

Using Aspect-Oriented Programming to
Enforce Architecture

Paulo Merson

September 2007

TECHNICAL NOTE
CMU/SEI-2007-TN-019

Software Architecture Technology Initiative
Unlimited distribution subject to the copyright.

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2007 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-
nal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for
external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

 SOFTWARE ENGINEERING INSTITUTE | i

Table of Contents

Abstract v

1 Introduction 1

2 Compile-Time Declarations 2

3 Enforcing the Architecture 3
3.1 Enforcing Architectural Constraints Using AOP 4
3.2 A Concrete Example 6
3.3 Enforcing Patterns 8

4 Conformance to Coding Policies 10

5 Conclusion 13

References 15

ii | CMU/SEI-2007-TN-019

 SOFTWARE ENGINEERING INSTITUTE | iii

List of Figures

Figure 1: Modules in a Layered Architecture 3

Figure 2: Layered Design from Figure 1 Showing the Corresponding Java Packages 5

Figure 3: Runtime View of the Architecture of Duke’s Bank Application [Bodoff 2007] 8

Figure 4: Abstract Factory Design Pattern [Gamma 1995] (Adapted) 9

iv | CMU/SEI-2007-TN-019

 SOFTWARE ENGINEERING INSTITUTE | v

Abstract

Using aspect-oriented programming (AOP), software developers can define customized compile-
time error or warning messages that are issued when the code contains join points that match
specified pointcuts. These customized messages are generated by compile-time declarations,
which are an extremely simple but powerful AOP mechanism. Declarations that look for nonvalid
interactions between modules can be used for architecture enforcement. Coding policies, best
practices, design patterns, and code-naming conventions can also be enforced. Compile-time dec-
larations operate as an additional verification in the build process, but they do not affect the com-
piled application and can be turned on and off at any time. That feature makes this approach an
automated and nondisruptive solution for architecture enforcement and a risk-free first step to-
wards AOP adoption.

vi | CMU/SEI-2007-TN-019

 SOFTWARE ENGINEERING INSTITUTE | 1

1 0BIntroduction

Aspect-oriented programming (AOP) is a programming paradigm that facilitates modularization
of crosscutting concerns. The AOP term and concept originated at Xerox PARC in the 1990s
[Kiczales 1997]. AOP is gathering momentum in the software engineering community. On the
research front, researchers actively investigate issues in the broader discipline of aspect-oriented
software development. Research topics include type systems for aspects, composition models and
operators for aspects, architecture design, requirements engineering, and the modeling and visu-
alization of aspects. On the practitioner front, tools, frameworks, and aspect libraries are evolving
fast with respect to usability and reliability. An active community of developers is enjoying the
benefits of AOP in projects that span various business segments and development platforms.F

1
F

Practitioners discover new uses for aspects every day.

The goal of this report is to show, through examples, how you can use AOP to ensure
• conformance to architectural design

• the proper use of design patterns and programming best practices

• conformance to coding policies and naming conventions

The audience for this report consists of architects and developers who are familiar with AOP con-
cepts. All the examples use the AspectJ syntaxF

2
F [Xerox 2003].

The report is structured as follows: Section 2 describes the static AOP compile-time declaration
mechanism. Section 3 briefly introduces the architecture conformance challenge and then shows
how compile-time declarations can be used to enforce architectural constraints. Section 4 provides
various examples of coding policies and best practices that can be enforced with AOP. In addi-
tion, that section describes how AOP can enforce naming conventions. Section X5X provides some
concluding remarks.

1 You can find examples of applications of AOP in the industry track of the annual Aspect-Oriented Software

Development (AOSD) Conference and in emails to the aspectj-users@eclipse.org mailing list. To access those
emails, go to http://www.eclipse.org/aspectj/userlists.php.

2 To implement and test the examples shown in this report in your Java project, follow these steps:

• Install AspectJ on your machine.

• Copy and paste all code snippets into a single public aspect (e.g., public aspect Enforcement
{…}). Then, save the file—for example, as Enforcement.aj.

