Scenario-Based Analysis of Software Architecture

Rick Kazman
Department of Computer Science, University of Waterloo
Waterloo, Ontario

Gregory Abowd
College of Computing, Georgia I nstitute of Technology
Atlanta, Georgia

Len Bass, Paul Clements
Software Engineering I nstitute, Carnegie Mellon University
Pittsburgh, Pennsylvania

To appear in |EEE Software, November 1996

Abstract: Software architecture is one of the most important tools for designing and un-
derstanding a system, whether that system isin preliminary design, active deployment, or
maintenance. Scenarios are important tools for exercising an architecture in order to gain
information about a system’ s fitness with respect to a set of desired quality attributes. This
paper presents an experiential case study illustrating the methodological use of scenariosto
gain architecture-level understanding and predictive insight into large, real-world systems
in various domains. A structured method for scenario-based architectural analysisis pre-
sented, using scenarios to analyze architectures with respect to achieving quality attributes.
Finally, lessons and morals are presented, drawn from the growing body of experience in
applying scenario-based architectural analysis techniques.

Keywords. Software Architecture; Software Analysis Methods; Software Quality, Soft-
ware Architecture Analysis, Applications of Scenarios

1 Introduction

Analysis of aproposed software system to determine the extent to which it meets desired quality criteria
is desirable. Some of the reasons why such analysis is difficult include alack of common understanding
of high level design and alack of fundamental understanding of many of the quality attributes. With the
recent surge of interest in software architecture,! some of the issues involved in the hi gh level design of
software systems are being clarified. Our goa in this paper is to show how to exploit software architec-
tural concepts to analyze? complex software systems for quality attributes. We compensate for the lack of
fundamental understanding about how to express these attributes by using scenarios to capture essential
actionsinvolving the system under analysis.

1. See, for example, the April, 1995, special issue of |IEEE Transactions on Software Engineering devoted to software
architecture.

2. We distinguish between analysis and evaluation. Analysisis, according to Webster's New Collegiate dictionary, “1. sep-
aration of awhole into its component parts 2. an examination of a complex, its elements, and their relations.” This defini-
tion is at the heart of what we consider important in examining software architectures. Evaluation pre-supposes a
particular value scale or system, which in our world is not always forthcoming.

We will review our experiences with scenario-based analysis of architectural descriptions of software sys-
tems. Scenarios are brief narratives of expected or anticipated use of a system from both development and
end-user viewpoints. A structured method employing scenarios to analyze architectures is the Software
Architecture Analysis Method (SAAM). SAAM will be described in Section 2. Experience with SAAM
and SAAM-related techniques will be recounted in Section 3. Section 4 will explore lessons learned.

We begin with a discussion of the relationship among software architecture, quality attributes, and sce-
narios.

1.1 Software architecture

Software architecture describes a high-level configuration of components that compose the system, and
the connections that coordinate the activities of those components. We say software architecture here, but
it is quite often the case that such high-level configurations describe functionality that will ultimately be
performed by either software or hardware components. We aso say a high-level configuration rather than
the high-level configuration, because a system can be composed of more than type of component; each
decomposition will therefore have its own configuration. For instance, a system may be composed of a set
of modules in the sense of Parnas [16], and also a set of cooperating sequential processes, each of which
resides in one or more modules. Both viewpoints are valid, and both are architectural in nature. But they
carry different information. From the process viewpoint we can describe the interaction of the system
during execution, in terms of how and when processes become active or dormant, pass or share data, or
otherwise synchronize. From the module viewpoint we can describe the interaction of the teams responsi-
ble for building the modules, in terms of the information they are: alowed to share, required to share
(interfaces), or prohibited from sharing (implementation secrets). The process viewpoint has implications
for performance; the module viewpoint has implications for maintainability.

Software architecture manifests its usefulness in the life cycle in the following ways:

e Anarchitectureis often the first artifact in a design that represents decisions on how requirements
of al typesareto be achieved. Asthe manifestation of early design decisions, the architecture rep-
resents those design decisions that are hardest to change [15] and hence are deserving of the most
careful consideration.

e Anarchitectureisthe key artifact in achieving successful product line engineering, the disciplined
structured development of a family of similar systems with less effort, expense, and risk than
developing each system independently [14].

e Architectureisusually thefirst artifact to be examined when a programmer (particularly a mainte-
nance programmer) unfamiliar with the system begins to work on it.

