitions for using Agile in the DoD 5000 series. In fact, the

IEEE
2
 is currently working on a standard for Agile. To date the standard is unpublished, but the fact that

the IEEE has deemed it worthy of a standard is a step in the direction of obtaining formal guidance for

Agile.

During our research we noted that in the current, traditional Waterfall method commonly employed with-

in the DoD, there is an established practice that uses some form of controlled experimentation. Current

Waterfall practices create experimental code or prototypes and then throw them away. Rather, Agile

builds software iteratively, refining or discarding portions as required to create increments of the product.

The idea is to have some working code at the end of each iteration that can be deployed. There are some

programs within the DoD today that are employing Agile to do just this.

Embracing Agile Methods

Agile processes are based upon good ideas derived from successful industry practices. We believe the

DoD should embrace Agile for some programs and traditional Waterfall methods for others. There is no

―one size fits all‖ Agile process. Just like any set of processes, implementation of Agile must be tailored

to fit the situation and context. For example, Agile teams responsible for developing high-risk, core com-

ponents of the software architecture might apply less-aggressive release schedules than Agile teams de-

veloping less critical pieces of the software system. Some Agile teams might pick a two-week iteration

cycle where others might determine their optimum iteration cycle is three weeks. Agile is not a silver bul-

let but rather another ―lead bullet‖ for the Program Management Office‘s and contractor‘s arsenal.

Sometimes a hybrid approach of traditional Waterfall methods and Agile is the best for a particular pro-

gram. For example, due to safety considerations some mission critical systems might require certain tradi-

tional milestones and documentation deliverables to remain in place. However, Program Management

Offices (PMOs) might work with the Agile development teams to agree upon a hybrid approach that

bridges these requirements with the need for agility and responsiveness. Perhaps the PMO agrees upon

fewer, less formal reviews and delivery of smaller sets of high-value documentation in exchange for get-

ting a beta version the user can start evaluating in the field more quickly.

Moving to Agile will require considerable work from the DoD entity (PMO, DoD, OSD, and perhaps

Congress), and is not without hurdles, most notably the following:

Acquisition Life Cycle

Each life cycle phase (e.g., Materiel Solution Analysis, Technology Development, Engineering and

Manufacturing Development, Production & Deployment, and Operations & Support) presents

unique challenges and opportunities. Some phases lend themselves to the use of Agile better than

others. You must consider the Agile processes and practices you want to use early in the acquisition

life cycle; it is of critical importance to make sure that contractually binding documents, such as

RFPs and Statements of Work (SOWs), support those processes and practices. For example, if you

embrace Agile you need to determine how you will meet the standard milestone criteria such as

PDR and CDR. Typically, the types of documentation expected at these milestone events are not

2
 IEEE P1648 is a draft standard. See http://standards.ieee.org/announcements/pr_1490p1648.html

http://standards.ieee.org/announcements/pr_1490p1648.html

xv | CMU/SEI-2010-TN-002

produced using Agile. Thus, you should create expectations and criteria that reflect the level and

type of documentation that would be acceptable for those milestones and yet work within the Agile

constraints.

Team Environment

A central concept to Agile is the small, dynamic, high-performing team. The challenge is this: How

do I provide an environment that fosters the creation of self-forming or dynamic teams in a culture

that is accustomed to static, centralized organizational structures? To complicate this further, con-

sider that the software team might be a small part of an overall system procurement for something

like a tank, ship, or plane. The system environment might call for centralized configuration man-

agement, highly defined legacy interfaces, and a predetermined architecture, all of which constrain

the software. This environment, then, should be treated as a constraint by the Agile team and can

provide boundaries within which the Agile team can operate. These system boundaries could act to

encapsulate the Agile team environment.

End-User Access

Access to end users can be complex and difficult when dealing with any single service but it can be

even more complex with multi-service programs. Agile developers need to have a single voice for

the user and one that can commit to changes for the product being developed. In some Agile ap-

proaches, the ―one voice‖ is a product owner or manager who brings decisions to the Agile team that

have been made through collaborative interaction. Within the DoD, the acquisition organization typ-

ically is the proxy for the end-users and only duly warranted personnel can commit the program. To

mitigate these issues, end-users should be invited to all demos where they can provide feedback that

only becomes binding with PMO approval. The end-users need to work closely with the PMO, as

with any acquisition.

Training and Coaching

While Agile concepts may not be new, the subtleties and nuances of each Agile method can be new

to the uninformed PMO. To overcome this, train the PMO staff before starting and employ an expe-

rienced coach or knowledgeable advocate for the PMO to help guide them throughout the process. It

is important to set aside funding for initial and ongoing training and support.

Oversight

Traditional methods have well-defined oversight methods. Agile oversight methods are less defined

and require more flexible oversight to accommodate the fluidity of Agile implementation. Resolu-

tion of the specific type of oversight needs to be done in advance. One aspect of the Agile manage-

ment philosophy is that the primary role of manager is more of a team advocate than overseer. The

management function of roadblock remover is critical to the success of an Agile team. Thought

needs to be given to what day-to-day PMO activities might need to be altered to support this type of

change.

Typically, documentation is used by the PMO throughout the development cycle to monitor the

progress of the contractor. Documentation produced using Agile methods is just enough to meet the

need and provide continuity for the team. This type of documentation is usually not sufficient for the

capstone reviews or monitoring progress. The PMO needs to create different ways to meet the same

objectives for monitoring while leveraging the advantages of Agile.

xvi | CMU/SEI-2010-TN-002

Rewards and Incentives

Agile rewards and incentives are different from the typical structure of traditional methods. In the

DoD environment, the challenge is finding ways to incentivize teams and individuals to support

Agile goals such as innovation, rapid software delivery, and customer satisfaction. At the same time,

we need to eliminate rewards that incentivize the wrong things. For example, rather than rewarding

contractors for fixing defects we may want to reward the developer for early delivery of beta soft-

ware to a limited set of users in a constrained environment. This way the beta users get to test the

product in the field sooner while at the same time providing feedback that helps to improve the qual-

ity of that iteration of the software. One other type of incentive that should be considered is incen-

tives that encourage a collaborative relationship between the PMO and the contractor‘s staff.

Team Composition

The composition of the PMO staff might look somewhat different in order to accommodate the use

of Agile. The government should consider adding a knowledgeable Agile advocate or experienced

coach to their team. End-user representatives are essential for Agile. This position will be difficult to

fill in a timely and consistent manner. Some programs have used rotating personnel to fill this posi-

tion.

Another challenge is keeping high-performing Agile teams together long enough for them to achieve

peak performance. This is a challenge because developers change at the end of a contractual period

of performance. One recommendation might be to look at putting key Agile technical developers or

technical leads under a separate contract vehicle or hire them to work for the government organiza-

tion itself.

Culture

The overall organizational culture needs to support the Agile methodology in use. The Agile culture

is counter to the traditional Waterfall culture in everything from oversight and team structure to end-

user interaction throughout development. This will require a mindset change for the PMO and other

government entities such as OSD. In order to employ any of the Agile concepts, the DoD organiza-

tion will have to plan for them, anticipate the changes needed in their environment and business

model, and apply the hard work to make the changes a reality. Organizational change management

is essential during the transition to Agile.

1 | CMU/SEI-2010-TN-002

1 Overview

Agile methods for software development have existed for many years. These methods have achieved their

greatest success in small- to medium-sized commercial applications. To date, based on our research, they

have had limited usage and success in the DoD/government arena.

In recent years, as Agile methods have matured, personnel have become more skilled, and educa-

tion/training programs have become available, some DoD contractors have begun to build internal Agile

capabilities and initiate pilot usage efforts on DoD programs. Many DoD acquisition programs have also

begun to propose and use Agile processes, attempting to take advantage of contractor capabilities; how-

ever, they have done this without (as yet) any formal DoD guidance, templates, or best practices.

In 2009 the Carnegie Mellon Software Engineering Institute (SEI) was tasked by Mr. Blaise Durante,

SAF/AQX, to assess the state of the practice of Agile development in government software acquisitions.

This team was assembled to complete that assessment.

This report provides the results of the SEI study of the current utilization and future applicability of Agile

for software development in DoD acquisitions. The study was conducted in the latter half of 2009 and

completed in January 2010. This report is intended for:

 Senior DoD acquisition policy makers, to advise them on the practicality and policy pitfalls of en-

couraging the application of Agile software development methods in their programs

 Members of DoD program offices who may be challenged to undertake a software development ac-

quisition with a contractor who will be using Agile software development methods

 Software development contractors who are contemplating responding to a DoD Request for Proposal

(RFP) with a proposal based on using Agile software development methods

1.1 Original Tasking and Approach

Our team set out to document lessons learned and/or best practices in as many programs as we could find

in the DoD acquisition community that are using or have used Agile for software development. For this

report, we made the assumption that we were dealing with software only or software intensive systems.

Our purpose was to answer two questions:

 Is the use of Agile beneficial to the DoD; that is, can it produce a better end product developed within

cost and schedule parameters?

 If the answer is ―Yes,‖ what are the barriers to using Agile in the DoD acquisition environment, and

how might these barriers be addressed?

Our approach was to address both questions simultaneously because we believed that, regardless of any

of the theoretical benefits of Agile (and it was quickly evident that there were many), it would only re-

main an academic interest if there were not solid experience available on the actual use of Agile within

the DoD acquisition environment. Thus, we looked for current and recent DoD software development

 Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

2 | CMU/SEI-2010-TN-002

acquisitions that claimed to have used one or more of the methodologies generally accepted as Agile (e.g.,

eXtreme Programming, Scrum, Lean Software Development, and others
3
). We found a small number of

such programs willing to share their experiences; these were weapons systems programs including Joint

Mission Planning System (JMPS), Single Integrated Air Picture (SIAP), Operationally Responsive Space

(ORS), Virtual Mission Operations Center (VMOC), Space Radar, an Army tank program, and some oth-

er classified programs. The programs ranged in size from small to fairly large. The amount of detail we

were able to obtain from each program was a function of program constraints such as security. With this

in mind, we conducted interviews with development team members, program office personnel, or other

members of the SEI staff who had intimate knowledge of those programs to do the following:

 Document lessons learned and/or best practices from the case study of the multiple programs using

Agile, to include contractor capabilities, government management (strengths and weaknesses), and

conflict points with standard DoD methods, etc.

 Examine the viability of developing an approach that can be used within the DoD 5000 acquisition

environment to take advantage of the benefits of using Agile methodologies with minimal need for

policy waivers.

 Provide guidelines on how DoD technical milestone reviews (SSR, PDR, and CDR) should be al-

tered/augmented to account for Agile software development practices.

After our interviews, we prepared an ―Agile Study Lessons Learned‖ draft presentation and sent it to the

interviewees for comment. We did this to assure that we understood the points that interviewees made

and to lay out an initial argument addressing the primary questions. We incorporated comments we re-

ceived resulting in a final, annotated version of the presentation, which was given limited distribution.

Finally, we created this report to document our findings and provide recommendations.

1.2 What Is Not Addressed

―Agile,‖ in the context of software development, is a term that encompasses many different tools, tech-

niques, and methods, some of which are briefly described in Section 2: What is Agile? We give the reader

context and awareness of Agile, but do not attempt to provide a comprehensive review or tutorial of spe-

cific Agile methodologies for application in software acquisitions. Rather, we provide questions to ask

and guidance on how Agile could be useful and have relevance to DoD organizations.

We have not attempted to address the question of whether DoD PMOs themselves could become ―Agile‖

in their own internal operations. While this was discussed at length, we decided that such a discussion

would go too far beyond the current experiences of the interviewees.

We have also not attempted to discuss the relationship between CMMI and Agile software development

methodologies. In our view, CMMI is a framework of best practices that can be applied in any software

development program (whether or not that program uses Agile). We recognize that some of the Agile ad-

vocates have equated CMMI with ―traditional‖ and/or ―Waterfall‖ software development approaches [1],

but we believe that this is only a misunderstanding of CMMI on their part. Others have suggested that

Agile and CMMI should be embraced together [2].

3
 Appendix A contains several examples of Agile methods.

3 | CMU/SEI-2010-TN-002

2 What is Agile?

On the surface it seems that there is really nothing ―new‖ about Agile. However, upon close inspection

there are new components (ideas, practices, theories, etc.) and new combinations of those new compo-

nents with ―old‖ components. The explicit value statements used within Agile are also new. However in a

way, Agile has simply swept up software development practices that have been used since the earliest

days of software and added a few new twists. Philosophically, Agile also borrows heavily from approach-

es that have been successfully used in manufacturing throughout the world for decades, such as ―just-in-

time,‖ Lean, Kanban, and work-flow-based planning. Another new development is that Agile is becoming

codified, evolving from a collection of disjoint, separately developed software development methods into

a philosophically coherent family of such methods.

This philosophical coherence—and the current energy driving advocacy of Agile—was the result of a

remarkable meeting among thought leaders and consultants
4
 in software development who would normal-

ly have been competitors. In February 2001 seventeen people met to try to find common ground and ulti-

mately produced the Agile Software Development Manifesto. This ―manifesto‖ detailed all of their com-

monalities overlooking, for the moment, areas where they had differences of opinion.

2.1 Agile Manifesto and Principles—A Brief History

The self-named Agile Alliance shared allegiance to a set of compatible values promoting organizational

models based on people, collaboration, and building organizational communities compatible with their

vision and principles.
5

Jim Highsmith asserts that ―the Agile ap-

proaches scare corporate bureaucrats—at

least those that are happy with pushing

process for process' sake versus trying to do

the best for the ‗customer‘ and deliver some-

thing timely and tangible ‗as promised‘—

because they run out of places to hide.‖
5

As the Agile Alliance noted, the four dicho-

tomies listed in the manifesto (―individuals

and interactions over processes and tools‖)

are not intended to suggest that what is on

the left is important and what is on the right

is unimportant; rather, what is on the right,

while important, is simply less important

than what is on the left. For example, some

4
 The signatories were representatives from Extreme Programming, SCRUM, DSDM, Adaptive Software Development,

Crystal, Feature-Driven Development, Pragmatic Programming, and others: Kent Beck, Mike Beedle, Arie van Benne-
kum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas.

5
 http://agilemanifesto.org/history.html

Manifesto for Agile Software Development

We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.

http://agilemanifesto.org/history.html

4 | CMU/SEI-2010-TN-002

believe that the Agile approach advocates providing no documentation other than the code itself. The

Agile community would argue instead that documentation is important, but no more documentation

should be created than is absolutely necessary to support the development itself and future sustainment

activities. In fact, Agile emphasizes collaboration and the notion that when documentation replaces colla-

boration the results are problematic. Documentation should be the result of collaboration.

The Agile Alliance says the following principles underlie the Agile Manifesto:

Our highest priority is to satisfy the customer through early and continuous delivery of val-

uable software.

Welcome changing requirements, even late in development. Agile processes harness

change for the customer's competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months, with a

preference to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support they

need, and trust them to get the job done.

The most efficient and effective method of conveying information to and within a develop-

ment team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity—the art of maximizing the amount of work not done—is essential.

The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes and ad-

justs its behavior accordingly.
6

From these principles, it is understood that Agile is really a philosophy or development approach, and it

comprises a number of more specific methods, for example, eXtreme Programming (XP), Scrum, and

Adaptive Software Development (ASD). (A synopsis of Agile methods is provided in Appendix A.)

6
 http://agilemanifesto.org/principles.html

http://agilemanifesto.org/principles.html

5 | CMU/SEI-2010-TN-002

2.2 A Practical Definition

While this history provides a context for Agile, it does not provide a specific definition. The authors

struggled with defining Agile. Since there are plenty of definitions to choose from, we picked one that

closely reflects our intended use of the term ―Agile‖ within this paper and one that is more concise:

Agile: An iterative and incremental (evolutionary) approach to software development which is

performed in a highly collaborative manner by self-organizing teams within an effective gover-

nance framework with “just enough” ceremony that produces high quality software in a cost ef-

fective and timely manner which meets the changing needs of its stakeholders.
7

This definition is rather long but it covers our purposes. If a shorter definition is desired by the reader,

Alistair Cockburn has said that Agile is

…early delivery of business value. That involves early and regular delivery of working software,

a focus on team communications, and close interaction with the users.
8

2.3 Example Agile Method

In order to provide the reader with further context of how Agile might be used, a simplistic generic ex-

ample for a software development project might include the following.

Initial planning
9

 The overall scope of the project is examined. The business side sets the overall priorities and the de-

velopment team members select and estimate work items.

 A fixed iteration length is determined (usually between one and four weeks; a two-week iteration

appears to be common).

 The functional scope is broken down into a set of ―user stories‖ (capabilities) that initially are de-

scribed in a coarse-grained manner. Prior to implementation within an iteration, the ―stories‖ are ela-

borated at a level detailed enough to allow each story to be implemented within a single iteration

 The highest risk and highest priority ―stories‖ are moved to the front of the queue for implementation

in the development iterations. The ―stories‖ at the front of the queue tend to be those with highest

stakeholder value, which would include priority and risk.

Iterations
10

 Each iteration starts with the team planning session; stories are selected from the queue until a full

iteration‘s worth of work is identified.

 Each story (capability) is refined further into specific tasks as noted above.

7
 http://www.agilemodeling.com/essays/agileSoftwareDevelopment.htm

8
 http://bradapp.blogspot.com/2006/05/nutshell-definitions-of-agile.html

9
 For large programs, initial planning would be done during Iteration 0. Iteration 0 is a planning iteration only. Release

planning, overall program planning, and high-level architecture creation are some of the tasks accomplished during Itera-
tion 0.

10
 Note that the customer or user is available for feedback throughout the iteration.

http://www.agilemodeling.com/essays/agileSoftwareDevelopment.htm
http://bradapp.blogspot.com/2006/05/nutshell-definitions-of-agile.html

6 | CMU/SEI-2010-TN-002

 Development work first begins with the writing of unit tests that will be used once the software is

developed if using the Test Driven Design [TDD] method.
11

 Coding does not begin until the unit tests have been written (if using TDD).