• Change the aspect code to target the packages of your project where applicable. (The examples in this re-
port use com.foo.proj.)

• Compile the Java code and the aspect together using the AspectJ compiler.

mailto:aspectj-users@eclipse.org
http://www.eclipse.org/aspectj/userlists.php

2 | CMU/SEI-2007-TN-019

2 1BCompile-Time Declarations

AOP mechanisms can use dynamic or static crosscutting. With dynamic crosscutting, at compile
time or load time, aspect code is added to the target units through weaving at specified join points.
Logging is a typical example of a crosscutting concern that can be implemented using dynamic
crosscutting—calls to log methods are inserted through weaving at the beginning of methods
whose execution should be logged. Dynamic crosscutting adds or modifies the executable code
and hence the behavior of a program. In this report, we won’t use dynamic crosscutting.

Static crosscutting modifies the static structure of the types in the application and their compile-
time behavior [Laddad 2003]. It can be used, for example, to
• add a method void init(ServletConfig config) with standard initialization code

to all classes that implement the javax.servlet.Servlet interface in a given project.
This mechanism is usually referred to as intertype member declaration [AspectJ 2003,
Gradecki 2003] or member introduction [Laddad 2003].

• make all classes whose name ends in the letters “PK” (for “primary key”) implement the
java.io.Serializable interface. This static crosscutting mechanism is called type-
hierarchy modification [Laddad 2003].

• treat the checked exception java.io.IOException as an unchecked exception on all
calls to java.io.FileInputStream.close(). This mechanism is exception softening
[Gradecki 2003, Laddad 2003].

The other application of static crosscutting is the introduction of compile-time errors or warnings
when join points that match the specified pointcut are found. This mechanism is generally called
compile-time declaration or custom compilation messages and is the AOP mechanism used in this
report for architecture enforcement. As an example, suppose you are using JUnitF

3
F for automated

unit testing and a policy states that all test case classes should have the prefix “Test.” The code
snippet below using AspectJ syntax causes the compiler to issue a warning if it finds any class
under package com.foo.proj that does not follow that rule:

declare warning :
 staticinitialization(junit.framework.TestCase+) &&
 !staticinitialization(com.foo.proj..Test*) :
 "JUnit test cases should start with 'Test'";

Declaring compile-time errors and warnings this way is less intrusive, because the target code is
not modified in any form. No new code is woven as in dynamic crosscutting, and no type is al-
tered as in intertype member declaration or hierarchy modification. This fact brings a special
value to compile-time declarations. If they are added to a project, they can be turned on and off,
and the compiled code remains the same.

3 For more information about JUnit, go to www.junit.org.

http://www.junit.org

 SOFTWARE ENGINEERING INSTITUTE | 3

3 2BEnforcing the Architecture

The diagram in XFigure 1X shows the top-level decomposition of an application into four layers. The
architecture follows the basic design principle of separation of concerns. The User Interface layer
has modules that render the screens and handle presentation logic and dialog flow. The implemen-
tation of this layer will vary substantially depending on the technology used (e.g., Web-based user
interface [UI], Web 2.0, Windows application, Eclipse-based UI). The Core Logic layer contains
the modules that implement the business logic of the system and that stay less dependent on the
technology. Modules in the Data Access layer implement the logic to access the relational data-
base, including object-relational mapping and classes that contain SQL statements. This layer al-
lows the Core Logic layer to be independent of table schemas and peculiarities of types of data-
bases. Finally, the JDBC layer is the standard Java Database Connectivity (JDBC) application
program interface (API).F

4
F It consists of off-the-shelf libraries that can be used uniformly to access

different relational databases, such as Oracle or Microsoft SQL Server.