Our emphasis on analysis of software architecturesis compatible with the belief that understanding of the
implications of a design leads to early detection of errors, and to the most predictable and cost-effective
maodifications to the system over its entire life cycle.

1.2 Quality Attributes

We are interested in evaluating architectures to determine their fitness with respect to certain properties or
qualities of the resulting system, such as modifiability or security. However, it is too difficult to analyze
an architecture based on these abstract qualities which are too vague and provide very little procedural
support for evaluating an architecture.

As an example of vagueness, suppose we can change the colorsin auser interface by changing aresource
filewhich isread in at run-time, but changing the fonts used in the interface requires are-compilation. Is

2

this system modifiable or not? The answer is, perhaps, yes with respect to changing colors, but no with
respect to changing fonts. And whether the design is acceptable or not depends on predictions of actual
usage: if the user interface is modifiable in away that is important to its owner, then we can say that the
system is appropriately modifiable. This notion of appropriateness appliesto all quality factors.

The lesson is that at the present time and for the foreseeable future, there are no ssmple (scalar) “univer-
sal” measurements for attributes such as safety or portability. Rather, there are only context-dependent
measures, meaningful only in the presence of specific circumstances of execution or development. Safety
benchmarks are a fine example. If there were a universal measurement of safety, benchmarks would be
unnecessary. As it is, a benchmark represents data about a system executing with particular inputsin a
particular environment, and we use them as benchmarks.

While we may wish for better understanding and more universal expression of quality attributes, for now
we must recognize the role played by specifying a particular operational context for a system. To repre-
sent contexts, we use scenarios.

1.3 Scenarios

Scenarios have been widely used and documented as a technique during requirements elicitation, espe-
cialy with respect to the operator of the system ([4], [7]). They have also been widely used during design
as a method of comparing design alternatives. Experience also shows that programmers use them to
understand an already-built system, by asking how the system responds (component by component) to a
particular input or operational situation. Scenarios have not, however, been used as a tool for analysis of
quality, our primary utilization of them. We use scenarios to express the particular instances of each qual-
ity attribute important to the customer of a system. We then analyze the architecture under consideration
with respect to how well or how easily it satisfies the constraints imposed by each scenario.

Scenarios differ widely in breadth and scope. Our use of scenariosis as a brief description of some antic-
ipated or desired use of a system. At this point in our work, scenarios are typically one sentence long and
could more appropriately be called vignettes.

We emphasize the use of scenarios appropriate to al roles involving a system. The operator role is one
widely considered but we also have roles for the system designer and modifier, the system administrator,
and others, depending on the domain. It is important when analyzing a system that al roles relevant to
that system be considered since design decisions may be made to accommodate any of the roles.

The process of choosing scenarios for analysis forces designers to consider the future uses of, and
changes to, the system. Thus we believe that architectural analysis cannot give precise measures or met-
rics of fitness. Such measures would need to be couched in terms of qualities (e.g. “how modifiable isthis
architecture?’) and such questions are typically of little value. What we really want to know is. “how will
this architecture accommodate the following change?’ or “how will this architecture accommodate a
change of the following class?’, and we use architectural analysisto guide our inspection of the architec-
ture, focussing attention on potential trouble spots.

Of course, not all scenarios speak to architecture-level issues. For example, a portability scenario might
have architectural implications (such as determining how machine dependencies should beisolated) but it
may also depend upon code-level or hardware-level factors, such as byte ordering. Furthermore, some
scenarios ssimply cannot be evaluated using architectural information. For example, if a developer’s sce-
nario was to ensure that no module had more than 250 lines of code, this constraint could not be either
checked or ensured by architecture-level analysis.

2 A method for scenario-based architectural analysis

A particular method for doing a scenario-based architectural analysis is SAAM (Software Architecture
Analysis Method). SAAM was originally developed to enable comparison of competing architectural
solutions [11]. As aresult of our experience with architectural analysis, the prescribed steps of SAAM
have evolved. Not all of our experience with architectural analysis has strictly followed the method pre-
scribed by SAAM, nor hasit always been the case that we were comparing competing candidate architec-
tures. Nevertheless, in al cases scenarios were used as the foundation for illuminating the properties of an
architecture, and from this body of experience a stable set of activities and dependencies between those
activities has emerged, which we call SAAM. SAAM therefore may be considered a canonical method
for scenario-based architecture analysis of computer-based systems; particular analysis efforts may be
carried out using a subset or variation of SAAM as appropriate.