 At the end of the iteration, the output is an executable, testable product that could actually be used

and unfinished stories could slip into the next iteration. Typically, automated testing is used exten-

sively in Agile.

 A retrospective is usually held at the end of the iteration. The retrospective gives the team an oppor-

tunity to reflect on the iteration and determine lessons learned (what went well and what needs to im-

prove).

2.4 Waterfall and Agile Methods Compared

All authors and Agile advocates compare and contrast Agile techniques and methodologies with the Wa-

terfall model of software development. We will only discuss a few of the differences.

For our purposes, the definition of the Waterfall Model (referred to as Waterfall) is

A software life-cycle or product life-cycle model, described by W. W. Royce in 1970, in which

development is supposed to proceed linearly through the phases of requirements analysis, de-

sign, implementation, testing (validation), integration and maintenance.
12

The Waterfall development model
13

 has its origins in the manufacturing and construction industries, high-

ly structured physical environments in which after-the-fact changes are prohibitively costly, if not im-

possible. Since no formal software development methodologies existed at the time, this hardware-oriented

model was simply adapted for software development.
14

2.4.1 Frequency of Usable Releases

One of the primary differences between Waterfall and Agile is the frequency with which usable releases

are produced. With Waterfall, development goes through a series of distinct phases: requirements analy-

sis, design, implementation, testing, integration and maintenance. For instance over a two-year project

duration, each phase might range from three to six calendar months. At the conclusion of each phase, a

formal milestone review is typically conducted as a capstone event (also a user validation). There is only

one product release at the end of testing.

11

 For more information see: http://agiledata.org/essays/tdd.html or http://en.wikipedia.org/wiki/Test-driven_development

12
 http://www.websters-online-dictionary.org/Wa/Waterfall+Model.html

13
The first formal description of the waterfall model is often cited to be an article published in 1970 by Winston W. Royce

(1929–1995), although Royce did not use the term ――waterfall‖― in this article. Royce was presenting this model as an ex-

ample of a flawed, non-working model (Royce 1970). This is in fact the way the term has generally been used in writing

about software development—as a way to criticize a commonly used software practice.

14
 http://en.wikipedia.org/wiki/Waterfall_model

http://agiledata.org/essays/tdd.html
http://en.wikipedia.org/wiki/Test-driven_develop
http://en.wikipedia.org/wiki/Test-driven_development
http://www.websters-online-dictionary.org/Wa/Waterfall+Model.html
http://en.wikipedia.org/wiki/Waterfall_model

7 | CMU/SEI-2010-TN-002

In contrast, Agile breaks the development into a series of short iterations, between one and eight weeks

(most typically two weeks), that produce a usable product at the end of each iteration.
15

 The idea is that

the stakeholders receive usable code much sooner when using Agile.

As shown in Figure 1, Waterfall typically decomposes the system into subsystems that address specific

requirements in ―stovepipes‖ and provides the user with limited user value until subsystems are integrated

at the end of the entire project. All requirements established during the life cycle phases are considered to

be equally ―required,‖ regardless of their ultimate value to the end user or their risk to the project if they

cannot be successfully achieved. If strictly followed, Waterfall culminates in ―big bang‖ integration, in

which any issues not anticipated in the pre-coding phases emerge.

16

Figure 1: Waterfall and Resulting Value/Time Curve

2.4.2 Executable and Testable Product

Another significant difference between Agile and Waterfall is that the output of each Agile iteration is an

executable, testable product that could actually be used. Therefore, the original scope of work could be

modified dynamically by the project team. For example, the customer could decide that the cumulative

scope of work built into an iteration might be all that is actually required, and could potentially terminate

the project at the conclusion of any iteration. Conversely, scope could be added, or priorities and delive-

rables could be modified. Figure 2 shows a view for Agile, where a snapshot was taken after each itera-

tion to show the actual state of the various subsystems (or components) that make up the software system.

15

 Usable means code that provides a coherent piece of functionality. However, the code from a single iteration might not
have sufficient functionality to be useful to external stakeholders. Sufficient functionality might only be available through
releases (multiple iterations) which are provided to external stakeholders.

16
 The value/time graph was adapted from Jim Highsmith.

1 2 3 4 5
0

25

50

100

75

%

C
o

m
p

le
te

Component

Initial

Design

Critical

Design

Build

Integrate

and Test

Waterfall

User

Value

Cost$

Time

8 | CMU/SEI-2010-TN-002

Figure 2: Agile/Incremental Build

Because Agile forces an executable product to be produced, the Agile team learns about integration and

testing issues very early in the project. Lessons learned from early integration and testing will influence

future iterations.

If we were to extend the iteration builds to the same scope as we included in the Waterfall diagram shown

in Figure 1, we arrive at the depiction in Figure 3. The ―stories‖ that typically encapsulate the system re-

quirements in Agile cut across the various elements of the business logic structure and incrementally real-

ize user value. Optimally, high-value and high-risk requirements have been completed as part of stories

completed early in the project, and system integration has been carried out at the end of each iteration,

risk has been steadily worked off (at least in principle), and the user value of the project has been

achieved incrementally as the project progresses.

Figure 3: Agile and Resulting Value/Time Curve
17

17

 The value/time graph depicted in this figure was adapted from Jim Highsmith.

1

1 2 3 4 5

I1

Component

1 1 1 1

2

1 2 3 4 5

I2

I1

F
u

n
c

ti
o

n
a

li
ty

Component

2

1

2

1 1

2

1

2

1 2 3 4 5

I2

I1

I3

F
u

n
c

ti
o

n
a

li
ty

Component

2

1

3

3

2

3

1

3

1

2

3

1

2

1 2 3 4 5

I2

I1

I3

I4

F
u

n
c

ti
o

n
a

li
ty

Component

2

1

3

4

3

4

2

3

1

3

4

1

2

3

F
u

n
c

ti
o

n
a

li
ty

Increment 1 Increment 2 Increment 3 Increment 4

1

2

1 2 3 4 5

I-2

I-1

I-3

I-4

I-5

I-6

I-7

0

25

50

100

75

%

C
o

m
p

le
te

Component

Agile/Incremental

2

1

3

4

5

6

3

4

6

7

2

3

5

6

7

1

3

4

6

7

1

2

3

5

6

7

User

Value

Cost$

Time

9 | CMU/SEI-2010-TN-002

2.4.3 Internal Integration and Test Group

One additional point can be made to illustrate the difference between Waterfall and Agile. If we were to

compare two project teams working on equivalent scope (one using Waterfall, and the other using Agile),

we should expect their staffing profiles to be quite different. Because each Agile iteration produces an

executable, testable product, there is obviously more staff members that are usually allocated to the inte-

gration and test functions for both internal components and components of the system early in the life

cycle. The Agile workforce seems to have a more stable distribution of effort among the various discip-

lines than when using Waterfall. Figure 4 provides a notional illustration of how this might appear for the

Integration and Test groups.

Figure 4: Notional Illustration of Agile Versus Waterfall Integration/Test Efforts

To a certain extent, the difference is that, with Agile, the integration and test are largely internal to the

Agile team, while with Waterfall integration and test is a separate group. The reality is that when you be-

gin integration and test activities, you begin to identify unintended behavior (defects) that require effort to

fix. In Agile, the effort associated with this rework takes away from the time available to build new func-

tionality. Under some conditions, this effect could escalate and lead to iterations that do nothing but fix

defects.
18

 On the other hand, in Waterfall, waiting until the end of the life cycle to perform the integration

and test activities can lead to extensive delays when there are significant problems found; this can result

in significant rework. Obviously, arguments can be made that support either side in the analysis of this

distinction between Waterfall and Agile. The rationale behind Waterfall is that with more time to antic-

ipate integration issues, a better design could have been taken from the outset, avoiding the defects entire-

ly. The rationale behind the continuous integration approach is that a certain percentage of defects would

18

 The team uncovers the issues but the users/customer/business side decides what is done to address the issues. They
could decide to fix them and reduce or eliminate functionality to allow time for the fixes.

Integration and Test Effort

Agile Life Cycle

(Notional)

Integration and Test Effort

Waterfall Life Cycle

(Notional)

E
ff
o

rt

Iteration

E
ff
o

rt

Time

10 | CMU/SEI-2010-TN-002

not have been created or would have been found sooner since integration and test start sooner. The early

detection of these defects results in significantly less overall effort to resolve them.

As we have discussed, Agile can have multiple advantages over using Waterfall. So, then, why are so few

DoD software acquisitions using Agile? For those DoD software acquisitions that have used Agile me-

thods, what lessons have they learned? We interviewed a select group of programs about their use of

Agile, and what we learned is grouped into the following topics, which are discussed in more detail in the

next section.

 Acquisition

 Knowledge of Agile

 Culture

 Oversight

 End-User Involvement

 Integration and Test

 Infrastructure

11 | CMU/SEI-2010-TN-002

3 Interview Observations and Findings

The results from interviews with Agile practitioners and other observations of Agile within the DoD envi-

ronment are presented in this section. The results are lessons learned from actual application of Agile

within the DoD environment. We reviewed the interview notes and other observations and found seven

common topics, which we use to frame the discussion of the overall results. Each topic is structured to

provide a context and the associated finding/observation. These topics are related to each other and there

is overlap between their findings.

Note: We also provide additional information about Agile concepts and how to apply them in Section 5;

Section 3 only presents what we learned from the interviews and observations.

The material in this section was derived from interviews that we conducted with the following people and

organizations:

 BAE—experiences as contractor for Joint Mission Planning System (JMPS) and other programs us-

ing Agile methods

 JMPS Program Management Office (PMO)—experiences with Agile on JMPS

 Fred Schenker—SEI technical staff experiences with Single Integrated Air Picture (SIAP) program

 Harry Levinson—SEI technical staff experiences with Joint Mission Planning System (JMPS) Inde-

pendent Technical Assessment

 Mike Bandor—SEI technical staff experiences with Operationally Responsive Space (ORS) , VMOC

(Virtual Mission Operations Center), and Space Radar programs

 Keith Korsac—SEI technical staff experience with army tank program

 Major Daniel Ward (now Lt Col)—discussions of FIST applications

3.1 Overview of Common Topics

Acquisition

It is widely believed, both by program offices and DoD contractors, that the DoD 5000 series and

other regulations and guidance documents limit the government and contractors from using a non-

Waterfall approach. A particular sticking-point is that Agile does not readily accommodate large

capstone events such as Critical Design Review (CDR). However, the programs that have used

Agile in software development have found that the DoD 5000 series has great flexibility and does

not, in fact, preclude the use of Agile.

Knowledge of Agile

Agile methods have been developed and used most extensively in the non-DoD commercial sector

with small- to medium-sized projects. Experience with larger projects has recently started to accu-

mulate in the commercial sector. As a result, few DoD acquisition professionals and DoD contrac-

tors are familiar with the use of Agile or possess the necessary experience to effectively implement

it.

12 | CMU/SEI-2010-TN-002

Culture

Culture is the customary knowledge, beliefs, behaviors, and traits displayed by an acquisition organ-

ization or contractor. The government is heavily invested in the use of Waterfall for acquisition of

all equipment and systems, whether they are software intensive or not. As a result, a large segment

of the DoD acquisition community (and that of long-time DoD contractors, as well) is more com-

fortable with Waterfall and skeptical about using Agile.

Oversight

Tracking and measuring progress while using Agile in a way that is clear to and trusted by the gov-

ernment is a particular challenge. The metrics applied on past software acquisitions, including the

use of the Earned Value Method System (EVMS), do not work well for Agile at best, and at worst

do not work at all. Agile also does not support the kind of granularity of estimates and task detail

that is typically shown across the entire project in an Integrated Master Schedule (IMS). Rather,

Agile provides high granularity task-level estimates for just the upcoming iteration.

End-User Involvement

The close involvement of end-user participation in the development process, reviews, and demon-

strations, upon which successful Agile implementations depend, is extremely difficult to achieve

with the many stakeholders typical of DoD acquisitions. In addition, the continuous availability of

the end user is an issue in the DoD environment, as end users are usually in operational not acquisi-

tion organizations. Acquisition personnel tend to be isolated in acquisition organizations, rather than

integrated into operational units.

Integration and Test

Because integration and testing activities are part of Agile development iterations, the approach to

these activities might significantly change from those used in Waterfall. The biggest change is that

integration and test need to be done throughout the project as opposed to waiting until the end of the

release cycle. This is another particularly challenging issue of culture-change since, historically, in-

tegration and test organizations have been outside the development teams once you get beyond unit

testing.

Infrastructure

No matter whether one uses Waterfall or Agile is used, the group undertaking the project needs to

have an infrastructure supporting it. This would include the organization of the team and the context

within which the team operates. The overall organization of a project using Agile is different from

the traditional program structure. The structure for an Agile project reflects Agile precepts and is re-

liant on the context in which it will be applied.

3.2 Acquisition

Context

A strong belief that is prevalent across the DoD community is that the DoD 5000 series, and other acqui-

sition policies, instructions, and regulations are rigid in requiring a traditional Waterfall process for the

development of software. It is true that most acquisition personnel have been specifically trained in apply-

ing the Waterfall method to these acquisition regulations, irrespective of whether they are acquiring tanks

13 | CMU/SEI-2010-TN-002

and aircraft or acquiring software that might be used in stand-alone software applications, such as pure IT

acquisitions (e.g., enterprise resource planning or personnel/pay systems).

Finding/Observation

Those programs that have used Agile in software development have found that the DoD 5000 series has

great flexibility and does not in fact preclude the use of Agile. It appears that with careful review and

some tailoring an alternate interpretation can be created so that Agile can be used on DoD programs.

Context

An interesting corollary to the prevalent belief of using traditional methods is that many Request for Pro-

posals (RFPs) are written in such a way that a non-Waterfall response would appear to be or might be

noncompliant. Most traditional RFPs require a full complement of Contract Data Requirements Lists

(CDRLs) for documentation of progress.

Finding/Observation

This level of documentation is contrary to Agile precepts of creating ―just enough‖ documentation. ―Just

enough‖ will vary from situation to situation depending on the needs and regulation requirements of the

project. In order for Agile to become common place within the DoD, the acquisition organizations should

encourage, and contractors should provide, a compliant proposal with suggested alternatives that use

Agile. It is important for the acquirer to understand Agile benefits and to include project-specific guide-

lines
19

 in RFP language for how Agile responses should be framed.

Context

A very specific acquisition issue and sticking point is that Agile methodology does not accommodate

large capstone events such as Critical Design Review (CDR), which is usually a major, multi-day event

with many smaller technical meetings leading up to it. This approach requires a great deal of documenta-

tion and many technical reviews by the contractor.

Finding/Observation

A software developer using Agile typically does not complete the design before beginning implementa-

tion of it, so the scale and comprehensiveness of a CDR is quite foreign to Agile development teams.

Some experienced Agile providers have accommodated this issue by breaking the typical Waterfall-based

CDRs into multiple Interim Design Reviews (IDRs), which is an example of the type of ―flexibility‖ in

implementing DoD 5000 requirements. These IDRs need to reflect the iterative nature of Agile, and they

can be held more frequently and with tighter focus for only a few hours at a time, as opposed to the sever-

al days needed for CDRs. The entry and exit criteria for an IDR need to be dependent on the current itera-

tion, and the results of a combination of all IDRs completed should be functionally equivalent to a CDR

using Waterfall.

19

 As of publication, the authors are not aware of the existence of any guidance for how to frame Agile responses.

14 | CMU/SEI-2010-TN-002

3.3 Knowledge of Agile

Context

A good understanding of the fundamentals of Agile development methods is required by both the gov-

ernment and contractor personnel. Without this understanding and knowledge, misunderstandings will

certainly happen and could have disastrous consequences.

Finding/Observation

One example we found of a typical misunderstanding arose as early as contract negotiations. The contrac-

tor specified that they would deliver documentation in accordance with best Agile practices. The govern-

ment included a list of required documents in the contract. The contractor understood that the Agile best

practice meant that there would be minimal detail and documentation (what, when, and how much detail

would be done) up front. Even though the contractor understood this, the government did not and still

expected all the detail that was traditionally provided for the documents. The government had trouble

accepting less detail and documentation even though the complete content would become available at a

later date.

The issue was not only how many documents were produced but the expected level of detail in the docu-

ments and when the documents would be complete. One way to increase the amount of knowledge of

Agile and avoid this type of misunderstanding is through education. For example, courses at the Defense

Acquisition University (DAU) and other institutions could be updated to include discussions of Agile, its

pros and cons, and the challenges Agile presents to the Program Management Office (PMO). One such

pro is that the Agile forces closure on requirements analysis for the iteration and flushes out problems

early in each iteration; these are very desirable attributes. One potential con is the resistance to the

amount of culture change that may be required to employ Agile.

Context

The acquisition community‘s imperfect understanding of Agile might undermine the success of an Agile

contractor. Agile is relatively new and has its genesis in the software development community itself,

which is mostly isolated from acquisition concerns. As a result, relatively few acquisition professionals

have direct experience with Agile, and such Agile-unaware PMO members might insist on the more fa-

miliar project plans and metrics, but they will not fit into Agile.

Finding/Observation

All government and contractor personnel need to spend the time necessary before contract award to un-

derstand what it means to use Agile from all perspectives. The following are examples of such considera-

tions.

 Which contractual phases can employ Agile?

 What are the milestone and deliverable details for each phase when using Agile?

 What contract changes would be needed?

 What changes to the approach of monitoring development progress will be needed?

 What type of staff members are needed on both sides (government and contractor)?

 Which of the 5000.02 process formalities will be tailored?