Figure 1: Modules in a Layered Architecture

The dependency between layers is labeled as “can use.” This is the typical relation in layered de-
signs and represents the fact that a module in the upper layer is allowed to use any of the public
facilities provided by the lower layer [Clements 2003]. The “can use” relation is flexible—it
doesn’t identify dependencies between specific modules that live inside each layer. In subsequent
refinements of the architecture, these dependencies become explicit. Nonetheless, the top-level

4 For more information, go to http://java.sun.com/jdbc.

http://java.sun.com/jdbc

4 | CMU/SEI-2007-TN-019

architectural design in XFigure 1X imposes important restrictions: a module inside the User Interface
layer is not allowed to use a module in the Data Access or JDBC layers, a module in Data Access
can’t use a module in Core Logic, and so on. The layered architecture was created by the architect
to satisfy modifiability, portability, and testability requirements. If the code introduces layer
bridging that is not conformant to the architecture, these goals may be compromised.

During implementation and maintenance, programmers sometimes introduce dependencies in the
code that don’t follow the original architectural design. Enforcing that the code continues to con-
form to the architectural design is a major challenge, and, in fact, failing to do it causes many
common software problems [Brown 1998]. There are at least five approaches that help to enforce
the architecture or at least check for conformance between architecture and code:
• code inspections: Code reviews have a very positive impact on software quality and are

more efficient than testing with respect to detecting defects [Humphrey 1995]. However, this
is a manual process. Extensive code reviews for checking if the code follows the architecture
take time and require the reviewer to have a solid understanding of the architecture, which is
not always the case.

• architecture reconstruction: This consists of obtaining architectural representations by ex-
tracting information from implementation artifacts (e.g., source code, deployment descrip-
tors) or traces of the system execution [Kazman 2002]. Reconstructed architectural views
can then be compared with the original intended design to identify mismatches. Recovering
the architecture to verify conformance with the original design is costly, but architecture re-
construction has other benefits, such as producing detailed and up-to-date architecture depic-
tions.

• model driven architecture (MDA): If the MDA process (as described by Kleppe, Warmer,
and Bast [Kleppe 2003]) is followed, code is generated by an MDA tool based on designs
typically expressed in UML. Even if the code is later modified directly, the tool usually al-
lows reversing it back to design without losing the modifications. Therefore, in theory, archi-
tecture conformance is easy to achieve, because code and design can be kept in synch by the
MDA tool.

• enforcement tools: Tools that help enforce that the implementation follows the architecture
design are already available. Examples include Lattix,F

5
F Sotograph,F

6
F and Structure101.F

7
F

• The other alternative, which will be described next, is the use of AOP.

3.1 ENFORCING ARCHITECTURAL CONSTRAINTS USING AOP

AOP lets us specify locations in the source code called join points. Some examples of join points
are the invocation of a method or constructor; the declaration of a class, method, or constructor;
and access to a member variable of a class. Wildcard patterns can be used to express a set of join
points in the target code. For example, call(* com.foo.proj..*.set*(String)) repre-
sents all calls to methods that

5 For more information on Lattix, go to www.lattix.com.

6 For more information on Sotograph, go to www.software-tomography.com.

7 For more information on Structure101, go to www.headwaysoftware.com.

http://www.lattix.com
http://www.software-tomography.com
http://www.headwaysoftware.com

 SOFTWARE ENGINEERING INSTITUTE | 5

• return any data type

• reside in any class that is part of package com.foo.proj or any subpackage

• start with “set” (e.g., setName)

• take a String object as an argument

There are also constructs that delimit a lexical scope in the code. For example,
within(com.foo.proj.ui..*Dialog) represents the code in all classes that

• reside in package com.foo.proj.ui or any subpackage

• end with Dialog (e.g., PlaceOrderDialog)

These AOP mechanisms can be used to check whether there are relations in the code not
prescribed by the architectural design. Going back to the example in XFigure 1X, the layers will
eventually be implemented in Java as a set of Java packages. XFigure 2X shows the same layered
design with the actual names of the Java packages implementing the layers.