Figure 1 shows the steps of SAAM and the dependency relationships between those stages. The steps of

X iterate : -
scenario devel opment architecture description

~and —

individual scenario evaluation \
or
assess scenario interaction /

Figure 1: Activities and dependencies in scenario-based analysis

overall evaluation

SAAM, and the products of each, are:

1. Describe candidate ar chitecture. The candidate architecture or architectures should be described in
a syntactic architectural notation that is well-understood by the partiesinvolved in the analysis. These
architectural descriptions need to indicate the system’s computation and data components, as well as
all component relationships, sometimes called connectors.

2. Develop scenarios. Develop task scenarios that illustrate the kinds of activities the system must sup-
port and the kinds of changeswhich it is anticipated will be made to the system over time. In develop-
ing these scenarios, it isimportant to capture all important uses of a system. Thus scenarios will rep-
resent tasks relevant to different roles such as: end user/customer, marketing, system administrator,
maintainer, and developer.

3. Perform scenario evaluations. For each scenario, determine whether the architecture can executed it
directly, or whether a change would be required to executed it (in which case we call the scenario in-
direct). For each indirect scenario, list the changesto the architecture that are necessary for it to support
the scenario and estimate the cost of performing the change. A modification to the architecture means
that either a new component or connection is introduced or an existing component or connection re-
quires a change in its specification. By the end of this stage, there should be a summary table which
lists al scenarios (direct and indirect). For each indirect scenario the impact, or set of changes, that
scenario has on the architecture should be described. In our experience, it is sufficient to list the exist-
ing components and connections that must be altered and the new components and connections that
must be introduced, although our method allows for more sophisticated cost functions. A tabular sum-
mary is especially useful when comparing alternative architectural candidates because it provides an

easy way to determine which architecture better supports a collection of scenarios.

4. Reveal scenario interaction. Different indirect scenarios may necessitate changes to the same com-
ponents or connections. In such a case we say that the scenarios interact in that component on connec-
tor. Determining scenario interaction is a process of identifying scenarios that affect a common set of
components. Scenario interaction measures the extent to which the architecture supports an appropri-
ate separation of concerns. For each component determine the scenarios which affect it. SAAM favors
the architecture with the fewest scenario conflicts.3

5. Overall evaluation. Finaly, weight each scenario and the scenario interactionsin terms of their rela
tive importance and use that weighting to determine an overall ranking. This is a subjective process,
involving all of the stake-holders in the system. The weighting chosen will reflect the relative impor-
tance of the quality factors that the scenarios manifest.

2.1 Noteson the method

As discussed in Section 1.1, a software architecture may have more than one representation. Thereis an
appreciable amount of ongoing research into languages and representations for these static configura-
tions, but no clearly superior notation has yet emerged. For our purposes, we have tended to use very sim-
plistic architectural primitives in our case studies and have not found these simple representations too
limiting. A typical representation will distinguish between components that are active (transform data)
and passive (store data) and also depict data (passing information between components) and control (one
component enabling another component to perform its function) connections. This simple lexicon pro-
vides areasonabl e static representation of the architecture. Accompanying this static representation of the
architecture is a description of how the system behaves over time, or a more dynamic representation of
the architecture. This can take the form of anatural language specification of the overall behavior or some
other more formal and structured specification.

Steps 1 and 2 are highly interdependent. Deciding the appropriate level of granularity for an architecture
will depend on the kinds of scenarios you wish to evaluate (though not all scenarios are appropriate, such
as a code size scenario). Determining a reasonable set of scenarios aso depends on the kinds of activities
you expect the system to be able to perform, and that is reflected in the architecture. One important rela-
tionship between steps 1 and 2 is the role that direct scenarios play in helping to understand an architec-
tural description. Direct scenarios can help to determine static architectural connections and can aid in the
formulation of more structured descriptions of the dynamic behavior of an architecture.

Rather than offering a single architectural metric, SAAM produces a collection of small metrics (per-sce-
nario analyses). Given this set of mini-metrics, SAAM can be used (and in fact was developed with the
intent to) compare competing architectures on a per-scenario basis. It is left to the users of SAAM to
determine which scenarios are most important to them, in order to resolve cases where the candidates out-
score each other on different scenarios. Overall evaluation can only be derived in the context of organiza-
tional requirements.