15 | CMU/SEI-2010-TN-002

Context

Both government and contractor personnel need to acquire an appropriate skill set to support Agile use

within DoD systems. The nature of Agile lends itself to a slightly different staffing model than the one the

government is used to seeing with Waterfall.

Finding/Observation

From our interviews, we learned that there are subtle but critical differences:

 The contractor‘s program manager needs to be experienced in Agile. The government program man-

ager should also be experienced in Agile, though at present this might be more than can reasonably

be expected.

 Contractor personnel need to be trained and experienced in the Agile method to be used on the

project.

 PMO personnel need specific training in the Agile method that the contractor is going to use, as well

as a more general understanding of Agile. They need to develop an understanding that Agile is adap-

tive to each project or program.

 There needs to be an expert advisor/advocate for Agile in a position of authority in the PMO. Without

authority, such an advisor/advocate becomes ―just another opinion.‖

3.4 Culture

Context

The government is heavily invested in the use of Waterfall for acquisition in general, and this has been

applied to software acquisition as well. While other methods have been used, Waterfall and its accompa-

nying precepts are most familiar to most PMOs.

Finding/Observation

Moving to Agile is difficult—many of the ―old ways‖ and paradigms need to be modified using a funda-

mental culture change. As alluded to previously, the existing training in the interpretation of software ac-

quisition requirements is skewed toward the Waterfall approach. Thus, a PMO employing Agile will need

to be trained in Agile concepts.

Context

One challenge regarding benefits for the DoD is that the acquisition community might not perceive that

there is any benefit in using Agile. Many believe Agile is ad hoc and that it does not produce necessary

documentation or apply any rigor to development.

Finding/Observation

The PMO specifically needs to realize that while Agile provides many benefits, many of the traditional

Waterfall activities, documents, etc. will not be present. In some cases, the data will be present but not in

the anticipated form.

16 | CMU/SEI-2010-TN-002

Context

Since the type of management oversight is different for Agile than Waterfall, members of the PMO are

likely to feel that they are losing control over the program.

Finding/Observation

Historically, the PMO‘s role is to ensure orderly development progress, but with Agile the PMO has to

relinquish control over how change is managed. Agile attacks high-value and/or high-risk user items first

instead of making steady progress on all requirements. This difference in handling requirements can

create unnecessary friction between the PMO and the contractor, leading to outright hostility.

Context

Both the PMO and the contractor need to be aware that different skills sets or skill mixes will possibly be

needed in programs using Agile (as opposed to programs using Waterfall).

Finding/Observation

Agile takes a lot of strong, focused team and management oversight at the mid- and low-levels versus the

high-level, particularly if a new development project/program is using a merger of Waterfall and Agile.

Furthermore, the reference estimates that PMO members have developed over time about the number of

developers needed based on the size/volume of the code may not be valid in an Agile environment. The

management oversight required in the developers facility is more at a technical level than at the

project/program management level when using Agile—what is needed are ―iteration leads,‖ ―scrum lead-

ers,‖ etc. This different skill mix does not necessarily lead to a more costly management structure, but it

does require a different ―scorecard‖ to evaluate progress and troubleshoot development issues [3] [4].

The important point here is that the PMO must be prepared to deal with organizational change manage-

ment issues.

3.5 Oversight

Context

Traditional Waterfall provides significant oversight and insight into the implementation details of the

program; this method is very structured so that it provides predictability, stability, and high assurance [4].

The execution of Agile is distinctly different from what the PMO has seen in the past on programs using

Waterfall. The control and discipline comes from the Agile team itself rather than from control external to

the team, that is project and higher management. As a result, the PMO will see a different way that the

development is controlled, executed, and viewed.

Finding/Observation

We learned from our interviews that the PMO has to be prepared to relinquish some level of control and

oversight of the program to allow Agile to operate effectively. What is needed is a system of program

metrics that allows the PMO to have insight into the developer‘s priorities and the development progress

being made on a day-to-day basis, and this will allow the PMO to achieve an optimal balance between

insight and oversight.

17 | CMU/SEI-2010-TN-002

Context

Forecasting the project schedule when using Agile requires an entirely different approach than when fore-

casting the project schedule during Waterfall. Agile depends on being able to determine the content of

iterations on a just-in-time basis, to use very short iterations, and to respond quickly to customers‘ chang-

ing needs. The creation of a traditional detailed Integrated Master Schedule (IMS) with the content of

each iteration for the entire project is not done with Agile.
20

 Agile does not support the kind of granularity

of estimates and detail that are typically shown in a traditional IMS for the entire project. Traditional IMS

estimates and the corresponding constituent tasks are very detailed and require a great deal of effort to

change or to update. This is counter to the ―just-in-time‖ philosophy used in Agile.

Finding/Observation

Our interviews indicated that the IMS can be maintained at a level that is compatible and appropriate for

Agile. This may be more difficult than it appears because it requires a different perspective about when

and to what level of detail the IMS should be developed.

Context

An additional impact is that the estimates at the iteration level in Agile are done by the iteration team, not

just by management (team leads and higher level management)
21

 as is the case in most Waterfall devel-

opments. Depending on the skill level and the amount of learning achieved within the development team

from previous iterations, the estimates they produce might be much more coarse-grained than expected by

the PMO.

Finding/Observation

If the project is not adopting Agile outright, then some compromise between the PMO expectation of a

detailed IMS and the contractor‘s Agile management techniques will be needed to define a model that

uses the best practices from both Agile and Waterfall. Some things that have been done on existing pro-

grams and some options the PMO could consider include:

 Traditional progress measures such as earned value and percent complete might be possible to use.

Because a detailed IMS is not realistic for Agile, these measures would need to be computed diffe-

rently than for Waterfall.

 Progress could be measured by the number of stories completed, though for this to be useful, the

PMO would need to understand the full inventory of stories that the contractor projects for the devel-

opment and be convinced that the sum of all the stories fully comprehends the project requirements.

 Progress could be measured by the accumulation of ―user value‖ during development. Since the de-

velopment team itself typically assigns the value of the stories that are completed, this might not sa-

tisfy the PMO unless they had fully concurred with the contractor-assigned story (capability) values.

20

 Agile creates detailed schedules for the current iteration. Agile does not create detailed schedules for all iterations apri-
ori.

21
 Note that there is a difference in how estimations can be done at the iteration, release, and enterprise levels. At the

iteration level, the team should always be involved. However, as the project gets bigger, the need for release- and even-
tually enterprise-level estimates may look more like those seen in Waterfall.

18 | CMU/SEI-2010-TN-002

 In many Agile developments, the contractors use Agile tracking tools to keep track of progress. On

one of the projects interviewed, the PMO did use those same tools in lieu of expecting paper progress

reports and acquiring a progress-tracking tool of their own. This has two advantages:

 the PMO learns and uses the contractor tools to follow progress and review designs, which re-

duces the work and cost for the PMO

 the contractor realizes cost savings because he does not have to do any translation of what he

sees in his own tools to what the PMO expects

 The contractor and the PMO need to negotiate common ground in order to define the needed hybrid

model for the measurement system.

 The project progress measurement system to be used must be negotiated and agreed upon early in the

project/program.

Context

Another form of oversight used on traditional programs is the production and review of documentation on

a regular basis. At first look, Agile documentation might not meet DoD expectations and the perceived

need for acquisition office oversight. Most PMO personnel expect a full complement of CDRLs, provided

at regular, defined intervals or milestones using traditional methods.

Finding/Observation

A developer using Agile only creates the minimum documentation necessary to accomplish the tasks at

hand, and the documentation evolves over time into a final product. Thus if Agile is to be employed, the

government PMO needs to agree to less-than-full-blown documentation, as this saves time and avoids

abandoning expensive documentation later. Further, the government PMO needs to relax traditional

CDRL-level documentation at milestone events. Still, the parties need to negotiate documentation to en-

sure that important data represented in a minimal required set of documents (programmatic and technical)

is gathered. This requires more software expertise of the PMO staff, who need to recognize that documen-

tation versus functionality is a ―zero-sum game‖: if more documents are required, then less functionality

will be delivered in the final system.
22

Eliminating these documents and the related oversight is easy to say but requires trust that the contractor

is doing it right; this requires some other mechanism that ensures the proper oversight such as the gov-

ernment being on-site, frequent code reviews, and frequent process checks. The Agilist might argue that

the iteration builds provide the visibility needed for government oversight. But until there is more gov-

ernment experience with Agile methods, it will be difficult for the PMOs to relinquish the current tech-

nical documents needed for oversight.

3.6 End-User Involvement

Context

One of the fundamental principles cited in the Agile Manifesto is customer collaboration. In other words,

Agile believes close interaction between the developers and end users is important. A basic Agile prin-

22

 This should not be construed to think that doing no documentation is an option.

19 | CMU/SEI-2010-TN-002

ciple is ―business people (users) and developers work together daily,‖
23

 but in the DoD acquisition envi-

ronment this is rarely easy, and it may sometimes not even be possible. DoD acquisitions—especially

joint service acquisition—involve many stakeholders with inherently conflicting needs. It is hard to get a

single viewpoint from the customer because no one person truly represents the users. Plus, it is hard to get

all the stakeholders (maintenance and sustainment personnel) involved in development decisions.

Finding/Observation

From interviews with existing programs we found:

 A single voice for the user/customer is essential. This could be accomplished through an input-

filtering steering committee that documents decisions, insists that the user community speaks with

one voice to the Agile developer (through requirements definition), and receives input from and gives

direction to a single person representing the Agile developer.

 True users (not just PMO representatives) must attend demonstrations that are given specifically to

get user information and feedback.

 A hybrid approach (something between ―pure Agile‖ and DoD 5000 traditional methods) is needed

for large systems to assure that agreements with multiple users are documented, external interfaces

are documented and agreed to, and multiple contractual and programmatic constraints are honored.

 A strong emphasis on government/user participation in reviews and demonstrations is essential.

These reviews and demonstrations will be of shorter duration and have a tighter focus with Agile, and

this will result in more frequent reviews that reflect the nature of Agile development. For example,

having eight two-hour reviews spread over time, as opposed to a single two-day event to cover the

same material, would be the implementation of multiple IDRs instead of one CDR.

3.7 Integration and Test

Context

Test and integration are incorporated throughout the iteration life cycle used within Agile as opposed to

Waterfall, which puts it at the end. Testing can have a significantly different role in the project depending

on which Agile method is used. The big advantage in Agile testing and integration is that testing can, and

usually is, started earlier because of the short timeframes for iterations; this flushes out problems more

quickly. Furthermore, gathering customer feedback during the development phase (in each iteration) pro-

vides an early look at the code capabilities and helps reduce risk at the time of system integration.

Finding/Observation

We learned from our interviews that:

 Within the DoD, ―sell-off‖ is the process used by the contractor to obtain formal acceptance of the

developed product from the government, thus the government takes ownership as the contractor

―sells off.‖ The nature of ―system sell-off‖ from the contractor‘s perspective is still the same as in

Waterfall; there might be fewer sell off risks because of the frequent interactions among all parties

during the demonstrations.

23

 http://agilemanifesto.org/principles.html

http://agilemanifesto.org/principles.html

20 | CMU/SEI-2010-TN-002

 Software builds are completed much earlier with Agile since each iteration produces a usable build;

because of this, more frequent test and integration work can be done.

 The government test community can (and should) be involved early.

 A lesson specific to integration is that the software integrators need to have access to the ultimate

target environment. This reduces issues for the development teams when they get to system-level in-

tegration. (The degree to which this is an advantage depends on the target environment and the num-

ber of platforms that are involved.)

 Access to the developers for the testing/integration team can be an issue because of the short (typical-

ly two-week) development cycles; this puts intense time pressure on the development team and

should be addressed during forward iteration planning as iteration cycles are completed. Further, this

might suggest that the testing/integration team members need to be part of the development team.

 Government testing personnel need to understand the differences inherent in Agile versus Waterfall

to adequately adapt staff and time requirements for testing when using Agile. The government testing

personnel need to be engaged at the development iteration level; they should not wait until the entire

system is completed to initiate their testing work.

3.8 Infrastructure

Infrastructure is the basic framework or structure of the team and the context within which the team oper-

ates. The overall structure of a program using Agile is usually different from the traditional program

structure. The structure reflects Agile precepts and is reliant on the context in which it will be applied.

Organizational structure and environmental/support structure both need to be established to support an

Agile implementation. The context of a program and its inherent organizational structure are related.

Context

For large programs there is the need for early decisions about the support structure including shared as-

sets. To help eliminate configuration management issues, the government usually dictates the shared as-

sets of models across contracts and contractors on a large program. Common facilities (or shared assets),

such as common logging (for example automated logging of test messages), agreements on units of

measure, data models, etc., will be used on all segments and components of large programs. Early deci-

sions on such aspects can appear to be in direct contradiction to the tenets of Agile.
24

 However, develop-

ers using Agile need to be aware of the larger, system-wide constructs during their iteration planning.

Developers need to use these as inputs so that they can be accommodated during the Agile implementa-

tion. Developers also need to understand that for DoD-type programs, the Concept of Operations

(CONOPS) developed for the overall system by the government strongly influences and provides the con-

text for the capability stories used in Agile development. Therefore, an up-front operational architecture

needs to be defined as part of the CONOPS, and all developers of the overall system need to understand

that conventional ―use cases‖ and Agile ―stories‖ are different in construction and application. Agile ―sto-

ries‖ are less-formal constructs written as informal English descriptions. ―Use cases‖ are formal con-

structs including preconditions, post conditions, and detailed interaction diagrams.

24

 This may be true for small-to-medium sized Agile projects. However, for large projects Iteration 0 would be employed to
work activities such as architecture.

21 | CMU/SEI-2010-TN-002

Finding/Observation

Interviewees had several potential organizational ideas for executing Agile in the DoD acquisition envi-

ronment:

 Agile can be experimented with early in the acquisition life cycle to try out what works and what

doesn‘t. Possible places to experiment might be during analysis of alternatives, risk reduction activi-

ties, activities leading up to Milestone B, phases in which only coding is being produced, and Ad-

vanced Concept Technology Demonstrations (ACTDs).

 For programs just getting involved with Agile, one organizational structure that worked well involved

customers on-site at the contractor's facilities using a two-week rotational schedule. The interviewees

indicated that such a short rotational schedule benefits the contractor team because it typically pro-

vides much better access to real users, and it benefits the PMO team because they have better insight

into what is going on in development.

 To help get started with Agile, the contractors brought in an Agile expert who would be embedded in

the team and then train his/her way out of the job. This way the Agile team learns by doing, not just

from classroom training or books.

 The contractors created something concrete that behaves in a representative manner, such as an early

version or prototype.

Large programs with multiple Agile teams had several more ideas:

 To coordinate project dependencies across multiple Agile development teams, the leaders of the de-

velopment teams, who typically maintain control of the team through a daily ―scrum,‖ can them-

selves become members of a team of consisting of all the team leaders (a ―scrum of scrums‖).
25

 To maintain subject matter expertise and foster the cross-training of staff, team leads should be per-

manent, rotating the staff underneath them. This allows the cross-training of staff in all areas and

maintains the team lead as subject matter experts—a ―best-of-both worlds‖ approach.

 Planning for iterations was difficult with multiple Agile teams running in parallel and working on the

same source tree. It was difficult to track feature predecessors. For example, if story A is needed be-

fore story B can be implemented, and story A was scheduled to be completed during the last iteration

by another team, the development team needs to know if story A actually made it into that iteration

before scheduling story B. This problem is made more difficult if both A and B are scheduled for the

same integration because each team can decide for itself which stories get bumped from a particular

iteration. In order to preclude this type of behavior, one group made this particular topic part of their

daily team lead standups.

 Dependencies across multiple Agile teams working on a common source tree need frequent coordina-

tion. The interviewees pointed out that one possible way of doing this would be to have the Agile

team leader scrum (the ―scrum of scrums‖) meet in a daily standup to track the interdependencies.

25

 When using Scrum techniques.

22 | CMU/SEI-2010-TN-002

Context

Another issue that needs to be considered with multiple teams is code refactoring. ―Code refactoring is

the process of changing a computer program‘s internal structure without modifying its external functional

behavior or existing functionality, in order to improve internal quality attributes of the software.‖
26

Finding/Observation

We found that the Agile refactoring step can have unforeseen side effects: When refactoring of code is

carried out as a standard step in Agile and the code involved is only part of a larger, interrelated software

system, team members without comprehensive knowledge of all the interrelationships can inject serious

defects that are not apparent to the development team and will not emerge until system integration. From

our interviews we found that

 The Agile team needs to know at all times where their code fits with other teams‘ code, and what

they are affecting across the entire system configuration, including the Work Breakdown Structure

(WBS).

 The use of design patterns and team training in the overall architecture of the system can improve the

learning curve for new team members and can help to constrain refactoring variability.

 Multiple teams working at the same time without knowing the overall program context should be

cautious when refactoring solutions that simplify the code being developed. The refactoring can seem

to provide an early value for code maintainability and modifiability, but ultimately not be scalable to

the larger overall infrastructure.

On large, complex systems there may be a need for an entire iteration that is devoted to refactoring after

integration of the various teams' code.

26

Wikipedia - http://en.wikipedia.org/wiki/Refactoring

http://en.wikipedia.org/wiki/Refactoring

23 | CMU/SEI-2010-TN-002

4 DoD 5000 Series and Agile—Potential Issues and Conflicts

Several policies, instructions, and regulations were reviewed to determine how they might impact the use

of Agile on DoD programs. In particular, the DoD 5000 series was reviewed in depth. In all cited cases,

the authors tried to determine if there could be an interpretation that might preclude or limit the use of

Agile. In some instances, it appeared that the policy or regulation actually encouraged the use of Agile or

at the very least some of the Agile concepts. The Department of Defense Directive (DoDD) 5000.01 pro-

vides supportive, challenging, and constraining policies that would need to be interpreted and applied to

the specific program. Excerpts and considerations are provided in Table 1 for the areas discussed.