Figure 2: Layered Design from XFigure 1X Showing the Corresponding Java Packages

Knowing the design restrictions imposed by the original layered design in XFigure 1X and knowing
how the layers map to Java packages in the code base (XFigure 2X), it is possible to create compile-
time declarations to enforce the layered design. For example, the following aspect checks at
compile time that business logic modules in the Core Logic layer do not make explicit calls to UI
modules:
public aspect Enforcement {
 public pointcut inCore() : within(com.foo.proj.core..*);

6 | CMU/SEI-2007-TN-019

 public pointcut callToUi() : call(* com.foo.proj.ui..*+.*(..)) ||
 call(com.foo.proj.ui..new(..));

 declare warning : inCore() && callToUi() :
 "Core logic layer can’t have calls to UI layer";
}

In this aspect, there are two pointcuts: inCore and callToUi. A pointcut is simply a named
construct that describes a set of join points. Pointcuts can be referred to in compile-time declara-
tions and other AOP constructs. The first pointcut (inCore) defines a scope in the code base that
consists of all the code inside package com.foo.proj.core or any subpackage. Pointcut
callToUi has two parts. The first part refers to calls to any methods in the com.foo.proj.ui
package or subpackages. The second part refers to calls to any constructors (keyword new) in the
same set of packages. The compile-time declaration is the statement that starts with declare. It
determines that, if there is a call to a class in the UI layer anywhere in core logic packages, the
compiler will show a warning on that call. To be more strict with the enforcement rules, we can
use declare error instead of declare warning and generate a compile error.

Similar pointcut definitions and declare statements can be added to verify that only the dependen-
cies depicted in XFigure 2X are present in the code. Then, every time the application is built, the
compiler will issue warnings if there are disallowed calls.

In addition to the architectural design, component technologies have constraints that must be sat-
isfied by the components. These contractual obligations ensure that independently developed
components can interact in predictable ways and can be deployed into standard runtime environ-
ments [Bachmann 2000]. Take, for example, the Enterprise JavaBeans (EJB) component technol-
ogy. The specifications [Sun 2001] determine that a stateless session bean class must define a sin-
gle ejbCreate() method that takes no arguments. Such a rule is usually enforced by a
deployment tool that is part of the Java 2 Platform, Enterprise Edition (J2EE) application server
suite. Other rules and restrictions are usually stated in the specifications but are not enforced by
the compiler or deployment tool. For example, an EJB must not make graphical user interface
(GUI) calls, must not read or write to files in the file system, must not manage threads, and must
not make calls to native code. Most of these restrictions can be checked using AOP [Laddad
2003]. The following declaration can help to prevent the use of native code in EJB classes:

public pointcut inEJB() : within(javax.ejb.EnterpriseBean+);

public pointcut callNative() :
 call(* System.loadLibrary(..)) || call(* System.load(..)) ||
 call(* Runtime.loadLibrary(..)) || call(* Runtime.load(..)) ||
 call(native * *.*(..));

declare error : inEJB() && callNative() :
 "EJBs cannot load native code";

3.2 A CONCRETE EXAMPLE

The J2EE 1.3 Tutorial published by Sun Microsystems [Bodoff 2007] includes an example of a
multitier application called Duke’s Bank. XFigure 3X, a graphical representation of the Runtime view

 SOFTWARE ENGINEERING INSTITUTE | 7

of that application’s architecture, was adapted from that tutorial. At runtime, the Web client and
the application client call the session beans, the session beans invoke the entity beans, and the
entity beans access the database tables on the back end. Restricting all database access to entity
beans has some benefits. Portability and modifiability are improved, because changes related to
porting to a new database or altering the structure of the database tables are confined to the entity
beans.

Assuming that constraint was the intent of the architect, we can create a compile-time declaration
to check that all database calls occur within the entity beans:F

8

public pointcut inEntityBean() : within(javax.ejb.EntityBean+);

public pointcut callToJdbc() : call(* java.sql..*+.*(..)) ||
 call(java.sql..new(..)) ||
 call(* javax.sql..*+.*(..)) ||
 call(javax.sql..new(..));

declare warning : !inEntityBean() && callToJdbc() :
 "Only entity beans should access the database";

The inEntityBean pointcut delimits the scope of all entity beans. The wildcard pattern
EntityBean+ refers to any class that implements the EntityBean interface.F

9
F This way, we get

all entity beans in the code that will be compiled. Database calls would use the JDBC API and are
caught by pointcut callToJdbc. The compile-time declaration gives a warning if there is a
JDBC call that is not inside an entity bean.