3 Validation of the method

Although SAAM isintended to be applied early in the design, in order to validate it we used it to analyze
anumber of existing systems. These applications were industrial in nature, and decidedly non-academic:

3. This assumes that the scenarios are inherently different in nature. We will return to this point in Section 4.3.

5

Participants based subsequent development or procurement actions on the outcome of the analyses.
Applications include:

1. Global information system — A company was contemplating the purchase of a system as the infra-
structure to support applications development for multimedia communication with unlimited confer-
encing. The purchasing company wanted some assurance that the architecture of the system they pur-
chased was going to provide for the generic satellite-based multi-user applications they anticipated de-
veloping in the near and long term. As aresult of the analysis, the company decided to not purchase
the system, avoiding an investment of tens of millions of dollars.

2. Air traffic control — This was an investigation of a complex, real-time system against a set of pro-
posed changes to that system. The purpose of the eval uation was to determine whether future devel op-
ment on this system was justified. The change scenarios were intended to represent appropriate mani-
festations of the abstract qualities of performance and availability. The result of this evaluation was a
decision to proceed with the proposed changes [2].

3. WRCS— Thiscase study was an analysis of acommercial version control/configuration management
tool. Thisanalysis coversal activitiesof SAAM and showsall artifacts of a SAAM evaluation that can
be produced. The result of the analysis was that significant problems were discovered with the prod-
uct’sarchitecture, with respect to the scenarios considered. This case study appearsin the next section.

We have aso conducted a number of other industrial and academic case studies in scenario-based analy-
sisas SAAM was maturing in areas such as user interface development environments [11], internet infor-
mation systems [13], key word in context (KWIC) systems [3], embedded audio systems, and visual
debuggers.

3.1 The WRCS System

3.1.1 System context/purpose

In this section we will discuss the application of SAAM to acommercially available revision control sys-
tem, based upon RCS [18], which we will call WRCS. WRCS provides the functionality to alow devel-
opers of projects the ability to create archives, compare files, check filesin and out, create releases, back
up to old versions of files, and so on. “Project” in this context means any group of related files that, when
linked together appropriately, form a finished product. For example these files might be source code for a
computer program, text for a book, or digitized audio and video for the creation of a video clip. WRCS
keeps track of changes made to these files as they evolve over time. It provides capabilities for multiple
users to work on the same project within their own private work areas, allowing each devel oper to modify
and test the system in isolation, without disturbing other devel opers work and without corrupting the pri-
mary copy of the system. Managerial functions, such as production of reports, are also provided. WRCS's
functionality has been integrated with several program development environments, and can be accessed
through these tools, or through WRCS's own graphical user interface.

Certain details have been slightly modified to protect proprietary interests.

3.1.2 Applying the steps of SAAM
Develop Scenarios/Describe Candidate Architecture

For any evaluation to take place we require an architectural representation of the product with a well-
specified semantic interpretation (principally what it means to be a component or a connector). Creating
an architectural description proved to be one of the most difficult tasks in evaluating WRCS. At the start
of this project there was no architectural description of the product, and so we needed to devise away of

6

eliciting thisinformation.

This information had to be analyzed and grouped in a way that it would aid in the construction of an
architectural diagram. Our sources of information were limited: they consisted of interviews with some of
the members of the development team, the product's documentation, and the product itself. In particular,
we had no access to the source code or the product's specifications. This is appropriate in that software
architecture is supposed to concern itself with alevel of abstraction above code. In essence, our task was
reverse engineering: to create a design document out of afinished product.

The product's architectural description was arrived at iteratively. At each stage we studied the product’s
existing description, the product itself (executables and libraries), and its documentation, and devised a
new set of questions. The answers to the questions in each stage helped us to clarify the current descrip-
tion. Each new stage allowed us to obtain more insight on the product and motivate new questions to be
asked in order to arrive at the next stage. Since we didn't have any previous representation we chose to
start with agrosslisting of the modules along with their basic relationships, and from there iterate, adding
structure as we went. The process of eliciting scenarios also helped to clarify the architecture, as we shall
see in the next section.

It took three iterations to obtain a representation which was satisfactory for architectural evaluation. This
representation is shown in Figure 2.

visdiff |

=& win31 >
f A\ 4

(msarn200)=

—{ pvcs2res

(sccs2res)¢

ol diff)<

nwcalls
NWSPXipx

Components Connections

(__) Component (<)—» Calls

Figure 2: Architectural Representation of WRCS

During the process of describing the architecture, scenarios were continually developed that represented
the various stakeholder roles in the system. For WRCS these roles were: users, developers, maintainers,
and system administrators. Scenario enumeration is simply a particular form of requirements elicitation
and analysis[1]. These scenarios were developed in discussion with all the stake-holders in the system, in

7

order to try to characterize all current and projected uses of the system. The scenarios formed the basis
for al further architectural evaluation.