4.1 Use of Agile Is Not Prohibited by DoDD 5000.01

Support

Flexibility, responsiveness, innovation, and collaboration are all terms that one might see when discussing

Agile. These terms are in fact section headings in DoDD 5000.01. One could interpret these sections as

encouraging the use of methods such as Agile. Other sections on Integrated Test and Evaluation, Profes-

sional Workforce, and System Engineering also support the use of Agile; at least they seem to be open to

methods other than traditional Waterfall.

Challenges

There are other areas within the directive that provide challenges for the use of Agile. These are cost, af-

fordability, and cost realism. In these areas, the policy requires the program to determine the total cost of

ownership which seems to be based on knowing all requirements at a detailed level up front. Agile does

not necessarily support this concept well because all of the requirements are not known at a detailed level

up front. However, cost as an independent variable is an inherent part of Agile, which starts out with a

high-level estimate that can be, and is, refined as the program progresses. Agile allows the developers to

provide an incremental total cost estimate at a detailed level as the iterations are performed. The big chal-

lenge with moving to an incremental costing approach is that the contracting cycle takes too long for just

one development iteration. So, the options are either to develop a more streamlined competitive bidding

process that takes months instead of years to execute or estimate several Agile iterations based on a sam-

ple set of requirements. This requires a common understanding that the actual requirements delivered will

vary depending on how the PMO and end user prioritize requirements.

Another challenging area is the Program Stability policy, which details when the Milestone Decision Au-

thority (MDA) determines to fully fund an acquisition program; generally, this is when a system concept

and design have been selected. Some might say that since the design within Agile is evolving throughout

the program it therefore does not support this policy. However, Agile does provide for an overall architec-

tural framework (sometimes in Iteration 0) so that this policy can be met using Agile. The PMO would

need to work closely with the MDA on meeting this objective.

Constraints

There are other areas within the directive that provide constraints for using Agile on a program. These

include independent operational test, information assurance, information superiority and interoperability.

These areas address the overall ―environment‖ or context within which an Agile development project

24 | CMU/SEI-2010-TN-002

would need to operate. These policies and their implementations for the program are constraints within an

Agile development effort.

The following table provides considerations for DoDD 5000.01 policies that the PMO should investigate

before adopting Agile.

25 | CMU/SEI-2010-TN-002

Table 1: Agile Considerations for DoDD 5000.01 Guidance

DoDD 5000.01 Guidance Excerpts Considerations

4.3.1 Flexibility

―There is no one best way to structure an acquisition program…MDAs and PMs

shall tailor program strategies and oversight, including documentation of program

information,…to fit the particular conditions of that program, consistent with applica-

ble laws and regulations and the time sensitivity of the capability need―

Support

This policy provides the foundation from which a program could adapt oversight

suitable for Agile development. It also provides the high-level guidance for tailoring

documentation such as CDRLs which would be critical when using Agile methods.

Section 4.3.2 Responsiveness

―Advanced technology shall be integrated into producible systems and deployed in

the shortest time practicable. Approved time-phased capability needs matched with

available technology and resources enable evolutionary acquisition strategies….

Incremental development is the preferred process for executing such strategies.―

Support

Using Agile might allow for deployment in the shortest time practicable. This policy

certainly lends itself to agile methods and is applicable in a software venue. The

PMO would need to interpret it for their given program and apply appropriately.

Section 4.3.3 Innovation

―MDAs and PMs shall examine and, as appropriate, adopt innovative practices (in-

cluding best commercial practices and electronic business solutions) that reduce

cycle time and cost, and encourage teamwork.―

Support

This policy also seems to be an invitation to use Agile. The PMO would need to

interpret it for the given program and apply appropriately.

Enclosure 1 Additional Policy, Section E.1.1.2 Collaboration

―The DoD acquisition, capability needs and financial communities, and operational

users shall maintain continuous and effective communications with each other by

using Integrated Product Teams (IPTs).―

Support

In the Agile environment, the iteration teams are cross functional teams consisting

of programmers, testers, and others as needed. Continuous and effective commu-

nication is one of the cornerstones for Agile. This policy supports the use of Agile.

Enclosure 1 Additional Policy, Section E.1.1.4 Cost and Affordability

―The DoD Components shall plan programs based on realistic projections of the

dollars and manpower likely to be available in future years.―

Challenge

This section deals with the reality of fiscal constraints and the notion that cost

should be viewed as an independent variable. The MDA needs to address total

costs of ownership and the user should address affordability in establishing capabili-

ty needs. These items might need to be obtained in a different manner when using

Agile as Agile does not do a detailed determination of requirements nor identify all

requirements in ―concrete‖ at the beginning of the project. Rather Agile refines the

high level requirements defined in the beginning of the project throughout the life

cycle. Thus, the costs are constantly being refined too. This policy is an issue need-

ing attention by the PMO if Agile is to be used.

Enclosure 1 Additional Policy, Section E.1.1.5 Cost Realism

―Contractors shall be encouraged to submit cost proposals that are realistic for the

work to be performed…….Proposals shall be evaluated for cost realism in accor-

dance with the Federal Acquisition Regulation.―

Challenge

The PMO would need to be convinced that the contractor is submitted realistic costs

for an Agile project given that the basis for estimating in Agile is different from the

usual basis for Waterfall. Agilists tend to think in terms of fixed cost and floating

requirements, concepts that are counter to traditional PMO thinking.

Enclosure 1 Additional Policy, Section E.1.1.8 Independent Operational Test

Agency (OTA)

―Each military department shall establish an independent operational test agency…

―to plan and conduct operational tests, report results, and provide evaluations of

effectiveness and suitability.―

Challenge

The OTA needs to coordinate with the Agile team. The normal mode of doing busi-

ness for the OTA will most likely have to change to accommodate Agile and the

timing of available deliverable code. This should be coordinated in advance of the

program start if at all possible since the test (OTA) personnel need to be part of the

Agile team or at least an interfacing team. This would impact acceptance testing

(scheduling of it, etc.)

26 | CMU/SEI-2010-TN-002

Enclosure 1 Additional Policy, Section E.1.1.9, E1.1.10, and E1.1.13 Informa-

tion Assurance, Information Superiority, and Interoperability, respectively.

Constraint

These sections do not directly affect the use of Agile but do provide some con-

straints that need to be considered for the ―bigger picture‖ or architecture of the

entire program. Agile tends to develop small, focused pieces of functionality. How-

ever, these smaller pieces will need to fit into a bigger picture or architecture for the

program, which will have outside constraints or overarching requirements that need

to be met. The Agile teams need to consider how every Agile iteration fits within the

bigger scheme of the program in order to avoid rework.

One way to solve this problem is to use a hybrid approach that couples ideas from

Agile and the traditional Waterfall to provide coverage for these areas.

Another possible approach could be to include an IA expert as part of the Agile

team. This may or may not be a full-time position but the expert will be needed cer-

tainly on a regular and consistent basis.

Another possibility is to make sure that these requirements (non-functional) are

emphasized in developing and prioritizing the backlog list.

Enclosure 1 Additional Policy, Section E.1.1.11 Integrated Teat and Evaluation

―Test and evaluation shall be integrated throughout the defense acquisition

process.―

Support

This fits into the Agile concept of test often and deliver a working product at the end

of each iteration.

Enclosure 1 Additional Policy, Section E.1.1.19 Professional Workforce

―The Department of Defense shall maintain a fully proficient acquisition, technology,

and logistics workforce that is flexible and highly skilled across a range of manage-

ment, technical, and business disciplines.―

Support

This section provides support for training government personnel in Agile if that is to

be used on the program.

Enclosure 1 Additional Policy, Section E.1.1.21 Program Stability

―The MDA shall determine the appropriate point at which to fully fund an acquisition

program, generally when a system concept and design have been selected,…―

Challenge

This section discusses developing realistic schedules, investment plans, and affor-

dability assessments. This suggests apriori design for the program which is counter

to Agile. However, this may be an educational issue more than an Agile issue to

resolve. A lot depends on the level of information needed to make this decision and

the type of system being developed.

Enclosure 1 Additional Policy, Section E.1.1.27 Systems Engineering

―A modular, open-systems approach shall be employed, where feasible.‖

Support

This section requires the acquisition program to be managed using a systems engi-

neering approach that optimizes total system performance and minimizes total

ownership costs. In many respects Agile supports this concept and there should not

be any issues if the PMO decides to employ Agile.

27 | CMU/SEI-2010-TN-002

4.2 Regarding DoDI 5000.02

The barriers to adopting Agile in the DoD appear to be primarily cultural. That is to say that there is little

in the way of regulation or guidance provided in DoDI 5000.02 that would prevent the use of Agile. This

instruction does impose specific constraints on the acquisition office, but these constraints would be true

of any development environment.

On the other hand, the Federal Acquisition Regulations (FARs) impose significant obstacles to collabora-

tive endeavors. In fact, since the system tries to encourage competition (and since the competition must

be fair), in many cases users are actually prevented from collaborating with system developers until late

in the acquisition life cycle. Further, the mechanisms that are typically imposed by acquisition offices to

monitor and control their system developers (such as earned value, or independent cost estimation) are

significantly different when the developer is working in an Agile world. As stated earlier, the differences

between using Agile and a more traditional method require different management approaches for the ad-

vantages of Agile to be fully realized.

4.2.1 Agile Impact to Acquisition: Scenarios

As a basis for discussing how Agile might impact a typical acquisition, let‘s look at two very simplified

scenarios: a non-Agile software acquisition and an Agile software acquisition. These scenarios primarily

relate to an acquisition initiated during the Engineering and Manufacturing Development phase of the

acquisition life cycle.

Non-Agile Software Acquisition

In this scenario, a capability document would be created and then a standard government contracting

process would be used to select a contractor. The contractor would follow a standard development

process that produces the requirements, specifications, and designs that would be reviewed and approved

by the acquisition office. Typically, users participate in milestone reviews that would accompany the con-

tractor‘s development phases. Once the reviews were complete and the requirements, specifications and

designs approved by the acquisition office, the contractor would begin the software implementation. Once

the software development is complete, the system would be integrated and go through system and accep-

tance testing. The first time the acquisition office and users get to try the software out to see if it really

works as they want it to is during this testing, which might be many months or even years after the con-

tract was signed.

Agile Software Acquisition

This scenario would start out the same as the non-Agile situation. A capability document would be pro-

duced and used as the basis for selecting a contractor. However; from this point on things would be dif-

ferent. Instead of the contractor producing a series of requirements, specifications, and design documents

to guide the implementation, the government would provide a ―user representative‖ to the contractor. This

user representative would be a member of the development team and would support creation of a set of

user stories
27

 that describe the user capabilities in terms of simple features (that the users need). The user

27

 This assumes that an overall release plan if needed for the project has already been created. The release plan could be
at the feature or capability level.

28 | CMU/SEI-2010-TN-002

representative would then collaborate with the development team to prioritize these stories. The team

would begin implementing the stories by first selecting stories with the highest user priority and those

stories they could implement in a short (typically two- to four-week) iteration. At the end of each itera-

tion, the team would produce a working system that implements all the user stories that have been com-

pleted to-date. The acquisition office and users would be able to try the software out at the end of each

iteration, providing feedback to the development team. They could even add new user stories, change or

delete existing user stories, and reprioritize all the user stories. This process of short iterations continues

until all the user stories are completed or until the acquisition office and user agree that the system is

good enough; then the system goes through final testing.

Some key differences between these two scenarios are:

 Instead of producing a complete detailed design up front, the Agile team begins with a skeleton archi-

tecture/design up front; the architecture evolves over the iterations.

 The Agile process produces a testable system at the end of each iteration that the users can try out (in

contrast to non-Agile processes that typically don‘t provide a user testable system until software de-

velopment is fully completed).

 The Agile process accepts changes at the start of each iteration. Coupled with the user‘s evaluation of

the testable system at the end of each iteration, this keeps the Agile development team focused on

what is most important to the users.

4.2.2 Agile within the Acquisition Life Cycle Phases

The DoDI 5000.02 describes a series of life cycle phases that ―establishes a simplified and flexible man-

agement framework for translating capability needs and technology opportunities, based on approved ca-

pability needs, into stable, affordable, and well-managed acquisition programs that include weapon sys-

tems, services, and automated information systems (AISs).‖ [5]

Figure 5: The Defense Acquisition Management System [6]

Figure 5 shows how acquisition is supposed to work. In brief, there are five life cycle phases, each of

which is separated by a milestone of one kind or another. Within each life cycle phase there are opportun-

ities to develop and demonstrate the capability that is desired. As the acquisition progresses through the

phases, options for system alternatives are systematically identified and evaluated. As a result of this

29 | CMU/SEI-2010-TN-002

analysis, some potential solutions survive, while others are eliminated. Eventually, a system configuration

that meets stakeholder needs is specified, developed, built, evaluated, deployed, and maintained.

Within this construct there are opportunities for use of Agile. In fact, within almost every life cycle phase,

there is opportunity. For example, as discussed above, one of the reasons for using Agile is to establish a

validation mechanism for user requirements during the development process. However, specifically in the

earlier life cycle stages, such as Material Solution Analysis and/or Technology Development, there is em-

phasis in the DoDI on ―risk reduction.‖ A managed typical risk would relate to the satisfaction of the Key

Performance Parameter (KPP) requirements of the planned system. The reason for this is simple: We

want to achieve the best system performance possible, so initially we establish aggressive KPPs. In these

earlier life cycle phases, these KPP-related risks might be mitigated by investigating advanced technolo-

gies, often requiring the construction of a prototype system or system element. The use of Agile would

work well under these circumstances. The frequent builds and evaluations that occur when using Agile

should provide a healthy environment for establishing the feasibility of these KPPs.

On the other hand, the instruction does make it clear that a typical entry criterion for progress into the

next phase of activity is an estimate of program life-cycle costs. As mentioned earlier, the DoD-

sanctioned cost estimation model for developing a system using Agile has not been established. In order

for a program to be able to secure funding, they will have to convince their oversight authority that the

funding they are requesting is adequate. If the contractor they are using has a significant amount of histor-

ical data for validating their cost estimates in the Agile context, this should be less of an issue. Until there

is a better industry-wide understanding of the cost estimation methods for Agile resistance to the Agile

approach should be expected.
28

The next life cycle phase described by the DoDI 5000.02 is the Engineering and Manufacturing Devel-

opment phase. In this phase there will be significant effort associated with software development. In fact,

with most software-intensive-systems, this is where the bulk of the software will be produced. This phase

is probably where Agile is most likely to be applied. The factors that would influence the decision might

involve the length of the development cycle, the ―complexity‖ of the system, the size of the software de-

velopment team, and the team‘s experience with Agile.

It is important to note that the other parts of the system undergo a ―system engineering‖ or ―Waterfall‖

life cycle during this life cycle phase. That is to say that there are formal milestone reviews (such as SRR,

PDR, CDR, TRR) to be conducted. It is a challenge for any software development methodology to be

consistent with the system‘s life cycle. For example, a large system may have an infrastructure software

component that is necessary for verification testing of other system components. It is common practice to

accelerate the design and build of this component. When this occurs, it would be normal to take the de-

sign for this component far beyond the point of ―critical design‖ long before the system‘s Critical Design

Review (CDR) is to be conducted. The user involvement that is provided by Agile might provide some

protection for the system developer under these circumstances. Conversely, it is equally likely that other

elements of the software design would not have been designed at the CDR. These software elements are

likely to be viewed by the team as ―low-risk,‖ with little or no impact on the system design. However,

there is little doubt that the Systems Engineering Waterfall life cycle does not align well with modern

28

 Cost management when using Agile tends to be more of an issue for fixed price contracts where you really have to know
what the requirements are up front or the contractor has to take on a lot of risk. For cost plus contracts, this is less of an
issue.

30 | CMU/SEI-2010-TN-002

software project life cycle approaches. Therefore, it is important to bridge the phase requirements when

using Agile to ensure that the reviews don‘t hinder the ability of the contractor to deliver software incre-

ments.

During the next life cycle phase, Production and Deployment, it is rare that a major element of the system

cost is software related. From a software development perspective, this phase is quite similar to the next

life cycle phase, Operations and Support, where sustainment of the software is conducted. It is assumed

that the software previously developed (during the Engineering and Manufacturing Development phase)

is mature and stable, so the anticipated software effort expended during this phase is low and should fol-

low a sustainment model, driven by the need to correct errors observed during qualification testing, or

providing enhancements as requested by program stakeholders. It is quite possible for a software devel-

opment team working in these life cycle phases to follow an Agile approach. Quite often the features re-

quested during this phase are modifications that are only relevant within the context of the system that

had been previously developed. The aspect of user involvement that naturally occurs at this point of the

life cycle makes it easier for the use of a collaborative approach.

It should be noted that some of the Agile methods might not be as practical as others
29

 during the Opera-

tions & Support phase. For example, it is quite likely that the capability provided during sustainment is

planned to be provided over a significant period of time, typically on the order of two years. While the

involvement of the user might be beneficial, the frequent releases may not be useful because of limita-

tions with the verification and validation environments required for deployed systems. On the other hand,

this constraint should not preclude the use of Agile during this stage of development.

Finally, a detailed analysis was conducted of the DoDI 5000.02 with specific paragraphs extracted, and

detailed comments made. The summary of this analysis is provided in Table 2.

29

 Kanban / lean style of Agile might be the most relevant for this phase.

31 | CMU/SEI-2010-TN-002

Table 2: Analysis of Acquisition Life Cycle Phases and DoDI 5000.02

Life Cycle Phase DoDI 5000.02 Guidance (excerpts) Considerations

Material Solution and Analysis

(MSA)
The Analysis of Alternatives (AoA) shall focus on identification and analysis of alternatives,

measures of effectiveness, cost, schedule, concepts of operations, and overall risk. The

AoA shall assess the critical technology elements (CTEs) associated with each proposed

materiel solution, including technology maturity, integration risk, manufacturing feasibility,

and, where necessary, technology maturation and demonstration needs. To achieve the

best possible system solution, emphasis shall be placed on innovation and competition.