Surprisingly, the compile-time declaration above applied to the tutorial source code reveals a dis-
crepancy between the code and the design in XFigure 3X. In the implementation, the session beans
also access the database directly. Perhaps, these “undesigned” calls were created, because the de-
veloper opted to avoid entity beans by using the JDBC for Reading pattern [Marinescu 2002] to
improve performance for some operations. In any case, the declaration reveals an inconsistency
between the architectural design and the code.

8 In this example and those that follow, the surrounding public aspect declaration is removed to save space.

9 Character ‘+’ following an identifier may also denote “any subclasses” if that identifier is a class name.

8 | CMU/SEI-2007-TN-019

Figure 3: Runtime View of the Architecture of Duke’s Bank Application [Bodoff 2007]

3.3 ENFORCING PATTERNS

Some design patterns can also be enforced using AOP compile-time declarations. XFigure 4X shows
a UML class diagram that exemplifies the application of the Abstract Factory design pattern
[Gamma 1995]. Class SomeScreen represents a screen of an application that should be portable
across the Java Swing and SWTF

10
F user interface frameworks. SomeScreen uses the

WidgetFactory abstract class to create instances of the widgets (window, scrollbars, buttons,
etc.) that will be displayed to the user. The factory creates the concrete widgets using either the
Swing or SWT framework, based on a selection made at initialization or build time.
SomeScreen and similar classes that instantiate widgets should use the abstract factory, which is
what we would like to enforce. If these client classes directly instantiate concrete widget classes
or call concrete factories, portability will be impaired. The code snippet below enforces the
pattern:

public pointcut inFactory() :
 within(com.foo.proj.ui.*WidgetFactory);

public pointcut callBypassingFactory() :
 call(com.foo.proj.ui.Window+.new(..)) ||
 call(com.foo.proj.ui.ScrollBar+.new(..));

public pointcut callToConcreteFactory() :

10 For more information on SWT, go to www.eclipse.org/swt.

http://www.eclipse.org/swt

 SOFTWARE ENGINEERING INSTITUTE | 9

 call(!abstract * com.foo.proj.ui.WidgetFactory+.*(..));

declare warning :
 callBypassingFactory() && !inFactory() :
 "Use factory to instantiate this class.";

declare warning :
 callToConcreteFactory() :
 "Use abstract factory instead of concrete factory.";

Similarly, other patterns that restrict the interactions allowed between elements can be enforced
using compile-time declarations. Examples include Mediator [Gamma 1995], Session Façade
[Marinescu 2002, Alur 2003], and Data Access Object [Alur 2003].

Figure 4: Abstract Factory Design Pattern [Gamma 1995] (Adapted)

10 | CMU/SEI-2007-TN-019

4 3BConformance to Coding Policies

Numerous implementation policies and best practices can be enforced using compile-time decla-
rations. For example, it is a common convention in Java to add the suffix “Exception” to all sub-
classes of Exception. Here’s how it can be checked using AOP for all subclasses of Excep-
tion under package com.foo.proj:

public pointcut misnamedException() :
 execution(Exception+.new(..)) &&
 execution(com.foo.proj..new(..)) &&
 !execution(com.foo.proj..*Exception.new(..));

declare warning : misnamedException():
 "Subclasses of Exception should terminate in 'Exception'";

The difference between execution and call is subtle. The keyword execution represents
join points at the body of the specified constructor or method. The keyword call represents join
points wherever the specified method is called. The compile-time declaration above uses
execution so that it issues a warning on any constructor of the Exception subclass with an
illegal name. If it used call, the warning would appear on the calls to the constructor and hence
would not be seen if the class was not being used yet.

