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Abstract 

IED (improvised explosive device): programmatically, an unintended consequence or im-
pediment that can blow up a development program. 

Large-scale systems (LSS) being acquired by the Department of Defense (DoD) are frequently 
exemplified by the creation of multiple prime items, acquired under separate contract. The multi-
ple prime items are often controlled by different organizations, with attendant variations in time-
lines and funding stability. In most cases, each of the prime items is software-intensive. LSS are 
encountered in several domains, including space-based systems and multi-platform systems such 
as the Army’s Future Combat System. These are often referred to as transformational systems.  

The concepts of time certain development and incremental deployment of capabilities would ap-
pear to represent a fundamental change in the programmatic environment in which LSS are ac-
quired. Such programs need a “roadmap” for acquisition that addresses this new environment. 
This paper explores how continued use of the existing acquisition roadmaps opens up the poten-
tial for running into program pitfalls (programmatic IEDs) that aren’t acknowledged on the map at 
hand.  
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1 Introduction 

The concepts of time certain development and incremental development have not yet been fully 
digested and interpreted for large-scale systems (LSS), but the concepts have the effect of provid-
ing a decision hierarchy for program direction, where time is mandated to be a predetermined in-
terval post Milestone A, cost is primarily legislated based on Department of Defense (DoD) rec-
ommendations and the action of external entities, and the actual capabilities to be delivered (i.e., 
requirements) are a matter of some negotiation. It is important to recognize that “time certain” 
decision criteria and the order in which they are applied are different from traditional models em-
ployed on acquisitions to date, which is roughly to address requirements as a whole, with negotia-
tion focused upon cost as an independent variable (CAIV) processes. The upshot is that what is 

“optimal” using the two different decision models isn’t necessarily identical.  

At this time, it is not certain that the recommendations of Kadish will be embraced and mandated 
by the DoD [Kadish 2005]. Regardless, it is important that LSS program teams analyze the effects 
of such a set of potential mandates. For example, how big a change is this in practical terms? If an 
LSS development program already in process continues on its current path and the mandates are 
imposed, what are the downside risks to the LSS? Will there be a grandfather provision for pro-
grams already under way? Suppose other major programs follow the mandates and the LSS con-
tinues on its current path: does this make the program’s relations with the DoD and Congress 

more problematic? These are business questions that are best addressed by senior leadership.  

The rest of this paper addresses programmatic IEDs that an LSS program is likely to encounter.  
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2 Programmatic IEDs 

2.1 What Criteria and Processes Will be Used to Determine What is “Operationally 

Useful?” 

A key proposition in Kadish is to mandate that “Operationally Useful Capabilities” be delivered 
six years post Milestone A [Kadish 2005]. Even if an LSS program has made extraordinary efforts 
to engage the user community, it is important to revisit some fundamental questions should the 
recommendations in Kadish be accepted and enforced by the DoD. Who decides what is 
“operationally useful?” Who is the authoritative source for information? Has the LSS 
identified/cultivated a set of users who can “think transformational” and envision the operational 
value of incremental introduction of LSS capabilities? In Kadish, the strong suggestion is that 
combatant commanders are the proper source. As LSS programs engage with the users, the user’s 
perspective of what is “useful” will change as their understanding of what can be done 
operationally becomes more sophisticated. As a result, the concept of operations (CONOPS) and 
doctrine may change, affecting the requirements to be deployed in a given block or increment. 
There is clearly an educational role that LSS program personnel can fill to help the user 
community envision what a force can accomplish with the capabilities that the LSS promises. 

2.2 CONOPS Varies Across Increments 

Consider a space-based LSS, composed of multiple satellites. That which is operationally feasible 
after first launch will differ from that after second launch, and so forth. If the constellation is 
made up of satellites of differing capability, this diversity will strongly influence the details of 
constellation operations, and may unfortunately have a direct effect on CONOPS. This can thwart 
efforts to ensure that end users can think in terms of capability delivered to end users without hav-
ing to address details of constellation operations that are usually the domain of the satellite opera-
tors. Differences between satellites may lead to design variations to mitigate the deltas. Some 
functions that may be carried out in hardware (application-specific integrated circuits and the like)  
in satellites 2, 3, and so forth may be executed in software in satellite 1. Do we provide additional 
processor bandwidth and/or memory margin to accommodate the expectation for more software 
workarounds on the less capable satellite 1? In communications satellite systems, the existence of 
large inventories of legacy terminals also complicates CONOPS; it is not unusual for full opera-

tional capability envisioned to be deferred until the legacy inventory has been replaced. 