Existing commercial-off-the-shelf (COTS) functionality and solutions drawn from a diversi-

fied range of large and small businesses shall be considered.

Depending on the type of system being acquired,

software development may be needed to veri-

fy/validate measures of effectiveness. For instance,

for many Automated Information Systems (AISs)

such as travel or Human Resources, there are no

CTEs.

For weapons systems, CTEs may have significant

capability provided as software. Based on technolo-

gy maturity and integration risk, there may be soft-

ware development required for technology demon-

stration. An Agile rapid prototyping process may be

advantageous.

Although Agile methods may be desired, competition

may preclude users from participating in the soft-

ware development activity.

Technology Development

(TD)
Entrance into this phase depends on the completion of the AoA, a proposed materiel solu-

tion, and full funding for planned Technology Development Phase activity.
Agile methods may not mesh with ―traditional― cost

estimation and accounting techniques already sanc-

tioned by DoD. ―Full funding‖ in the Agile sense may

require a cultural, contractual, and/or legal adjust-

ment and creation of DoD sanctioned Agile cost

estimation model.
The Technology Development Strategy (TDS) shall document the following:

(a) The rationale for adopting an evolutionary strategy (the preferred approach) or using a

single-step-to-full-capability strategy (e.g., for common supply items or COTS items). For

an evolutionary acquisition, the TDS shall include a preliminary description of how the

materiel solution will be divided into acquisition increments based on mature technology

and an appropriate limitation on the number of prototype units or engineering development

models that may be produced in support of a Technology Development Phase;

(b) A preliminary acquisition strategy, including overall cost, schedule, and performance

goals for the total research and development program;

(c) Specific cost, schedule, and performance goals, including exit criteria, for the Technol-

ogy Development Phase;

 (h) A summary of the CAIG-approved Cost and Software Data Reporting (CSDR) Plan(s)

for the Technology Development Phase (see Section 3 in Enclosure 7).

The emphasis on prototypes and engineering devel-

opment models should include software. An Agile

process should help with prototyping and developing

engineering models. For references to cost and

schedule see note above.

32 | CMU/SEI-2010-TN-002

The TDS and associated funding shall provide for two or more competing teams producing

prototypes of the system and/or key system elements prior to, or through, Milestone B.

Prototype systems or appropriate component-level prototyping shall be employed to re-

duce technical risk, validate designs and cost estimates, evaluate manufacturing

processes, and refine requirements. Information technology initiatives shall prototype sub-

sets of overall functionality using one or more teams, with the intention of reducing enter-

prise architecture risks, prioritizing functionality, and facilitating process redesign.

Although competition may be desired, there must be

a way to allow the competition to occur without re-

moving Users from the development process. Under

current practices, Users are not allowed to partici-

pate in competitive downselects. Surrogates could

be considered instead.

When consistent with technology development phase objectives, associated prototyping

activity, and the MDA approved TDS, the PM shall plan a Preliminary Design Review

(PDR) before Milestone B. PDR planning shall be reflected in the TDS and shall be con-

ducted for the candidate design(s) to establish the allocated baseline (hardware, software,

human/support systems) and underlying architectures and to define a high-confidence

design. All system elements (hardware and software) shall be at a level of maturity com-

mensurate with the PDR entrance and exit criteria. A successful PDR will inform require-

ments trades; improve cost estimation; and identify remaining design, integration, and

manufacturing risks. The PDR shall be conducted at the system level and include user

representatives and associated certification authorities. The PDR Report shall be provided

to the MDA at Milestone B and include recommended requirements trades based upon an

assessment of cost, schedule, and performance risk.

Milestones represent a completion event and sign-

off for government. Documentation must be pre-

pared by the developer that documents the software

design. Those using Agile methods should prepare

such documentation as appropriate.

Engineering and Manufacturing

Development

(EMD)

(b) Post-PDR Assessment. If a PDR has not been conducted prior to Milestone B, the PM

shall plan for a PDR as soon as feasible after program initiation. PDR planning shall be

reflected in the Acquisition Strategy and conducted consistent with the policies specified in

paragraph 5.d.(6). Following PDR, the PM shall plan and the MDA shall conduct a formal

Post-PDR Assessment. The PDR report shall be provided to the MDA prior to the assess-

ment and reflect any requirements trades based upon the PM’s assessment of cost, sche-

dule, and performance risk. The MDA will consider the results of the PDR and the PM’s

assessment, and determine whether remedial action is necessary to achieve APB objec-

tives. The results of the MDA's Post-PDR Assessment shall be documented in an ADM.

See Milestone comment (above). In addition, con-

sider that assessment may need to be ongoing and

incremental rather than milestone based.

(c) Post-CDR Assessment. The MDA shall conduct a formal program assessment following

system-level CDR. The system-level CDR provides an opportunity to assess design matur-

ity as evidenced by measures such as: successful completion of subsystem CDRs; the

percentage of hardware and software product build-to specifications and drawings com-

pleted and under configuration management; planned corrective actions to hard-

ware/software deficiencies; adequate developmental testing; an assessment of environ-

ment, safety and occupational health risks; a completed failure modes and effects analysis;

the identification of key system characteristics; the maturity of critical manufacturing

processes; and an estimate of system reliability based on demonstrated reliability rates.

See Milestone comment (above).

(3) Each program or increment shall have an APB (see Section 4 and Table 6 in Enclosure

4) establishing program goals – thresholds and objectives – for the minimum number of

cost, schedule, and performance parameters that describe the program over its life cycle.

Agile methods may not mesh with ―traditional‖ cost

estimation and accounting techniques already sanc-

tioned by DoD. ―Full funding‖ in the Agile sense may

require a cultural adjustment in the government and

creation of DoD sanctioned Agile cost estimation

model.

33 | CMU/SEI-2010-TN-002

(4) An affordability determination results from the process of addressing cost during the

requirements process and is included in each CDD using life-cycle cost or, if available,

total ownership cost. Transition into EMD also requires full funding (i.e., inclusion of the

dollars and manpower needed for all current and future efforts to carry out the acquisition

strategy in the budget and out-year program), which shall be programmed in anticipation of

the Milestone B decision. In general, a Milestone B should be planned when a system

concept has been selected, a PM has been assigned, requirements have been approved,

and engineering and manufacturing development is ready to begin. In no case shall Miles-

tone B be approved without full funding. The DoD Components shall fully fund their share

of approved joint and international cooperative program commitments.

Agile methods may not mesh with ―traditional‖ cost

estimation and accounting techniques. ―Full funding‖

in the Agile sense may require a cultural adjustment

in the government and creation of DoD sanctioned

Agile cost estimation model.

Operations and Support

(OS)

(b) Life-cycle sustainment considerations include supply; maintenance; transportation;

sustaining engineering; data management; configuration management; HSI; environment,

safety (including explosives safety), and occupational health; protection of critical program

information and anti-tamper provisions; supportability; and interoperability.

The Agile development process must produce ade-

quate documentation of the design and implementa-

tion to enable a different contractor to assume the

Operations and Support responsibilities.

(c) Effective sustainment of systems results from the design and development of reliable

and maintainable systems through the continuous application of a robust systems engi-

neering methodology.

See Sustainment note above.

34 | CMU/SEI-2010-TN-002

4.3 Foundational Concerns

While policies, regulations, and other governing documents are a large concern for anyone in a PMO

thinking about adopting Agile, there are some other underlying concerns that will form the basis for de-

veloping the application of Agile. The most significant of these are culture, training, and customer inte-

raction.

Culture

Culture is inherent in any organization; in many ways it reflects the methodology being used to develop

the product. It is a mindset, a way of thinking and a way of doing business. Culture becomes ingrained

into the organization and is usually intertwined with everything the organization does. This includes the

organizational structure, the rewards system, the communication style, the decision making style, and the

staffing model (types of personnel, roles and responsibilities, team make-up, etc). The Agile culture is

quite different from the traditional Waterfall culture. This in itself could be a huge obstacle to the adop-

tion of Agile.

Training

Training is essential when adopting Agile methods: while the constructs and principles seem readily ap-

parent and easy to understand, the actual implementation is more difficult than one would think. Consider

that the PMO will be asking people to change habits that have ingrained for years or decades; PMOs will

ask them to change the way they do business, conduct their work, and spend their days. Many times the

staffing profile of personnel that thrive in an Agile environment is totally opposite to that of those who

thrive in a Waterfall environment. People can adapt but this type of fundamental change is not easy. Find-

ing an Agile coach to help the organization move to Agile is essential.

Customer Interaction

One of the key tenets of Agile is access to the customer—the end user; this is essential to the Agile way

of doing business. In a government acquisition environment, access to the end user is not always possible.

In many cases, there are multiple end users for the product. Staffing this position is problematic due to

resource availability, representation of all users, and the type of personnel typically available for this type

of interaction.

These concerns need to be addressed by the organization before it begins using Agile. Some ideas on how

to do this are provide in Section 5, with common objections to Agile in Appendix B, and areas to consider

when embarking on using Agile in Appendix C.

35 | CMU/SEI-2010-TN-002

5 Considerations for Applying Agile in the DoD

“Neither agile nor plan-driven methods provide a methodological silver bullet that slays

Fred Brooks’ software engineering werewolf… Elements of both agile and plan-driven ap-

proaches may be characterized as lead bullets.‖ –Barry Boehm and Richard Turner [4]

For those who are looking to Agile to solve all their software woes, be aware—that particular nirvana will

not be presented here. Agile is just another ―lead bullet‖ in the arsenal of methods, practices, techniques,

and procedures that can be used to help solve software woes. One statistical study concluded that ―little

empirical research had been conducted in establishing whether customer satisfaction in the use and results

of Agile-driven software development methods was greater than the customer satisfaction in the use and

results of plan-driven software development methods.‖ [7] This study went on to say that ―both methods

satisfy their respective customers under a wide range of different situations.‖ Thus, Agile must be applied

appropriately and will require discipline.

During the 2009 Agile Development Practices Conference, Alistair Cockburn said during his keynote

speech that the concepts of Agile were not new. He went on to say that the concepts of Agile were ones

that had been used successfully over the years, and the Agile Manifesto gathered and documented them.

While reviewing multiple references on Agile, we found that indeed, the concepts used in Agile are not

new. Some were used as early as the 1950s and through the 60s and 70s, and on into the 80s [8]. The

Agile Manifesto gathered and documented the ideas and the Agile movement promoted them for the bet-

terment of software development and added value to the end user.

Some might ask ―If these concepts are not new, then what‘s the big deal?‖ Upon close inspection there

are new components (ideas, practices, theories, etc) and new combinations of those new components with

―old‖ components. The explicit value statements used within Agile are also new. In addition, the practice

of Agile is new in that it is now becoming more widely employed with demonstrable benefits. From a

DoD perspective or that of any large organization for that matter, the paradigm behind using Agile is sig-

nificantly different than ―business as usual.‖ Business as usual tends to be the known as Waterfall or what

Boehm includes under a broader definition as a plan-driven method. The mental models for using Agile

or Waterfall are very different. For instance, Waterfall says to define all requirements in advance, but

Agile says this is impossible and futile because users don‘t really know all their requirements until they

see a system in operation.

To further differentiate between the two paradigms, plan-driven methods‘ goals are predictability, stabili-

ty, and high assurance. These can be thought of as strategic objectives. On the other hand, Agile goals are

rapid value and responsiveness to change. Agile can be thought of as more tactical objectives [4]. How-

ever, this is no reason to prevent using Agile as part of the strategic approach to solving problems.

There is a culture that emerges around any methodology. The culture for plan-driven methods is different

from that of Agile. Neither culture is better or worse than the other, just different. For those choosing to

move to Agile, the first thing that must be understood is that it won‘t be ―business as usual‖ and the PMO

will need to change its collective mindset, its paradigm, and its culture.

36 | CMU/SEI-2010-TN-002

Jim Highsmith, one of the Agile Manifesto signers, has said there will be barriers and impediments as an

organization moves to Agile. For large companies, it can be a multi-year transformation. The PMO needs

to determine if Agile will be a match for what it wants to do. Is it a strategy for your project, your divi-

sion, your whole company? The PMO needs to determine how proficient it will be at change—

organizational change. [9] Be prepared for organizational change management issues.

Since organizational change is always difficult, why would anyone want to embrace Agile? We did not

perform an in-depth look at the various statistics on the benefits of Agile. However, the reports and litera-

ture about Agile‘s performance we did look at varied from extremely impressive, which some might think

a little too good to be true to moderately good. One example shows that by using Agile, costs decrease

from as little as 5 to as much as 61 percent, with schedule decreasing from as little as 24 to as much as 58

percent, and cumulative defects decreasing from as little as 11 to as much as 83 percent [10].

Even if one is skeptical and only believes the lower end of these statistics, Agile beckons to be tried to

reduce cost and improve benefits and quality for the DoD. Before jumping into the Agile world, take time

to consider how Agile can benefit your program, what the issues will be, and if perhaps a hybrid approach

(combination of Waterfall and Agile) is the best approach.

Some of the concepts that need to be considered when embarking on the use of Agile are discussed be-

low. The discussion assumes the government will be contracting with a firm to actually do the develop-

ment. Since the contractor will be creating the organization structure, it is important the government un-

derstands what it is and how they interact within that structure. The better the understanding, the less

likely there will be inadvertent roadblocks or obstacles created to impede the progress of the Agile

team(s). If the government is doing the development internally, some of the actions may differ and would

be accomplished by the government. We considered the following concepts.

 Acquisition life cycle

 Team environment to include specific Agile method, team communication, distributed teams, size of

program, potential encapsulation

 End-user access

 Training and coaching

 Oversight including milestone reviews, documentation, evaluation (metrics)

 Rewards and incentives

 Team composition

 Culture

Some of the discussion will sound familiar as it parallels feedback we obtained during our program inter-

views in Section 3. This is not surprising as the concepts were actual issues the programs dealt with dur-

ing their use of Agile. The concepts discussed here overlap and are intertwined. In many cases, the con-

cepts are mutually reinforcing.

5.1 Acquisition Life Cycle

The acquisition life cycle consists of multiple phases: Materiel Solution Analysis, Technology Develop-

ment, Engineering and Manufacturing Development, Production & Deployment and Operations & Sup-

port. Each of these phases presents unique challenges and opportunities. Some phases lend themselves to

the use of Agile better than others. Agile was used on the programs interviewed spanning all the life-cycle

phases except the Materiel Solution Analysis phase. However, how Agile was employed varied from pro-

37 | CMU/SEI-2010-TN-002

gram to program. The PMO should determine how to best employ Agile in their program depending on

their specific situation. In the following paragraphs, we propose questions to ask and identify issues to

consider in building an Agile program. A more in-depth discussion of life cycle phases is provided in

Section 4.3.

If the PMO is doing a Request for Proposal (RFP), no matter which phase, ensure that the RFP contains

language that allows the use of Agile. In many instances, the traditional RFP language makes it difficult,

if not impossible, to propose an Agile-based solution. One consideration is the types of reviews and doc-

uments required. If the PMO wants to employ Agile, be prepared to allow for ―Agile style‖ document

development, i.e., incremental development of documents and data for reviews that result from the indi-

vidual iterations and/or releases. This might not seem much different from what the traditional methods

provide but consider the level of detail may be sparser using Agile in the earlier versions of the docu-

ments. Even final documents might not contain the amount of detail provided in traditional documents.

The key here is not the volume, but the content. A necessary and sufficient criterion is that all important

data required for operation and maintenance of the system are supplied.

5.2 Team Environment

Earlier in this report, we discussed findings in an area called infrastructure. By infrastructure we mean the

structure of the team and the context within which the team operates. Organization structure and envi-

ronmental support structure both need to be established to support an Agile implementation. The context

of a program and its inherent organizational structure are related.

For this report we made the assumption that we were dealing with software only or software-intensive

systems. Many systems contain software and could be considered software intensive but the software is

only a small part of the overall system and certainly not the end item being procured. For large systems

acquiring end items like tanks, ships, planes, or satellites, the Agile software team may need to be encap-

sulated from the rest of the program.
30

 This would entail determining the boundaries or interfaces to the

rest of the system and using those as constraints to create the boundary for the Agile software project.

These would become constraints for the software development and would be part of any working assump-

tions for the software environment. For instance, the software could be developed and tested within the

Agile environment but then ―delivered‖ to that full system for system test with the tank, missile, ship, etc.

Due to the size and complexity of most DoD programs, multiple iteration teams will be needed. The

number is dependent upon the program and in some instances the locations of the contractor team. The

larger the number of teams, the more complicated the communications and the greater the need for more

users to be involved. In an ideal situation, each iteration team would have access to their own dedicated

end user. However, that is not practical in the DoD environment so alternatives need to be employed.

Consider the use of proxies, rotating personnel every ―x‖ weeks (x usually is two-four weeks), or perhaps

a separate ―team‖ of subject matter experts (SMEs) accessible by the iteration teams as needed.

The structure of the overall program team—especially the contractor team—is dependent upon which

Agile method is chosen. Things like pair programming and scrums are just two examples of practices

within Agile methods. Typically the contractor determines the ―flavor‖ of Agile. However, the govern-

30

 For other systems, such as AIS, this is usually not an issue.

38 | CMU/SEI-2010-TN-002

ment team needs to be responsive and supportive of that method. Otherwise, using Agile will have less

than optimal results.

The Agile team also must exhibit behavior reflecting the approach. Leffingwell describes seven practices

observed to scale up to enterprise-level development projects, and we have adopted his terminology for

this summary treatment [11]. A more detailed treatment of these practices is reserved for future work.