Still with respect to exceptions, in some projects, it is recommended that all exceptions be created
with an error message or a Throwable object as an argument. The following declaration alerts if
any type of exception is created without arguments:

public pointcut noArgsException() : call(Exception+.new());

declare warning : noArgsException() :
 "Shouldn’t create exception without cause or message.";

It is likely that, in a GUI application, exception stack traces are directed to a log file or handled in
some way by the UI layer. Thus, we want to avoid calls to printStackTrace() in the code.
Likewise, print statements using the default output streams (System.out, System.err) are not
desirable in production code. In practice, we may permit such calls inside main() methods that
are created in some classes just for tests. Here is the compile-time declaration to check for viola-
tions of these conventions:

public pointcut callToPrint() :
 call(* java..Throwable.printStackTrace(..)) ||
 call(* System.out.print*(..)) ||
 call(* System.err.print*(..)) ||

public pointcut inMainMethod() :
 withincode(public static void main(String[]));

declare warning : callToPrint() && !inMainMethod() :
 "Print statements should not be in production code.";

 SOFTWARE ENGINEERING INSTITUTE | 11

Another common policy is to access member variables only through get and set methods to im-
prove information hiding. A simple declaration identifies this kind of violation [Laddad 2003]:

public pointcut accessPublicVars() :
 get(public !final * *) || set(public !final * *);

declare warning : accessPublicVars() :
 "Consider get/set methods instead of public member variable.";

Enforcement declarations can also be used with Java 5.0 metadata annotations. If you are using
Apache BeehiveF

11
F to implement Web Services, you add the annotation “@WebMethod” to the

methods in your Java class that will be exposed as Web Services. Here’s an example:

@WebMethod
public double getQuote(@WebParam String symbol) {
 double quote = 0.00;
 // obtain quote...
 return quote;
}

The documentation of the @WebMethod annotation indicates that annotated methods must be
public. This rule can be enforced using AOP:

public pointcut nonPublicWebMethod() :
 execution(@WebMethod !public * *.*(..));

declare error : nonPublicWebMethod() :
 "Methods with @WebMethod annotation must be public";

AOP can also help to enforce naming conventions. For example, the usual convention for the
name of member variables in Java is to start with a lowercase letter, unless the variable is a con-
stant. The following AOP compile-time declaration ensures that the code does not contain a non-
final member variable that starts with a capital letter:

public pointcut varStartingWithUpperCase() :
 get(!final * com.foo.proj..*+.A*) ||
 set(!final * com.foo.proj..*+.A*) ||
 get(!final * com.foo.proj..*+.B*) ||
 set(!final * com.foo.proj..*+.B*) ||
 ...
 get(!final * com.foo.proj..*+.Z*) ||
 set(!final * com.foo.proj..*+.Z*);

declare warning :
 varStartingWithUpperCase() :
 "Non-final variables should not begin with capital letter.";

11 For more information on Apache Beehive, go to http://beehive.apache.org/.

http://beehive.apache.org/

12 | CMU/SEI-2007-TN-019

The declaration of a member variable is not an exposed join point in AspectJ. For that reason, the
pointcut does not target the declaration; instead, it points to any statements where the variable is
accessed for read (“get(signature)”) or write (“set(signature)”).

Many other policies, rules, or best practices can be enforced with compile-time declarations. Here
are some examples:
• If you don’t want a specific method or class to be used anymore, but you can’t remove it

because it is used in legacy code, you can declare an error when it is used outside the scope
of the legacy code. The compile-time declaration is more effective than using the
“@deprecated” Javadoc tag, which is just a reminder in the code documentation for develop-
ers to avoid the tagged element.

• Components that execute in a multithreaded environment (e.g., Servlets) should not store
thread-specific state in instance variables. Otherwise, data from one thread can overwrite
data from another [Gradecki 2003].

