

Incremental Development in Large-Scale
Systems: Finding the Programmatic IEDs

Charles (Bud) Hammons, PhD

June 2009

TECHNICAL NOTE
CMU/SEI-2009-TN-015

Acquisition Support Program
Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-
nal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and
derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at per-
mission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI publications, please visit the library on the SEI website
(http://www.sei.cmu.edu/library).

mailto:per-mission@sei.cmu.edu
mailto:per-mission@sei.cmu.edu
http://www.sei.cmu.edu/library

i | CMU/SEI-2009-TN-015

Table of Contents

Acknowledgements iii

Abstract v

1 Introduction 1

2 Programmatic IEDs 3
2.1 What Criteria and Processes Will be Used to Determine What is “Operationally Useful?” 3
2.2 CONOPS Varies Across Increments 3
2.3 Traditional Systems Engineering Practices May Not be Entirely Appropriate to the

Incremental Development Environment 3
2.4 Unrecognized Software Development Dependencies 4
2.5 Potential for Reuse and Commercial Off-the-Shelf Software May Change 4
2.6 Inter-Increment Dependencies 4
2.7 Unprecedented Software Integration Complexity and Scale 5

References/Bibliography 7

ii | CMU/SEI-2009-TN-015

iii | CMU/SEI-2009-TN-015

Acknowledgements

The author wishes to acknowledge the review and contributions of John Foreman, Ron Kohl,
Mary Ann Lapham, Tom Merendino, and David Taylor to earlier versions of this document. All
are current or former staff members of the Software Engineering Institute.

iv | CMU/SEI-2009-TN-015

v | CMU/SEI-2009-TN-015

Abstract

IED (improvised explosive device): programmatically, an unintended consequence or im-
pediment that can blow up a development program.

Large-scale systems (LSS) being acquired by the Department of Defense (DoD) are frequently
exemplified by the creation of multiple prime items, acquired under separate contract. The multi-
ple prime items are often controlled by different organizations, with attendant variations in time-
lines and funding stability. In most cases, each of the prime items is software-intensive. LSS are
encountered in several domains, including space-based systems and multi-platform systems such
as the Army’s Future Combat System. These are often referred to as transformational systems.

The concepts of time certain development and incremental deployment of capabilities would ap-
pear to represent a fundamental change in the programmatic environment in which LSS are ac-
quired. Such programs need a “roadmap” for acquisition that addresses this new environment.
This paper explores how continued use of the existing acquisition roadmaps opens up the poten-
tial for running into program pitfalls (programmatic IEDs) that aren’t acknowledged on the map at
hand.

vi | CMU/SEI-2009-TN-015

1 | CMU/SEI-2009-TN-015

1 Introduction

The concepts of time certain development and incremental development have not yet been fully
digested and interpreted for large-scale systems (LSS), but the concepts have the effect of provid-
ing a decision hierarchy for program direction, where time is mandated to be a predetermined in-
terval post Milestone A, cost is primarily legislated based on Department of Defense (DoD) rec-
ommendations and the action of external entities, and the actual capabilities to be delivered (i.e.,
requirements) are a matter of some negotiation. It is important to recognize that “time certain”
decision criteria and the order in which they are applied are different from traditional models em-
ployed on acquisitions to date, which is roughly to address requirements as a whole, with negotia-
tion focused upon cost as an independent variable (CAIV) processes. The upshot is that what is

“optimal” using the two different decision models isn’t necessarily identical.

At this time, it is not certain that the recommendations of Kadish will be embraced and mandated
by the DoD [Kadish 2005]. Regardless, it is important that LSS program teams analyze the effects
of such a set of potential mandates. For example, how big a change is this in practical terms? If an
LSS development program already in process continues on its current path and the mandates are
imposed, what are the downside risks to the LSS? Will there be a grandfather provision for pro-
grams already under way? Suppose other major programs follow the mandates and the LSS con-
tinues on its current path: does this make the program’s relations with the DoD and Congress

more problematic? These are business questions that are best addressed by senior leadership.

The rest of this paper addresses programmatic IEDs that an LSS program is likely to encounter.

2 | CMU/SEI-2009-TN-015

3 | CMU/SEI-2009-TN-015

2 Programmatic IEDs

2.1 What Criteria and Processes Will be Used to Determine What is “Operationally

Useful?”