The Define/Build/Test Component

Three basic skills are combined in the component team: define, build, and test, operating cooperatively

within a pre-defined period, known as a time box. The juxtaposition of these skill sets into one team tends

to run counter to some conventional methods employed in DoD programs, where these players are often

separated by intent.

Two-Level Planning

Two-level planning is portrayed as providing both guidance of how software is to be inserted into the op-

erational environment as well as allowing some flexibility to accommodate what is learned during devel-

opment:

 The ―top level‖ of the planning cycle is termed release level planning. This cycle of planning defines

series of releases that broadly define capability to be contained. This could be done at the feature set

level.

 The ―second level‖ of the planning cycle is termed iteration level planning, where iterations break the

release into a set of iterations that can be time-boxed.

Mastering the Iteration

The ability of a team to reliably execute a sequence of iterations may well be the key behavior that distin-

guishes a team capable of exploiting Agile techniques in a large organization. If this capability is not

present, the likelihood of success is minimal at best.

The iteration consists of the following key activities in a small time box:

 creation of complete, tested, working code implementing a set of features

 integration of the developed code into the working baseline within the timeframe of the iteration

The result of a given iteration is potentially releasable to the customer.

Producing Smaller and More Frequent Releases

It is clear that one natural effect of the expectations is to desire more frequent feedback from the customer

and/or stakeholders to avoid large-scale course corrections. The shorter duration of iterations will help to

maintain more or less continuous feedback from the customer. In particular, for feature sets that may

evolve due to improved customer understanding of needs, this model of short iterations offers a more

timely alternative.

39 | CMU/SEI-2010-TN-002

Concurrent Testing

Concurrent testing practices are based upon thorough testing of code both during development and during

integration. The goal is that all code is tested. Gamma
31

 and others advocate a ―test first‖ developmental

approach [12] where the unit tests for software are created prior to the actual development. Gamma also

advocates frequent use of the unit tests during actual development.

Continuous Integration

Continuous integration may well be the most useful and controversial practice advocated in the Agile

community. The continuous integration model diverges from the usual ―V-shaped‖ model advocated by

traditional systems engineering practice employed in DoD programs. In the V-shaped model, require-

ments synthesis, allocation, and development are carried out in a top-down fashion. This is followed by a

bottom-up sequence of integration and verification activities, leading to a product ready for use accep-

tance or sale.

Continuous integration of software is contingent upon the ability to concurrently execute two crucial ac-

tivities: (1) collect incremental changes from multiple developers on a regular basis, ideally on a daily

basis, and (2) perform the ―nightly build‖ discipline, where all changes are brought together in an incre-

mental software baseline, which is in turn compiled and tested with the available unit and regression tests.

Regular Reflection and Adaptation

Reflection and adaptation (sometimes called the retrospective) is the Agile version of ‗continuous im-

provement‘ that is highlighted in other methodologies. In keeping with the bottom-up discipline of Agile

approaches, this introspection is driven down to the individual team level.

5.3 End-User Access

One of the concepts stated in the Agile Manifesto is ―Customer Collaboration over contract negotiation.‖

Agile implements this by having continuous contact with the end user. Typically, an end user or his rep-

resentative is an integral part of the iteration team. This is not always practical in the DoD environment

and can be more complicated by the fact that some programs are joint programs involving more than one

service. With multiple end users, all with different ideas of what the end product should be, it will be dif-

ficult to have a single voice for the end user. Also, the real end user is an operational person who may not

have any experience in the acquisition career field, so meeting this Agile requirement is challenging.

Traditional acquisitions try to have user inputs with their success varying depending on availability and a

host of other issues. Typically, the acquisition organization speaks for the end user. Thus, they become

the proxy for them. In addition, due to contractual rules, only certain people are warranted to talk to the

contractors—these are the people who can legally direct the contractor. In Agile, the end user who sits

with the iteration team speaks for the program and has the authority to commit. This leads to potential

constructive change issues within the DoD arena. It is important to note that no one interviewed expe-

31

 Erich Gamma is a Distinguished Engineer at IBM Rational Software’s Zurich lab. He is a coauthor of the first comprehen-
sive book on design patterns [45], was a key contributor to the development of the Eclipse software development plat-
form, and led the development of the design patterns employed in the JUnit and related testing infrastructures.

40 | CMU/SEI-2010-TN-002

rienced this issue; we mention it here only as a caution and as a potential for changing the contracting

officer‘s skill set.

Agile in its pure form insists on interactions with the real end user. This interaction will surface end-user

disagreements earlier in the project and in the concrete context of demonstrable capability. To overcome

this, the PMO and the contractor may have to consider surrogates or proxies. Depending on the PMO‘s

experience, this use of surrogates may require a culture change—one that may or may not work well.

Another alternative is to use remote collaborative presentation capabilities—as well as wikis, blogs, and

live chat, to keep travel costs–from being overwhelming. The challenge for DoD programs is that some of

these are not always approved for DoD use, so the program may have to take the lead to get them ap-

proved. Another challenge for some organizations is the cultural shift from formal face-to-face review to

collaborative, virtual meetings.

5.4 Training and Coaching

Training for Agile is essential. While the concepts of Agile are not new, the specific implementations

contain subtleties and nuances that need to be explained. Additional training in the specific contractor

method is also a must. Training before starting the project will help to avoid inadvertent roadblocks and

prevent some of the more common issues from arising.

Many contractor organizations employ a coach to help them convert their processes to support Agile. A

coach and/or an Agile advocate who has ―clout‖ within the PMO is a good addition to the PMO staff.

Their presence can answer daily questions, help resolve issues before they become problems and help to

ensure the program runs smoothly from an Agile perspective. A word of caution: An Agile advocate or

coach without any authority is like not having one at all; they get lost in the chorus of voices demanding

to be heard. Keep in mind that the Agile coach for the PMO will have a different role than an Agile coach

for the development team. The PMO Agile coach will be there to help the acquisition organization under-

stand what the developers are doing and assist in making both the acquirers and developers work better

together.

5.5 Oversight

The existing traditional structure is in place to provide predictability, stability, and high assurance [4].

The essence of the traditional structure is created to allow for close oversight and insight into the work-

ings of a program. The structure requires immense amounts of documentation, which is evaluated at key

milestones throughout the program. These documents and their review along with the accompanying cap-

stone events (PDR, CDR, etc) provide the government with a high level of ―comfort‖ that the program is

progressing the way it should. The traditional Earned Value Method System (EVMS) of measurement is

also constructed to provide the government a means to monitor the progress of the program. This system

is rigid and monitors progress against the plans in both cost and schedule. These plans are reflected in the

Integrated Master Schedule (IMS).

Agile is very flexible and promotes the capability of moving tasks and functions from one iteration to

another or even deleting them altogether. This fluid environment is very difficult to track using EVMS as

implemented today. The fluid environment also makes it difficult to maintain a current IMS.

41 | CMU/SEI-2010-TN-002

An analogy might be useful to understand the kind of oversight expected within Agile. In the military

there is something called commander‘s intent:

“Commander’s intent describes the desired end state. Your intent statement provides a frame-

work for the operation. It does not tell your soldiers what to do. It does give them the overall pic-

ture of what you say the company needs to accomplish to be successful. By making your intent

a clear, concise, and focused statement, you greatly increase the chances that your soldiers will

continue the mission, even when the operation doesn’t go as planned.”
32

One can think of the overall plan for an Agile program as its intent. If the initial plan doesn‘t work as

thought, then the development team alters the plan with the intent still in mind. Allowing the Agile team

to follow the intent without detailed direction is based on trust, collaboration, and relationship building.
33

These ideas are core to Agile.

One often hears that Agile is ad hoc and has no planning. Do not confuse formality with discipline. Agile

teams tend to be less formal but are highly disciplined. Combining this with the above discussion means

that Agile requires considerable planning if the program is to achieve its objectives. However, more of the

planning is done at the mid and low levels of the program versus at the high management level on tradi-

tional programs.

The issue of how oversight will function on an Agile-based program must be resolved before you start the

program. Both the government and contractor need to agree on the method to be used. EVMS can be used

for Agile programs but it requires close coordination between those who monitor the EVMS system and

those who maintain it. If a capability or task is swapped out for an equivalent task (equivalent in EVMS

value) then this could be used. This becomes labor intensive. Other ways of monitoring Agile programs

can be used, such as using completed stories or accrued value to the user as measures.

Documentation within Agile is ―just enough‖ to meet the need and provide continuity for the team. This

usually is not sufficient for the capstone reviews. Remember that documents are evolved in increments

within Agile and that this will have an impact when the complete document is available. Another docu-

mentation challenge in the DoD acquisition environment is maintaining enough documentation of the

critical architectural information and decisions so that the knowledge can be effectively transitioned when

personnel, military, or contractor, leave the program. Thus, an understanding of the content and when a

final version of the documentation will be available needs to be negotiated in advance. Some items that

can influence these negotiations include the opportunity cost for how much time is spent on documenta-

tion versus creating working software and the impact of a Feature Review of the working software, which

provides the PMO with an indication of progress instead of reviewing just the documents.

Capstone events, like CDR and PDR, are also issues in the Agile world. One of the programs interviewed

broke the capstone event into smaller IDRs which cumulatively equaled the overall capstone event.

Again, this needs to be planned in advance for both technical and programmatic reasons.

32

 http://www.globalsecurity.org/military/library/report/call/call_98-24_ch1.htm

33
 Further discussion of these topics is left to future work.

http://www.globalsecurity.org/military/library/report/call/call_98-24_ch1.htm

42 | CMU/SEI-2010-TN-002

5.6 Rewards and Incentives

In the traditional Waterfall methodology, typical rewards and incentives are individual based rather than

being team based. Contracts, team organizations, and other program structures are developed and inter-

preted to enforce and enable individual awards. The Agile environment is more team oriented and does

not thrive well within the traditional reward structure. While this will not be a large concern for the gov-

ernment unless it is doing internal development, anything the government can do to incent the contractors

and support the Agile culture is a major advantage.

The government may want to consider incentives that involve embracing and fostering change and shar-

ing data at the enterprise level. One of the problems with making the cultural shift to Agile is that the

right incentives are not in place to foster change. Personnel need to be incented to do significant adoption

planning and strategy for the technology shift and related business, legal, and operational aspects. If

people are incentivized the right way, they will embrace change.

Reuse and information sharing across the enterprise are important metrics according to Agile. This means

that you want to incentivize doing things ―for the good of all,‖ not just for the good of an individual pro-

gram. The problem is that right now DoD programs are structured to compete with each other. This

creates a culture of hoarding knowledge for competitive advantage. The DoD needs to think about how to

incentivize collaboration across programs even between competing contractors; this will not be easy and

may mean that the DoD might have to think about ways to fund programs other than funneling money to

a single program.

5.7 Team Composition

One addition to the typical traditional DoD PMO is an Agile advocate. As described in training and

coaching, the advocate is someone who can provide real-time answers for the immediate Agile issue.

Another addition to the typical staff is an end-user representative who is empowered to make decisions

that are binding for the development. Given the nature of government contracting, care must be given to

ensure that this user representative has the legal authority to direct the contractor. We can envision a situ-

ation where constructive change could become an issue.

The background of the team members may be slightly different than the norm. An ideal Agile team would

consist of experienced, high-performing Agile developers in all positions. It is a proven fact that Agile

teams are more successful with more experienced and skilled team members so it is important that the

government provide environments that are attractive to high-performing individuals. More experienced

personnel would have more skills than just coding. They must be able to work from user stories to design,

implement, and test features. The government also needs skilled Agile personnel to review the documen-

tation and understand how the Agile software development approach works. Many traditional PMO teams

do not have software representatives experienced with modern software development approaches. That

could be more problematic in an Agile environment, where any shortfalls quickly become more visible.

Another challenge is keeping high-performing Agile teams together long enough for them to achieve peak

performance. This is a challenge because developers can change at the end of a contractual period of per-

formance. The continuity of an Agile team enhances the ―tacit knowledge‖ of the program and this im-

proves overall performance. One recommendation might be to look at putting key Agile technical devel-

opers or technical leads under a separate contract vehicle or hire them to work for the government

organization itself.

43 | CMU/SEI-2010-TN-002

5.8 Culture

One of the most frequent topics of discussion that was heard at the 2009 Agile Development Practices

Conference dealt with culture. People talked about how Agile would not succeed if an organization‘s cul-

ture did not support it.

As we said before, culture is the customary knowledge, beliefs, behavior, and traits displayed by an ac-

quisition organization or contractor. The government is heavily invested in the use of plan-driven me-

thods for acquisition of all equipment and systems, whether they are software intensive or not. As a result,

the culture of the DoD acquisition community (and that of long-time DoD contractors, as well) is com-

fortable with Waterfall and skeptical about the use of Agile. Part of this comfort is how the project man-

agement has been trained to manage change. Traditional project managers focus on following the plan

with minimal change but the Agile manager focuses on adapting successfully to inevitable changes [9].

Since neither Agile nor plan-driven approaches fit every problem, a key to changing the culture is to

make it so that it is flexible enough to accommodate both Agile and Waterfall—and anything in between.

In order for the DoD to successfully employ Agile it needs to embrace a culture change. The way it thinks

about oversight, documentation, team structure, user interaction with the development team and flexible

change must be altered. This is not easy. Changing a culture—any culture—is difficult. It is even harder

to change a culture that has strong motivations for control since mission critical and life critical systems

are involved. A fear associated with safety or mission critical systems is that Agile does not put enough

focus on software engineering practices such as analysis and design necessary to achieve key quality

attributes such as performance, security, availability, etc. This can be addressed by the architect and how

the architectural requirement stories are prioritized within the team. In addition, some understanding of

organizational change management and how groups change will be invaluable. Organizational change

discussions are left for future work.

Our research shows that starting small and taking gradual steps into the Agile world would help the tran-

sition to the new Agile culture. By starting with a smaller project (thus smaller teams), experience is

gained that can be applied to larger programs. In fact, we came across a group within the Air Force that

has applied Agile concepts and published their own method. It is called Fast, Inexpensive, Simple, and

Tiny (FIST) [13]. The FIST method has been successful on several small projects. Recently a FIST Mani-

festo was created; we include the FIST Manifesto in Appendix E as an example of what is being done at

the grass roots level within the DoD. Agile in many forms is starting to be employed within the DoD.

44 | CMU/SEI-2010-TN-002

6 Conclusion

This small study on the current utilization and future applicability of Agile for software development in

DoD acquisitions is meant to whet the appetite of those looking for another tool to solve the ever-present

conundrum of obtaining good software quickly and as inexpensively as possible.

Agile methods have existed for many years. In fact, they are based on concepts that have been around for

decades, but the methods have not been widely used, especially within the DoD. In recent years, Agile

has matured, personnel have become more skilled, and some DoD contractors have started to build inter-

nal Agile capabilities and initiated usage on DoD programs.

For the complete novice, we provided a short overview of Agile including the Agile Manifesto and its

underlying principles. There are multiple flavors of Agile and we listed several of the more common ones

for the reader‘s edification. Finally, we provided a limited comparison of Waterfall to Agile. This shows

some high-level similarities and differences.

Several existing programs that we interviewed and existing literature we read expounded on the benefits

and the pitfalls of using Agile. The general consensus is that Agile is another tool to be exploited and this

will provide benefit to the DoD in the correct environment.

If this is the case, then why isn‘t Agile used more? We distilled the information we found from interviews

into seven areas that address this question. In each area we looked at the issues and some of the solutions

that worked. The seven areas are

 Acquisition

 Knowledge of Agile

 Culture

 Oversight

 End-User Involvement

 Integration and Test

 Infrastructure

A review of the DoD 5000 series showed there are minimal barriers and none of the challenges are show

stoppers. A lot of these challenge areas depend on the interpretation. Unfortunately for Agile, most of

today‘s interpretations lean towards the more traditional methods like Waterfall.

Finally, we looked at other concepts that need to be explored before employing Agile in the DoD envi-

ronment. Most important from the authors‘ viewpoint are end-user participation and culture. However, in

order to employ any aspects of Agile, the DoD organization will have to plan for them, anticipate the

changes needed in their environment and business model, and apply the hard work to make the changes a

reality.

45 | CMU/SEI-2010-TN-002

We acknowledge that this report only begins to explore employing Agile within the DoD. During the

course of our research we touched on a lot of topics, many of which need further research. Some of the

potential future topics in no order of priority include

 Technology—discussion and explanation of different Agile technical concepts and how they apply

within DoD. Considerable literature and courses are already available on specific Agile methods.

 Management—discussion and exploration of governance changes, management style for the Agile

PM, and management structure for Agile projects (iteration, release, enterprise)

 Contracts and finance—discussion and exploration of costing and estimation for Agile programs,

types of contracts and which works best with Agile, and incentives

 Comparison of methodologies—methods—including plan-driven, Agile, and hybrids—that work best

for each type of program,

 Benefits from Agile—discussion about how Agile is viewed within the Agile community using risk

and a variation of the cost, schedule, quality triangle

 Organizational change management—discussion of what should be changed to work effectively with-

in an Agile environment, how to go about those instituting changes, etc.

 Culture—definition of the Agile culture, what it relies on, how it is different from existing cultures,

and how to bridge the gap

We hope that as more government programs use Agile, more findings, observations, and lessons learned

will be shared. After all, that is what the retrospective is all about.

In the future, we want to use an overall retrospective to update and enhance this report.

46 | CMU/SEI-2010-TN-002

Appendix A: Examples of Agile Methods

There are many methods that fall under the umbrella of Agile. Some focus on the developer (e.g., XP)

and others focus on managerial processes (e.g. Scrum). Most of these approaches are evolving and bor-

row from each other. Examples of specific Agile methods are listed below.

eXtreme Programming (XP)

―…A software development discipline that organizes people to produce higher quality software

more productively.…XP attempts to reduce the cost of change by having multiple short develop-

ment cycles, rather than one long one. In this doctrine changes are a natural, inescapable and desira-

ble aspect of software development projects, and should be planned for instead of attempting to de-

fine a stable set of requirements. Extreme Programming also introduces a number of basic values,

principles and practices on top of the agile programming framework.‖
34

 While a stable set of re-

quirements is not defined up front, the overall requirements are defined and refined throughout the

program based on user feedback.