• Sometimes we use a pool of instances to avoid the time-consuming instantiation of objects.
Database connections, images, Java Naming and Directory Interface (JNDI) contexts, and
EJB home objects are examples of objects that are usually in a pool. Compile-time declara-
tions can enforce that client classes get instances from the pool, instead of creating instances
directly.

• Some projects have specific naming rules that can be enforced with compile-time declara-
tions. For example, classes that follow the Data Access Object pattern usually have the suffix
“Dao.” JUnit test cases usually have suffix or prefix “Test.”

• When a concrete class implements an interface, the usual intent is that the outside world will
use the contract specified by that interface to interact with objects of that class. However, the
class may offer other public operations beyond what is specified by the interface—a com-
mon situation when the class implements more than one interface. Compile-time declarations
can enforce that a class is only accessed through the interface(s) it implements, so that trace-
ability of contracts doesn’t get lost.

 SOFTWARE ENGINEERING INSTITUTE | 13

5 4BConclusion

Over the past 20 years, software engineers became aware that software architecture is critical to
success in software projects. Techniques, languages, and patterns were developed to help us cre-
ate, document, and evaluate architectural designs. Today, architects may have good confidence in
the quality of the architectural designs they produce, but there is little confidence that the code
created by developers will actually follow the design. When the code deviates from the design,
quality attributes such as modifiability and performance can suffer. Architecture enforcement is a
major challenge.

When no automated solution is available, some organizations resort to manual code inspections to
verify code conformance to the architecture. However, code inspections are prone to human error
and don’t scale well to large systems and distributed teams. Some commercial tools already prom-
ise continuous architecture enforcement. Another approach that solves part of the architecture
conformance problem is MDA. Code is generated from UML models and will necessarily follow
the design expressed in UML. However, MDA has some barriers to overcome before it becomes
mainstream, such as the tendency of software engineers to have syntactic and semantic discipline
at the code level and not at the architecture level. At least for Java-based systems, AOP provides a
relatively simple automated solution for architecture enforcement. One can create AOP compile-
time declarations that will search the entire code base and flag invalid interactions.

In any situation, the first step to be able to enforce the architecture over the lifetime of the system
is to have a good architecture representation. If the documentation is incomplete, unclear, or out-
of-date, it is hard to apply any architecture conformance technique. More importantly, it is hard
for developers to faithfully obey the dictates of the architecture.

The use of AOP for enforcement of coding policies and architecture is a low-hanging fruit that
has been explored for a few years and suggested in books, papers, and presentations. Even an
open source library with a few examples has been created.F

12
F This report presented a sample of the

variety of applications of compile-time declarations. The code snippets show how compile-time
declarations are simple and powerful.

The use of compile-time declaration of errors and warnings is the perfect first step to AOP adop-
tion, because they don’t alter the binaries produced during compilation. Therefore, compile-time
declarations can be turned on and off at any time, because the original code remains completely
independent of the AOP code.

12 Go to http://patterntesting.sourceforge.net/.

http://patterntesting.sourceforge.net/

14 | CMU/SEI-2007-TN-019

 SOFTWARE ENGINEERING INSTITUTE | 15

References

URLs are valid as of the publication date of this document.

[Alur 2003]
Alur, D.; Crupi, J.; & Malks, D. Core J2EE Patterns: Best Practices and Design Strategies,
Second Edition. Upper Saddle River, NJ: Prentice Hall, 2003.

[Bachmann 2000]
Bachmann, F. et al. Volume II: Technical Concepts of Component Based Software Engineer-
ing, Second Edition (CMU/SEI-2000-TR-008, ADA379930). Pittsburgh, PA: Software Engi-
neering Institute, Carnegie Mellon University, 2000.
Hwww.sei.cmu.edu/publications/documents/00.reports/00tr008.html H.

[Bodoff 2007]
Bodoff, S. & Jendrock, E. The Java EE5 Tutorial, Third Edition. Harlow, England: Addison-
Wesley, 2007.

[Brown 1998]
Brown, W. et al. AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis.
New York: NY: John Wiley & Sons, 1998.