A key proposition in Kadish is to mandate that “Operationally Useful Capabilities” be delivered
six years post Milestone A [Kadish 2005]. Even if an LSS program has made extraordinary efforts
to engage the user community, it is important to revisit some fundamental questions should the
recommendations in Kadish be accepted and enforced by the DoD. Who decides what is
“operationally useful?” Who is the authoritative source for information? Has the LSS
identified/cultivated a set of users who can “think transformational” and envision the operational
value of incremental introduction of LSS capabilities? In Kadish, the strong suggestion is that
combatant commanders are the proper source. As LSS programs engage with the users, the user’s
perspective of what is “useful” will change as their understanding of what can be done
operationally becomes more sophisticated. As a result, the concept of operations (CONOPS) and
doctrine may change, affecting the requirements to be deployed in a given block or increment.
There is clearly an educational role that LSS program personnel can fill to help the user
community envision what a force can accomplish with the capabilities that the LSS promises.

2.2 CONOPS Varies Across Increments

Consider a space-based LSS, composed of multiple satellites. That which is operationally feasible
after first launch will differ from that after second launch, and so forth. If the constellation is
made up of satellites of differing capability, this diversity will strongly influence the details of
constellation operations, and may unfortunately have a direct effect on CONOPS. This can thwart
efforts to ensure that end users can think in terms of capability delivered to end users without hav-
ing to address details of constellation operations that are usually the domain of the satellite opera-
tors. Differences between satellites may lead to design variations to mitigate the deltas. Some
functions that may be carried out in hardware (application-specific integrated circuits and the like)
in satellites 2, 3, and so forth may be executed in software in satellite 1. Do we provide additional
processor bandwidth and/or memory margin to accommodate the expectation for more software
workarounds on the less capable satellite 1? In communications satellite systems, the existence of
large inventories of legacy terminals also complicates CONOPS; it is not unusual for full opera-

tional capability envisioned to be deferred until the legacy inventory has been replaced.

2.3 Traditional Systems Engineering Practices May Not be Entirely Appropriate to the

Incremental Development Environment

Conventional hierarchical program master schedules and plans may not capture the dynamics of
the incremental environment. In time certain and incremental development the task is to craft a
sequence of increments where increasing capability is delivered to the field, some of which may
actually be below threshold levels or absent altogether from the first increment and intermediate
upgrades. In our space-based example, the hardware and actual capabilities of distinct satellites
may be different. The staging of requirements packages that match user expectations—and can
grow from increment to increment—is a non-trivial exercise; it requires that requirements and

4 | CMU/SEI-2009-TN-015

configuration and version interdependencies be understood at a deeper level than contained in a
static requirements document. Allocation splits between hardware and software may change from

increment to increment.

The forces in action also include requirements fluidity, dynamics of the trade spaces being inves-
tigated in parallel developmental efforts, and evolution of external systems in parallel develop-
ment (such as the Global Information Grid). The effect too easily leads to a constant reconstruc-
tion of static plans that are invalidated in short order by changes in user expectations, changes in
the trade space, and other factors which take management attention away from managing the pro-
cess of converging on a set of operationally useful capabilities that can be deployed in the existing
time and cost constraints.

A common technique to mitigate this problem area is to institute a concurrent development ap-
proach. It is customary in such situations to provide a venue and processes to address cross-

domain systems engineering issues, particularly the coordination of requirements and interfaces.

2.4 Unrecognized Software Development Dependencies

Software development in each of the prime items of an LSS is dependent on software develop-
ment efforts development in the other segments. Inter-segment interfaces only describe the nature
of the messages exchanged among the segments, but do not ensure that the right thing happens in
each segment. This problem is amplified in incremental development, since the negotiation to
arrive at what is operationally useful has to span all segments. Configuration control is a particu-
larly difficult issue that spans development and sustainment. The fact that configuration control
during sustainment and development is executed by different organizations with goals that are not
identical, with sustainment organizations emphasizing modifications to support near-term opera-
tional needs, while development organizations emphasize forward-looking capabilities. During
development, a greater emphasis on coordination across prime items that comprise the LSS is
necessary to create an LSS that meets expectations.

2.5 Potential for Reuse and Commercial Off-the-Shelf Software May Change

The new development environment potentially places additional challenges on the use of com-
mercial off-the-shelf software (COTS) and reusable code. Each increment must provide opera-
tionally useful capabilities. Due to the expected evolving nature of the system, and the unknown
breakdown of the functionality, what COTS can be leveraged and what algorithms and code may
be reused will need to constantly be re-examined. This reveals a potential conflict between the
proposed time certain guidance and existing mandates to maximize employment of COTS and

reused software.