Scrum

Scrum is a ‗―process skeleton‘ which contains sets of practices and predefined roles. The main roles

in Scrum are: (1) the ‗ScrumMaster,‘ who maintains the processes (typically in lieu of a project

manager); (2) the ‗Product Owner,‘ who represents the stakeholders; (3) the ‗Team,‘ a cross-

functional group of about 7 people who do the actual analysis, design, implementation, testing, etc.

During each ―sprint,‖ typically a two to four week period (with the length being decided by the

team), the team creates a potentially shippable product increment (for example, working and tested

software). The set of features that go into a sprint come from the product ―backlog,‖ which is a pri-

oritized set of high level requirements of work to be done. Which backlog items go into the sprint is

determined during the sprint planning meeting. During this meeting, the product owner informs the

team of the items in the product backlog that he or she wants completed. The team then determines

how much of this they can commit to complete during the next sprint. During a sprint, no one is al-

lowed to change the sprint backlog, which means that the requirements are frozen for that sprint. Af-

ter a sprint is completed, the team demonstrates the use of the software.‖
35

Adaptive Software Development (ASD)

―ASD replaces the traditional waterfall cycle with a repeating series of speculate, collaborate, and

learn cycles. This dynamic cycle provides for continuous learning and adaptation to the emergent

state of the project. The characteristics of an ASD life cycle are that it is mission focused, feature

based, iterative, time-boxed, risk driven, and change tolerant.‖
36

34

 http://en.wikipedia.org/wiki/Extreme_Programming

35
 http://en.wikipedia.org/wiki/Scrum_%28development%29

36
 http://en.wikipedia.org/wiki/Adaptive_Software_Development

http://en.wikipedia.org/wiki/Sprint_%28software_development%29
http://en.wikipedia.org/wiki/Requirement
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Scrum_%28development%29
http://en.wikipedia.org/wiki/Adaptive_Software_Development

47 | CMU/SEI-2010-TN-002

Dynamic Systems Development Method (DSDM)

―As an extension of rapid application development (RAD), DSDM focuses on Information Systems

projects that are characterized by tight schedules and budgets. DSDM addresses the most common

failures of information systems projects, including exceeding budgets, missing deadlines, and lack

of user involvement and top-management commitment. By encouraging the use of RAD, however,

careless adoption of DSDM may increase the risk of cutting too many corners. DSDM consists of:

(1) Three phases: pre-project phase, project life-cycle phase, and post-project phase; (2) A project

life-cycle phase subdivided into 5 stages: feasibility study, business study, functional model itera-

tion, design and build iteration, and implementation.‖
37

Crystal

―The Crystal methodology is one of the most lightweight, adaptable approaches to software devel-

opment. Crystal is actually comprised of a family of methodologies (Crystal Clear, Crystal Yellow,

Crystal Orange, etc.) whose unique characteristics are driven by several factors such as team size,

system criticality, and project priorities. This Crystal family addresses the realization that each

project may require a slightly tailored set of policies, practices, and processes in order to meet the

project‘s unique characteristics. Several of the key tenets of Crystal include teamwork, communica-

tion, and simplicity, as well as reflection to frequently adjust and improve the process. Like other

agile methodologies, Crystal promotes early, frequent delivery of working software, high user in-

volvement, adaptability, and the removal of bureaucracy or distractions. Alistair Cockburn, the ori-

ginator of Crystal, has released a book, ―Crystal Clear: A Human-Powered Methodology for Small

Teams.‖
38

Feature-Driven Development (FDD)

A model-driven short-iteration process that consists of five basic activities: Develop Overall Model,

Build Feature List, Plan By Feature, Design By Feature, and Build By Feature. For accurate state

reporting and keeping track of the software development project, milestones that mark the progress

made on each feature are defined.
39

Pragmatic Programming

Pragmatic programming follows the principles of The Pragmatic Programmer by Andrew Hunt and

David Thomas. It is itself a kind of ―umbrella‖ development approach, since it advocates that the

developer not stick to any particular methodology but choose the methods and techniques that work

best in the specific environment.

Lean Software Development

The term originated in a book by the same name, Lean Software Development, by Mary Poppen-

dieck and Tom Poppendieck. The book presents the traditional Lean principles in a modified form,

as well as a set of 22 tools and compares the tools to Agile practices. Lean Software Development

37

 http://en.wikipedia.org/wiki/Dynamic_Systems_Development_Method

38
 http://www.versionone.net/Agile101/Methodologies.asp

39
 http://en.wikipedia.org/wiki/Feature_Driven_Development

http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/Information_Systems
http://en.wikipedia.org/wiki/Dynamic_Systems_Development_Method#phases
http://en.wikipedia.org/wiki/Functional_model
http://alistair.cockburn.us/
http://en.wikipedia.org/wiki/Feature_Driven_Development#Activities
http://en.wikipedia.org/wiki/Feature_Driven_Development#Milestones
http://en.wikipedia.org/wiki/Dynamic_Systems_Development_Method
http://www.versionone.net/Agile101/Methodologies.asp
http://en.wikipedia.org/wiki/Feature_Driven_Development

48 | CMU/SEI-2010-TN-002

promotes seven core principles: eliminate waste, amplify learning, decide as late as possible, deliver

as fast as possible, empower the team, build integrity in, and see the whole.

Other software development techniques have been mentioned by writers as belonging to the Agile family

of approaches, including Kanban [14], Rational Unified Process (RUP), Personal Software Process (PSP),

Team Software Process (TSP), and Cleanroom [4].

49 | CMU/SEI-2010-TN-002

Appendix B: Common Objections to Agile

There are common objections lodged against Agile the authors have encountered in the conduct of their

professional activities, many of which are echoed in the relevant literature. The most pertinent such objec-

tions and responses are discussed below.

Agile and DoD Software Practices are Incompatible

There is a widespread perception that Agile is in rather stark conflict with DoD software development

practices. There are a number of facets to this objection, which we will address in turn.

There is a perception among many that DoD development practices mandate a Waterfall approach to

software development. A careful examination of DoDD 5000.01, and DoDI 5000.02 does not support the

contention that any of this guidance requires a particular software development methodology. Nothing in

the FAR appears to prohibit the use of Agile. The same can be said of the more systems-oriented DoD

Architecture Framework (DoDAF). It is fair to observe that a lot of the published examples and the ex-

planations, which are linear descriptions of the processes, can be read to suggest that Waterfall is strongly

preferred.

We suspect that a lot of DoD acquisitions take the Waterfall approach rather than some iterative or Agile

approach because it is consistent with program skill sets and is perceived as the path of least resistance.

Nevertheless, there is no mandate to employ a strict Waterfall development methodology that the authors

have been able to find.

Agile is New and Risky

Agile is widely perceived as new and experimental, particularly in DoD circles.

In many respects, Agile may be seen as a codification of things that practitioners have been informally

doing for some time. Iteration and experimentation have long been carried out under the umbrella of trade

studies, which often are constrained by limited resource availability and time boxes. Trade studies, the

development of breadboard or prototype elements are simply kinds of controlled experiments used to re-

duce risk. Agile is simply another way to orchestrate controlled experimentation and address uncertainty

and risk (user requirements, operational environment, etc.).

Agile techniques have been rather widely employed in commercial software product development, and

much of the literature surveyed offers examples based upon such projects. Agile techniques have been

cited in some DoD programs (JMPS, SIAP, classified programs). Given that the literature and practice of

Agile as a distinct set of methods spans two decades, it seems inappropriate for DoD software programs

to dismiss it as it as new and untried. At the writing of this report, the IEEE is pursuing the creation of

standards for Agile development practices, which have yet to be published.

The issue of risk and Agile appears to be a red herring as well. The SEI has a rather unique perspective on

the software-related failings of numerous DoD programs. It is fair to suggest that observed program prob-

lems and failures include the use of all the major documented software development methodologies and

50 | CMU/SEI-2010-TN-002

significant variants. With that experience, it is difficult to ascribe incrementally increased risk specifically

attributable to the choice of a given software development methodology.
40

Refactoring Is Incompatible with Stable WBS

One of the primary tactics employed in Agile development projects is refactoring, which is the restructur-

ing of software behavior and structure as development unfolds. The goal of this tactic is to take advantage

of improved insight into coupling, cohesion, and maintainability as more software structure is created and

evaluated. In most DoD projects the Work Breakdown Structure (WBS) is a key organizing artifact.

Some observers have expressed the concern that refactoring could affect the WBS, which would intro-

duce a level of turbulence in the WBS that might be unacceptable.

This objection is not compelling. It is typical practice that the WBS for major systems reflects deliverable

physical end items, and software to be developed for a given end item is treated as embedded within the

end item. If current systems engineering practice is pursued with regard to establishing external interfaces

for physical end items (including the software aspects of the interfaces), refactoring will be confined to

the end item, and any WBS elements addressing the software relevant to the end item can be structured to

accommodate iterative development techniques. The remaining issue is to allow for refactoring within the

software within the scope of the end item. The most straightforward mechanism to achieve this is to struc-

ture the software elements of the WBS around operational capabilities, not a functional decomposition

that posits specific internal interfaces. A structure of this sort will enable refactoring, and disturbances to

the WBS should be affected by software changes only when other considerations come into play as well,

such as problems in critical item development.

Unwarranted Impact on Contracting Officer

One difficulty that is relevant to the choice of Agile techniques is its impact upon the program office and

the contracting officer that deals directly with software issues.

As has been noted elsewhere, Agile techniques tend to promote project planning and documentation prac-

tices that are not within the usual experience base of the program office staff. This is not an insurmounta-

ble problem and can be addressed with appropriate training.

The most critical impact on the contracting officer is the need to facilitate the high-tempo us-

er/stakeholder involvement that Agile techniques depend upon to implement more frequent user evalua-

tion than is customary. This model places an uncharacteristic burden upon the program office to make

knowledgeable users/stakeholders available on a periodic basis to provide feedback, which in turn places

a burden upon the user community to release such people for these assignments. This will ordinarily be a

planning, personnel, and inter-organizational issue that will merit the creation of program office to mili-

tary service entity memoranda of agreement to secure people for these roles. If the program office is op-

erating in a competitive situation, where two or more contractors are pursuing the same work there is a

potential risk of (a) not treating the two contractors identically, and/or (b) users or stakeholders inadver-

tently disclosing contractor proprietary information. The following are some obvious tactics that may be

employed; some of these tactics are not new:

40

 Jim Highsmith comments, ―I always admonish people that in the end, politics always trumps methodology, any metho-
dology.‖

51 | CMU/SEI-2010-TN-002

 Contracting officers should be present for all interactions between the contractor and us-

ers/stakeholders.

 A program office may form multiple user/stakeholder feedback teams and establish procedural and

informational firewalls across those groups.

 Should a single user/stakeholder feedback team be employed in a competitive situation, it is critical it

be trained and briefed on organizational conflict of interest policies employed by the program office;

it is desirable if the participants have basic knowledge of DoD acquisition conventions (e.g. training

in DAU or other acquisition courses).

Interpreting User Feedback as Constructive Change

For reference, constructive change is defined as an oral or written act or failure to act by authorized Gov-

ernment official construed by contractor as having same effect as a written change order. Such a change

must involve (a) a change in performance beyond minimum contract requirements, and (b) word or deed

by government representative which requires contractor effort that is not a necessary part of the contract,

and (c) it requires ratification.

Some have expressed concerns that user feedback as employed in Agile may be interpreted as construc-

tive change. While this is plausible, it seems no more problematic than ordinary feedback and guidance

offered to contractors during dry runs and formal presentations for major reviews, for example, System

Requirements Review (SRR), Preliminary Design Review (PDR), Critical Design Review (CDR), and

Test Readiness Review (TRR). As mentioned above, it is important for the program office and the con-

tractor who elects to employ Agile to arrive at a careful agreement upon ground rules. It is important that

contractual provisions be incorporated that recognize the role of user/stakeholder feedback that may in-

fluence architecture/design evolution in future iterations of development
41

. Users/Stakeholder teams must

be educated about the limitations of their role in providing guidance to the contractor. Contracting offic-

ers must always be present at such feedback sessions to avoid problems. Feedback that is more than cla-

rification, which does indeed alter the previously agreed scope, should be separately handled by contract-

ing officers. While it is impossible to predict what happens once a program has degenerated to the point

that litigation occurs, such measures should reduce the risk expressed by critics in this area.

Agile is Too Hard

Agile techniques are different from conventional practice in many DoD and military service circles.

However, to dismiss them as ―too hard‖ strikes the authors as a far too pessimistic stance, in view of the

growing body of commercial experience with these methods. There are instances where Agile has been

employed on recent DoD programs. In view of the painful and expensive legacy of cost, schedule, and

performance problems on software-intensive DoD programs, there seems little to be lost by judiciously

employing Agile to potentially improve contract performance.

41

 SEI architecture evaluation teams currently encounter this issue when they elicit feedback in the form of stakeholder
scenarios. They are important to the architecture team, yet need to be reconciled with contractual requirements.

52 | CMU/SEI-2010-TN-002

Appendix C: Areas for Consideration

The following table provides topics that should be considered when embarking on using Agile. We have

summarized our observations and findings; however, this list is not complete and should be used only as a

beginning guideline. All programs are different and will have unique requirements and issues to resolve.

Table 3: Areas to Consider for Using Agile in the DoD

Area of Concern Consideration

Content of RFP Consider using RFP language that does not preclude the use of Agile. This includes the

type of reviews and type and content of documents (CDRLs). At this time the authors do not

know of any model Agile RFP language.

Organization structure Consider the use of a coach or advocate within the PMO to help understand the Agile struc-

ture.

End-user involvement How will you provide access to end users? Is there more than one end-user group? How do

you have a single voice for all groups? How often will the end user be available for discus-

sion with the development group? Will end users attend demonstrations? What authority to

commit the program will the end user have? Consider using proxies or rotating SMEs or a

SME team. Consider a hybrid approach using the best practices of Agile and traditional

Waterfall techniques.

Training and coaching Has pre-award training in Agile been created? …given? Who will be trained? Does the train-

ing include which contractual phases will use Agile? Is a coach available to work with the

team? What authority does the coach have? Has your program had training on the specific

Agile method your contractor is employing?

Oversight including

reviews

What type of oversight (e.g., EVMS or an alternative such as stories or ―user value‖) will be

employed? What type of capstone event (e.g. CDR or multiple IDRs) will take place? Do the

entrance and exit criteria mesh with Agile approach? How will the IMS be created and main-

tained? Is the PMO trained to use the contractor’s Agile tracking tool? Is the PMO prepared

to relinquish total control over how change is managed and which capabilities are developed

in the short term versus the long term? Is the PMO aware of the mid- and low-level man-

agement focus used with Agile? Is the PMO aware of the potential change in ―rules of

thumb‖ for number of developers and code size?

Rewards and incentives What types of incentives are provided by the program? Does it support the use of Agile or

undermine it? Does the type of incentives for both the contractor and PMO support the use

of Agile?

Team composition Have you adjusted to include an Agile advocate who has authority? Have the roles and

responsibilities been updated to reflect the use of Agile?

Culture Are you prepared to encourage, institute, promote and sponsor the culture change and the

associated issues? Is someone knowledgeable in organizational change management

available to work with your team?

Staffing Is the PMO aware of the different team composition needed to support an Agile project?

What type of Agile knowledgeable PMO staff is needed for your program? Does the gov-

ernment PM have Agile experience? Are more Agile software savvy personnel available to

support the program? Consider how you will include integration and test personnel – in par-

ticular those involved in system acceptance and operational test.

Acquisition, regulations,

policies etc used within

phases

Review all application regulations and policies to determine any specific impacts to your

program. Tailor items or obtain waivers as needed. In particular pay attention to cost, affor-

dability, and cost realism. Also look for potential constraints from independent operations

test agencies, information assurance, information superiority and interoperability. Consider

hybrid approach or having an IA expert as part of Agile team.

Integration and test Determine your approach. Encapsulate the ―Agile work‖ so sell off and final integration and

test are traditional. Conduct early and frequent involvement of testing personnel (earlier than

for traditional methods). If the team does continuous integration, determine how it may affect

your test program. Determine if concurrent testing would conflict with the sometimes man-

dated separation between test personnel and mission development personnel. Determine if

access to the target environment will be given to the software integrators.

53 | CMU/SEI-2010-TN-002

Infrastructure Determine shared assets (if any) for the program. Shared assets could be models, common

facilities, agreement on measures, etc used by multiple teams supporting the program.

Sometimes these become constraints for Agile teams.

Deliverables Determine deliverable details for each phase using Agile. Ensure adequate documentation

for use in operations and support (sustainment) is provided.

Contracting Determine any contract changes required to support Agile.

Concept of operations

(CONOP)

This still applies for Agile. Determine the influence and context the CONOP provides to the

Agile stories. Ensure operational architecture is provided up front.

Cost Estimation Determine how you will evaluate the costs based on Agile since cost and accounting tech-

niques may be different. Determine what ―full funding‖ means in an Agile sense.

Define/build/test compo-

nent team

Do you have appropriate staffing to represent the end user? This could be a ―product owner‖

who serves as the proxy for the users.

Two-level planning Determine the contents of each release and iteration. These are typically done by the con-

tractor (developer) with collaboration from the government, which will need to negotiate the

government priorities. This is similar to the planning practices already in place with other

methods (rolling wave).

Reflection and adaptation

(retrospective)

Be prepared to participate in this activity. It is driven from the individual team not top-level

management. Thus, some organization change management and a new business model will

need to be employed.