2.3 Traditional Systems Engineering Practices May Not be Entirely Appropriate to the 

Incremental Development Environment 

Conventional hierarchical program master schedules and plans may not capture the dynamics of 
the incremental environment. In time certain and incremental development the task is to craft a 
sequence of increments where increasing capability is delivered to the field, some of which may 
actually be below threshold levels or absent altogether from the first increment and intermediate 
upgrades. In our space-based example, the hardware and actual capabilities of distinct satellites 
may be different. The staging of requirements packages that match user expectations—and can 
grow from increment to increment—is a non-trivial exercise; it requires that requirements and 
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configuration and version interdependencies be understood at a deeper level than contained in a 
static requirements document. Allocation splits between hardware and software may change from 

increment to increment. 

The forces in action also include requirements fluidity, dynamics of the trade spaces being inves-
tigated in parallel developmental efforts, and evolution of external systems in parallel develop-
ment (such as the Global Information Grid). The effect too easily leads to a constant reconstruc-
tion of static plans that are invalidated in short order by changes in user expectations, changes in 
the trade space, and other factors which take management attention away from managing the pro-
cess of converging on a set of operationally useful capabilities that can be deployed in the existing 
time and cost constraints.  

A common technique to mitigate this problem area is to institute a concurrent development ap-
proach. It is customary in such situations to provide a venue and processes to address cross-

domain systems engineering issues, particularly the coordination of requirements and interfaces.  

2.4 Unrecognized Software Development Dependencies 

Software development in each of the prime items of an LSS is dependent on software develop-
ment efforts development in the other segments. Inter-segment interfaces only describe the nature 
of the messages exchanged among the segments, but do not ensure that the right thing happens in 
each segment. This problem is amplified in incremental development, since the negotiation to 
arrive at what is operationally useful has to span all segments. Configuration control is a particu-
larly difficult issue that spans development and sustainment. The fact that configuration control 
during sustainment and development is executed by different organizations with goals that are not 
identical, with sustainment organizations emphasizing modifications to support near-term opera-
tional needs, while development organizations emphasize forward-looking capabilities. During 
development, a greater emphasis on coordination across prime items that comprise the LSS is 
necessary to create an LSS that meets expectations. 

2.5 Potential for Reuse and Commercial Off-the-Shelf Software May Change 

The new development environment potentially places additional challenges on the use of com-
mercial off-the-shelf software (COTS) and reusable code. Each increment must provide opera-
tionally useful capabilities. Due to the expected evolving nature of the system, and the unknown 
breakdown of the functionality, what COTS can be leveraged and what algorithms and code may 
be reused will need to constantly be re-examined. This reveals a potential conflict between the 
proposed time certain guidance and existing mandates to maximize employment of COTS and 

reused software.  

2.6 Inter-Increment Dependencies 

Each increment must be considered an entire system unto itself, requiring the full spectrum of 
software and systems engineering attention. While this poses little difference from the current 
plan for Increment 1, it places subsequent increments in a position to treat the previous increments 
as somewhat of a legacy system that has to be accommodated in these subsequent increment de-
velopment efforts. This suggests, for example, that a full Increment 1 architectural suite will be 
required, and then something equivalent will be required for each of the following increments. 
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This would infer a set of parallel or staggered development efforts, each with its own set of devel-
opment artifact needs (architectures, requirements, transition plans, etc.). This staggered but near-
ly in parallel set of development projects, one for each increment, can place unexpected strains on 
resources that may need to be shared (or not) between various increment development efforts. It is 
possible that other programs have addressed this issue, and their experience may be useful in for-

mulating a specific strategy for a given LSS program. 

2.7 Unprecedented Software Integration Complexity and Scale 

In contrast to the other items mentioned, this risk is independent of whether time certain or incre-
mental are chosen as a management approach, or the status quo is retained. Most LSS programs 
envision the integration of 107 or more equivalent lines of code (ELOC) for the total program. We 
are unaware of any DoD program in the past 20 years that has integrated software of this size and 
complexity within anywhere close to the originally proposed cost, schedule, and performance pa-
rameters. Other notable risks (such as sensor maturity) can be mitigated in part through trade stud-
ies, technology maturation, and negotiations of the operationally useful package of capabilities. 
The integration risk noted cannot be mitigated through any of the mechanisms currently employed 
on the program. In current plans the effect of this risk will surface in later stage integration and 
test, a time when the program will again be vulnerable in a very public way. It is important that 
any LLS program have a vigorous systems integration IPT (integrated product team) empanelled 
from the beginning of the program, specifically charged to address the downstream integration 
issues, including software integration. Some acquisition organizations are attempting to adopt an 
enterprise approach to the various programs in their portfolios. One tactic employed is to institute 
cross-program configuration control at the requirements level to aid in managing one of the pri-
mary drivers of complexity growth. The management of interactions among the prime items in 
development or in service is also addressed by the institution of test and integrations teams 
charged with ensuring that dependencies are properly tested and existing operational capabilities 
are not interrupted. 
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