[Clements 2003]
Clements, P. et al. Documenting Software Architectures: Views and Beyond. Boston, MA: Ad-
dison-Wesley, 2003.

[Gamma 1995]
Gamma, E. et al. Design Patterns: Elements of Reusable Object-Oriented Software. Reading,
MA: Addison-Wesley, 1995.

[Gradecki 2003]
Gradecki, J. & Lesiecki, N. Mastering AspectJ: Aspect-Oriented Programming in Java. Indi-
anapolis, IN: Wiley Publishing, 2003.

[Humphrey 1995]
Humphrey, W. A Discipline for Software Engineering. Reading, MA: Addison-Wesley, 1995.

[Kazman 2002]
Kazman, R.; O’Brien, L.; & Verhoef, C. Architecture Reconstruction Guidelines, Third Edi-
tion (CMU/SEI-2002-TR-034, ADA421612). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2002.
www.sei.cmu.edu/publications/documents/02.reports/02tr034.html.

http://www.sei.cmu.edu/publications/documents/00.reports/00tr008.htmlH
http://www.sei.cmu.edu/publications/documents/02.reports/02tr034.html

16 | CMU/SEI-2007-TN-019

[Kiczales 1997]
Kiczales, Gregor; Lamping, John; Mendhekar, Anurag; Maeda, Chris; Lopes, Cristina
Videira; Loingtier, Jean-Marc; & Irwin, John. “Aspect-Oriented Programming,” 220-242.
Proceedings of the European Conference on Object-Oriented Programming (ECOOP ’97).
Lecture Notes in Computer Science Volume 1241. ECOOP ’97, Jyvaskyla, Finland, June
1997. Springer, 1997.

[Kleppe 2003]
Kleppe, A.; Warmer, J.; & Bast, W. MDA Explained, the Model-Driven Architecture: Practice
and Promise. Boston, MA: Addison-Wesley, 2003.

[Laddad 2003]
Laddad, R. AspectJ in Action: Practical Aspect-Oriented Programming. Greenwich, CT:
Manning, 2003.

[Marinescu 2002]
Marinescu, F. EJB Design Patterns: Advanced Patterns, Processes, and Idioms. New York,
NY: John Wiley & Sons, 2002.

[Sun 2001]
Sun Microsystems. Enterprise JavaBeans 2.0 Specification.
http://java.sun.com/products/ejb/2.0.html (2001).

[Xerox 2003]
Xerox Corporation. The AspectJ Programming Guide.
Hwww.eclipse.org/aspectj/doc/released/progguide/H (2003).

http://java.sun.com/products/ejb/2.0.html

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments re-
garding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquar-
ters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office
of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

September 2007
3. REPORT TYPE AND DATES

COVERED
Final

4. TITLE AND SUBTITLE
Using Aspect-Oriented Programming to Enforce Architecture

5. FUNDING NUMBERS
FA8721-05-C-0003

6. AUTHOR(S)
Paulo Merson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2007-TN-019

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
Using aspect-oriented programming (AOP), software developers can define customized compile-time error or warning messages that
are issued when the code contains join points that match specified pointcuts. These customized messages are generated by compile-
time declarations, which are an extremely simple but powerful AOP mechanism. Declarations that look for nonvalid interactions between
modules can be used for architecture enforcement. Coding policies, best practices, design patterns, and code-naming conventions can
also be enforced. Compile-time declarations operate as an additional verification in the build process, but they do not affect the com-
piled application and can be turned on and off at any time. That feature makes this approach an automated and nondisruptive solution
for architecture enforcement and a risk-free first step towards AOP adoption.

14. SUBJECT TERMS
AOP, aspect-oriented programming, architecture enforcement, architecture conformance

15. NUMBER OF PAGES
24

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Using Aspect-Oriented Programming to Enforce Architecture
	Table of Contents
	List of Figures
	Abstract
	1
Introduction
	2 Compile-Time Declarations
	3 Enforcing the Architecture
	4 Conformance to Coding Policies
	5 Conclusion
	References