54 | CMU/SEI-2010-TN-002

Appendix D: Acronyms

Table 4: Acronyms Used in This Report

ACTDs Advanced Concept Technology Demonstrations

ADM Acquisition Decision Memorandum

AIS Automated Information System

AoA Analysis of Alternatives

APB Acquisition Program Baseline

ASD Adaptive Software Development

CAIG Cost Analysis Improvement Group

CDD Capability Development Document

CDR Critical Design Review

CDRL Contract Data Requirements List

CMMI Capability Maturity Model Integration

CONOP Concept of Operations

COTS Commercial-off-the-Shelf

CSDR Cost and Software Data Reporting

CTE Critical Technology Element

DAU Defense Acquisition University

DoD Department of Defense

DoDAF DoD Architecture Framework

DoDD Department of Defense Directive

DoDI Department of Defense Instruction

DSDM Dynamic Systems Development Method

EMD Engineering and Manufacturing Development

EVMS Earned Value Management System

FAR Federal Acquisition Regulation

FDD Feature Driven Development

FIST Fast, Inexpensive, Simple, Tiny

HSI Human Systems Integration

IDR Interim Design Review

IEEE Institute of Electrical and Electronics Engineers

IMS Integrated Master Schedule

JMPS Joint Mission Planning System

KPP Key Performance Parameter

MDA Milestone Decision Authority

MSA Materiel Solution and Analysis

ORS Operationally Responsive Space

OS Operations and Support

55 | CMU/SEI-2010-TN-002

OSD Office of the Secretary of Defense

OTA Operational Test Agency

PDR Preliminary Design Review

PMO Program Management Office

RFP Request for Proposal

RUP Rational Unified Process

SAF Secretary of the Air Force

SEI Software Engineering Institute

SME Subject Matter Expert

SOW Statement of Work

SRR System Requirements Review

TD Technology Development

TDS Technology Development Strategy

TRR Test Readiness Review

TSP Team Software Process

VMOC Virtual Mission Operations Center

WBS Work Breakdown Structure

XP eXtreme Programming

56 | CMU/SEI-2010-TN-002

Appendix E: FIST Manifesto

THE FIST MANIFESTO (Fast, Inexpensive, Simple, Tiny)

System development projects should be done by the smallest possible team of ta-

lented people, using a short schedule, a small budget and mature technologies to

deliver innovative solutions to urgent needs. This approach is called FIST: Fast, In-

expensive, Simple, Tiny.

Short timelines increase agility and stabilize requirements, technology, budgets

and people. Short timelines also force accountability, ownership and learning. To

maintain short timelines, a project must also exercise restraint over budgets, com-

plexity and size. Increases to the project’s budget, complexity or size inevitably re-

duce its speed.

Accordingly, the FIST approach advocates the following:

Minimize team size, maximize team talent.

Use schedules and budgets to constrain the design.

Insist on simplicity in organizations, processes and technologies.

Incentivize and reward under-runs.

Requirements must be achievable within short time horizons.

Designs must only include mature technologies.

Documents and meetings must be short. Have as many as necessary, as few as

possible.

Delivering useful capabilities is the only measure of success.

FIST Principles

A project leader’s influence is inversely proportional to the project’s budget and

schedule.

Creative constraints foster creativity. Adding time and/or money generally does not

improve outcomes.

Fixed funding and floating requirements are better than fixed requirements and

floating funding.

Complexity is a cost.

Complexity reduces reliability.

57 | CMU/SEI-2010-TN-002

Simplicity scales. Complexity doesn’t.

An optimal failure costs a little and teaches a lot. When FIST projects fail, they fail

optimally.

Iteration drives learning, discovery and efficiency. FIST is iterative.

Talent trumps process.

Teamwork trumps paperwork.

Leadership trumps management.

Trust trumps oversight.

─ Lt Col Dan Ward, USAF, Maj Gabe Mounce, USAF, J. Simmons, Founder Mach 30

Inc., Deji Badiru, PhD, Air Force Institute of Technology, Rolf C. Smith III, USAF,

Lt Col Phil Garrant, USAF, Maj Rhet Turnbull, USAF, Richard A. (Dick) Field, Jr.,

OASD(HA)/TMA, Cynthia J. Wood, US Corps of Engineers, Christopher R. Papa-

rone, Ph.D. US Army Command and General Staff College, Chris Gunderson, Re-

search Associate Professor of Information Science Naval Postgraduate School PI

W2COG and NetCert projects, Andy Nulman, President and CMO of Airborne Mo-

bile Inc., Rolf Smith II, John Palmer, PhD, Rick Brennan, Capt Pete Mastro, USAF
42

42

 FIST Manifesto signatories as of March 16, 2010.

58 | CMU/SEI-2010-TN-002

References/Bibliography

URLs are valid as of the publication date of this document.

[1] D. F. Rico, "Business Value of Agile Methods, Using ROI & Real Options," 2009. [Online].

www.pmibaltimore.org/events/event_details.php?id=452

[2] H. Glazer, J. Dalton, D. Anderson, M. Konrad, and S. Shrum, "CMMI or Agile: Why Not

Embrace Both," Carnegie Mellon University, Software Engineering Institute, Pittsburgh, PA,

Technical Report CMU/SEI-2008-TN-003, 2008. [Online].

www.sei.cmu.edu/library/abstracts/reports/08tn003.cfm

[3] A. Cockburn, Agile Software Development. Addison-Wesley, 2002. [Online].

http://alistair.cockburn.us/Agile+software+development:+the+people+factor

[4] B. Boehm and R. Turner, Boehm, Barry and Turner, Richard – Balancing Agility and Discipline –

A Guide for the Perplexed. Addison-Wesley, 2004. [Online]. 0321186125

[5] Department of Defense (DoD), "Department of Defense Instruction (DoODI) 5000.02," Dec.

2008. [Online]. https://acc.dau.mil/CommunityBrowser.aspx?id=37343

[6] Department of Defense (DoD), "Department of Defense Directive (DoODD) 5000.01," Nov. 2007.

[Online]. https://acc.dau.mil/CommunityBrowser.aspx?id=37343

[7] D. Buresh, Customer Satisfaction and Agile Methods, VDM Verlag Dr Muller Actiengesellschaft

& Co. KG, 2008. VDM Verlag Dr. Mueller e.K., 2008.

[8] D. F. Rico, H. H. Sayani, and S. Sone, What is the ROI of Agile vs Traditional Methods? An

analysis of XP, TDD, Pair Programming, and Scrum (Using Real Options), synopsis of The

Business Value of Agile Software Methods. J. Ross Publishing, 2009. [Online].

www.jrosspub.com/Engine/Shopping

/catalog.asp?store=&category=&itempage=&item=14200&itemonly=1

[9] J. Highsmith, "Advanced Agile Project Management Seminar," in Agile Development Practices

Conference, Orlando, FL, 2009.

http://www.pmibaltimore.org/events/event_details.php?id=452
http://www.sei.cmu.edu/library/abstracts/reports/08tn003.cfm
http://alistair.cockburn.us/Agile+software+development:+the+people+factor
https://acc.dau.mil/CommunityBrowser.aspx?id=37343
https://acc.dau.mil/CommunityBrowser.aspx?id=37343
http://www.jrosspub.com/Engine/Shopping

59 | CMU/SEI-2010-TN-002

[10] J. Highsmith, "Beyond Scope, Schedule, and Cost: Measuring Agile Performance," in Agile

Development Practices Conference, Orlando, FL, 2009.

[11] D. Leffingwell, Scaling Software Agility: Best Practices for Large Enterprises. Addison-Wesley,

2008. [Online]. www.informit.com/store/product.aspx?isbn=0321458192

[12] JUnit. JUnit.org Resources for Test Driven Development. [Online]. www.junit.org

[13] D. Ward, C. Quaid, and G. Mounce, The FIST Handbook. Beavercreek, OH, Rogue Press Book,

2008.

[14] A. Shalloway, "Kanban: A True Integration of Lean and Agile, Agile Development Practices

Conference," in Agile Development Practices Conference, Orlando, FL, 2009. [Online].

www.sqe.com/ConferenceArchive/AgileDevPractices2009/ConcurrentThursday.html

[15] K. Beck and B. Boehm, "Agility through Discipline: A Debate," IEEE Computer, vol. 36, no. 6,

Jun. 2003. [Online]. www.computer.org/portal/web/csdl/doi/10.1109/MC.2003.1204374

[16] B. Boehm, "Get Ready for Agile Methods, With Care," IEEE Computer, Jan. 2002.

[17] B. Boehm and R. Turner, "Management Challenges to Implementing Agile Processes in

Traditional Development Organizations," IEEE Software, vol. 22, no. 5, Sep. 2005. [Online].

http://portal.acm.org/citation.cfm?id=1092725

[18] T. DeMarco and B. Boehm, "The Agile Methods Fray," IEEE Computer, vol. 35, no. 6, Jun. 2002.

[Online]. http://portal.acm.org/citation.cfm?id=622005

[19] J. Highsmith, Agile Project Management: Creating Innovative Products. Addison Wesley.

[Online]. www.informit.com/store/product.aspx?isbn=0321219775

[20] J. H. Dobbins, "Agile Acquisition Within the Current Policy Framework," in 21st Annual Systems

and Software Technology Conference 2009: Technology: Advancing Precision, Salt Lake City,

UT, 2009.

[21] W. P. O‘Brien, "Agile Integration of Complex Systems," in 21st Annual Systems and Software

Technology Conference 2009: Technology: Advancing Precision, Salt Lake City, UT, 2009.

http://www.informit.com/store/product.aspx?isbn=0321458192
http://www.junit.org
http://www.sqe.com/ConferenceArchive/AgileDevPractices2009/ConcurrentThursday.html
http://www.computer.org/portal/web/csdl/doi/10.1109/MC.2003.1204374
http://portal.acm.org/citation.cfm?id=1092725
http://portal.acm.org/citation.cfm?id=622005
http://www.informit.com/store/product.aspx?isbn=0321219775

60 | CMU/SEI-2010-TN-002

[22] P. J. Solomon, "Agile Methods with Performance-Based Earned Value," in 21st Annual Systems

and Software Technology Conference 2009: Technology: Advancing Precision, Salt Lake City,

UT, 2009.

[23] K. A. Cianci, "Agile System Development," in 21st Annual Systems and Software Technology

Conference 2009: Technology: Advancing Precision, 2009.

[24] J. O. Clark and S. Johnson, "Agile Systems Engineering and Software Engineering," in 21st

Annual Systems and Software Technology Conference 2009: Technology: Advancing Precision,

Salt Lake City, UT, 2009.

[25] E. W. Bingue and D. A. Cook, "The Art of Applying Commercial Best Practices in the DoD," in

21st Annual Systems and Software Technology Conference 2009: Technology: Advancing

Precision, Salt Lake City, UT, 2009.

[26] R. Turner, "Evaluating the Effectiveness of Systems and Software Engineering Methods,

Processes and Tools for Use in Defense Programs," in 21st Annual Systems and Software

Technology Conference 2009: Technology: Advancing Precision, Salt Lake City, UT, 2009.

[27] M. R. Coats and H. Koehnemann, "Experiences Applying Agile Practices to Large Systems

Development," in 21st Annual Systems and Software Technology Conference (STSC) 2009:

Technology: Advancing Precision, Salt Lake City, UT, 20090.

[28] M. Dwyer, "Updating ‗Software Engineering‘ for the 21st Century," in 21st Annual Systems and

Software Technology Conference (STSC) 2009: Technology: Advancing Precision, Salt Lake City,

UT, 2009.

[29] E. Derby, "Collaboration Skills for Agile Teams," Crosstalk, Apr. 2007. [Online].

www.stsc.hill.af.mil/Crosstalk/2007/04/0704Derby.html

[30] R. Turner, "Toward Agile Systems Engineering Processes," Crossalk, Apr. 2007. [Online].

www.stsc.hill.af.mil/CrossTalk/2007/04/0704Turner.html

[31] G. Miller, "Agile Software Development For The Entire Project," Crosstalk, Dec. 2005. [Online].

www.stsc.hill.af.mil/crossTalk/2005/12/0512Miller.html

[32] D. Ward and C. Quaid, "FIST, Part 5, Putting the Pieces Together," Defense AT&L, May 2006.

http://www.stsc.hill.af.mil/Crosstalk/2007/04/0704Derby.html
http://www.stsc.hill.af.mil/CrossTalk/2007/04/0704Turner.html
http://www.stsc.hill.af.mil/crossTalk/2005/12/0512Miller.html

61 | CMU/SEI-2010-TN-002

[33] J. Scumniotales, J. McKenna, and P. Egan. (2009, Jul.) Why Scrum Isn‘t Enough for Agile

Success,. [Online]. Serena Software www.agilejournal.com/news-a-events/events/details/15-

webcast-why-scrum-isnt-enough-for-agile-success

[34] (2009, Aug.) Selling Agile, Sliger Consulting, Inc and Computer Aid, Inc (CAI).

[35] (2009, Aug.) An Agile Developer‘s Guide to Lean Software Development. [Online]. Computer

Aid, Inc (CAI)

[36] J. Highsmith. (2009, Sep.) Beyond Scope, Schedule, and Cost: Measuring Agile Performance.

[Online]. http://blog.cutter.com/2009/08/10/beyond-scope-schedule-and-cost-measuring-agile-

performance/

[37] "Comparing Extreme Programming, Scrum, and Lean Software Development in Agile," Serena

Software, Oct. 2009.

[38] J. Patton, "Using Kanban Techniques to Control Incremental Development," in 21st Annual

Systems and Software Technology Conference (STSC) 2009: Technology: Advancing Precision,

Salt Lake City, UT, 2009.

[39] J. E. Lascano, "eXtreme Programming (XP) May Be Embedded Inside Scrum," in 21st Annual

Systems and Software Technology Conference (STSC) 2009: Technology: Advancing Precision,

Salt Lake City, UT, 2009.

[40] M. Daconta, "6 trends government IT managers should be wary of," Federal Computer Week,

Aug. 2009. [Online]. http://fcw.com/articles/2009/08/10/reality-check-it-fads-not-fit-for-

government.aspx

[41] Rally Software Development, Inc. (2009) Rally Software Development, Inc.. [Online].

http://www.rallydev.com/downloads/document/161-iteration-planning-guide.html

[42] G. B. Alleman, M. Henderson, and R. Seggelke, "Making Agile Development Work in a

Government Contracting Environment: Measuring Velocity with Earned Value," in Agile

Development, June 25-28, 2003,, Salt Lake City, UT, 2003. [Online].

http://www.informatik.uni-trier.de/~ley/db/conf/agiledc/agiledc2003.html

http://www.agilejournal.com/news-a-events/events/details/15-webcast-why-scrum-isnt-enough-for-agile-success
http://www.agilejournal.com/news-a-events/events/details/15-webcast-why-scrum-isnt-enough-for-agile-success
http://blog.cutter.com/2009/08/10/beyond-scope-schedule-and-cost-measuring-agile-performance/
http://blog.cutter.com/2009/08/10/beyond-scope-schedule-and-cost-measuring-agile-performance/
http://fcw.com/articles/2009/08/10/reality-check-it-fads-not-fit-for-government.aspx
http://fcw.com/articles/2009/08/10/reality-check-it-fads-not-fit-for-government.aspx
http://www.rallydev.com/downloads/document/161-iteration-planning-guide.html
http://www.informatik.uni-trier.de/~ley/db/conf/agiledc/agiledc2003.html

62 | CMU/SEI-2010-TN-002

[43] T. Dybå and T. Dingsøyr, "What Do We Know About Agile Software Development," IEEE

Software, vol. September/October, 2009.

[44] A. Cockburn, "What Engineering Has in Common With Manufacturing and Why It Matters,"

Crosstalk, Apr. 2007. [Online]. http://www.stsc.hill.af.mil/crosstalk/2007/04/0704Cockburn.html

[45] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software. Addison Wesley, 1994. [Online].

www.informit.com/store/product.aspx?isbn=0201634988

http://www.stsc.hill.af.mil/crosstalk/2007/04/0704Cockburn.html
http://www.informit.com/store/product.aspx?isbn=0201634988

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

April 2010

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

Considerations for Using Agile in DoD Acquisition

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Mary Ann Lapham, Ray Williams, Charles (Bud) Hammons, Daniel Burton, & Alfred Schenker

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2010-TN-002

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report explores the questions: Can Agile be used in the DoD environment? If so, how? Lessons learned from actual DoD programs

that have employed and are employing Agile are provided as well as information gleaned from the myriad articles and books available

on Agile. While this report does not pretend to cover every paper or thought published about Agile in the DoD world, it provides an over-

view of some challenges in using Agile; an overview of how some programs have addressed these challenges; and some additional rec-

ommendations on dealing with these challenges. The intended audience is policy makers, program office staff, and software develop-

ment contractors who are contemplating proposing the use of Agile software development methods.

It is the hope of the authors that this paper stimulates discussion about and appropriate adoption of Agile in the DoD world. We hope to

obtain further data so that our list of considerations can be updated and expanded for use by all practitioners.

14. SUBJECT TERMS

acquisition, Agile methods, lessons learned, software development, DoD,

Department of Defense

15. NUMBER OF PAGES

83

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

For official use only:

[15,16,17,18,3][19,20,21,22,23,24,25,26,27,28][29,30][13,31,32,7,33,33,34,35][36,37]

	Considerations for Using Agile in DoD Acquisition
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Organization of This Report
	Executive Summary
	1 Overview
	2 What is Agile?
	3 Interview Observations and Findings
	4 DoD 5000 Series and Agile—Potential Issues and Conflicts
	5 Considerations for Applying Agile in the DoD
	6 Conclusion
	Appendix A: Examples of Agile Methods
	Appendix B: Common Objections to Agile
	Appendix C: Areas for Consideration
	Appendix D: Acronyms
	Appendix E: FIST Manifesto
	References/Bibliography