2.6 Inter-Increment Dependencies

Each increment must be considered an entire system unto itself, requiring the full spectrum of
software and systems engineering attention. While this poses little difference from the current
plan for Increment 1, it places subsequent increments in a position to treat the previous increments
as somewhat of a legacy system that has to be accommodated in these subsequent increment de-
velopment efforts. This suggests, for example, that a full Increment 1 architectural suite will be
required, and then something equivalent will be required for each of the following increments.

5 | CMU/SEI-2009-TN-015

This would infer a set of parallel or staggered development efforts, each with its own set of devel-
opment artifact needs (architectures, requirements, transition plans, etc.). This staggered but near-
ly in parallel set of development projects, one for each increment, can place unexpected strains on
resources that may need to be shared (or not) between various increment development efforts. It is
possible that other programs have addressed this issue, and their experience may be useful in for-

mulating a specific strategy for a given LSS program.

2.7 Unprecedented Software Integration Complexity and Scale

In contrast to the other items mentioned, this risk is independent of whether time certain or incre-
mental are chosen as a management approach, or the status quo is retained. Most LSS programs
envision the integration of 107 or more equivalent lines of code (ELOC) for the total program. We
are unaware of any DoD program in the past 20 years that has integrated software of this size and
complexity within anywhere close to the originally proposed cost, schedule, and performance pa-
rameters. Other notable risks (such as sensor maturity) can be mitigated in part through trade stud-
ies, technology maturation, and negotiations of the operationally useful package of capabilities.
The integration risk noted cannot be mitigated through any of the mechanisms currently employed
on the program. In current plans the effect of this risk will surface in later stage integration and
test, a time when the program will again be vulnerable in a very public way. It is important that
any LLS program have a vigorous systems integration IPT (integrated product team) empanelled
from the beginning of the program, specifically charged to address the downstream integration
issues, including software integration. Some acquisition organizations are attempting to adopt an
enterprise approach to the various programs in their portfolios. One tactic employed is to institute
cross-program configuration control at the requirements level to aid in managing one of the pri-
mary drivers of complexity growth. The management of interactions among the prime items in
development or in service is also addressed by the institution of test and integrations teams
charged with ensuring that dependencies are properly tested and existing operational capabilities
are not interrupted.

6 | CMU/SEI-2009-TN-015

7 | CMU/SEI-2009-TN-015

References/Bibliography

[Kadish 2005]
Kadish, Ron, Lt Gen USAF (RET), et al. Defense Acquisition Performance Assessment – Execu-
tive Summary. Defense Acquisition Performance Assessment Project, Office of the Acting Under
Secretary of Defense; December 2005.
www.defenselink.mil/pubs/pdfs/DAPA%2012-22%20WEB%20Exec%20Summary.pdf

[DoD 2005]
Defense Acquisition Performance Assessment, public meeting, December 14, 2005.

http://www.defenselink.mil/pubs/pdfs/DAPA%2012-22%20WEB%20Exec%20Summary.pdf

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

June 2009

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Incremental Development in Large-Scale Systems: Finding the Programmatic IEDs

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Charles (Bud) Hammons

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2009-TN-015

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Programmatically, an IED (improvised explosive device) is an unintended consequence or impediment that can blow up a development
program.

Large-scale systems (LSS) being acquired by the Department of Defense (DoD) are frequently exemplified by the creation of multiple
prime items, acquired under separate contract. The multiple prime items are often controlled by different organizations, with attendant
variations in timelines and funding stability. In most cases, each of the prime items is software-intensive. LSS are encountered in several
domains, including space-based systems and multi-platform systems such as the Army’s Future Combat System. These are often re-
ferred to as transformational systems.

The concepts of time certain development and incremental deployment of capabilities would appear to represent a fundamental change
in the programmatic environment in which LSS are acquired. Such programs need a “roadmap” for acquisition that addresses this new
environment. This paper explores how continued use of the existing acquisition roadmaps opens up the potential for running into pro-
gram pitfalls (programmatic IEDs) that aren’t acknowledged on the map at hand..

14. SUBJECT TERMS

large-scale systems, time certain development, transformational systems, incremental deploy-
ment of capabilities, programmatic IED

15. NUMBER OF PAGES

16

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Acknowledgements
	Abstract
	1 Introduction
	2 Programmatic IEDs
	References/Bibliography