The tasks which we present here are a subset of the tasks which were élicited from the WRCS domain
expert. In total we studied 15 tasks, 6 of which are presented here. A complete evaluation of a complex
system would involve dozens of scenarios[7].

User:

1. Compare binary file representations. Compare binary files generated by other products. For
example, FrameMaker files are stored in a binary representation. But when we are comparing
two versions of a FrameMaker file we want to see our editing changes in a human-readable
form, and not the changes to the binary codes stored in the files.

2. Configure the product's toolbar. Change the icons and actions associated with a button in the
toolbar.

Maintainer:
3. Port to another operating system.

4. Make minor modificationsto the user interface. Add a menu item, change the look and feel of
adialog box.

Administrator:

5. Change access permissions for a project.

6. Integrate with a new development environment. Attach for example to Symantec C++.
Perform Scenario Evaluations

Once the scenarios have been created, we then need to classify them as direct (i.e. those that can be satis-
fied by executing the system being developed) or indirect (i.e. those which require a change to some of
the components or connections within the architecture). The direct/indirect classification is afirst indica-
tion of the fitness of an architecture with respect to satisfying a set of scenarios. For example, looking at
scenario 2 above, if one can reconfigure a product’s toolbar within the product, then we say that thisis a
direct scenario with respect to WRCS's architecture. If one needs to modify the architecture to achieve
this change then the task isindirect, and so the architecture is less desirable with respect to the feature. At
this stage, we also want to estimate the difficult of the change (say, in terms of person-hours required, or
lines of code impacted). One might simply modify an ascii resource file and re-start the product, in which
case the architectural implications of this indirect scenario are minimal. One might need to change an
internal table and re-compile, in which case the implications of scenario 2 are moderate. Or one might
need to dramatically re-structure the user interface code, in which case the implications are considerable.

We indicate the nature of the scenarios, and which of WRCS's modules they affect in Table 1.

Direct/
Scenario Description Indirect Changes
1 Compare new binary filerep- || Indirect Thiswill require modifications to diff (to make the compari-
resentations son) and visdiff (to display the results of the comparison).
2 Configure the product'stool- || Direct
bar

Table 1: Scenario Evaluations for WRCS

Direct/

Scenario Description Indirect Changes
3 Port to another operating Indirect All components that call win31 must be modified; specifi-
system cally: main, visdiff, and ctrls. If the target operating system

does not support OWL then either OWL needs to be ported,
or all components that call OWL, specifically: main and
hook. If the new operating system is not supported by Nov-
ell's software then wrcs will have to be modified to work
with a new networking environment

4 Make minor modificationsto || Indirect This will require changes to one or more of those compo-
the user interface nents which call the win31 API, specifically: main, diff and
ctrls.
5 Change access permissions Direct
for aproject
6 Integrate with a new devel- Indirect This requires changes to hook, as well as the addition of a
opment environment module along the lines of bcext, mcext, and cbext, which

connects the new devel opment environment to hook
Table 1: Scenario Evaluationsfor WRCS

Reveal Scenario Interactions

When two or more indirect task scenarios necessitate changes to some component of a system, they are
said to interact. Scenario interaction is an important consideration because it exposes the alocation of
functionality to the product's design. In avery explicit way it is capable of showing which modules of the
system are involved in tasks of different nature. High scenario interaction reveals a poor isolation of func-
tionality in a particular component of a design, giving a clear guideline on where to focus the designer's
subsequent attention. As we shall show in Section 4.3, the amount of scenario interaction is related to
metrics such as structural complexity [8], coupling, and cohesion [9], and so it islikely to be strongly cor-
related with number of defectsin the final product.

Table 2 shows the number of changes required in each module of the system. In this table we are taking
into account all the relevant scenarios élicited in the WRCS analysis, not just the 6 presented in section
above. Since each of these scenarios imposes a single change to the architecture, the number of changes
per module indicates the level of indirect scenario interactions for the module.

Module # of Changes
Wrcs 7
main 4
hook 4
visdiff 3
ctrls 2

report, diff, bindiff,

PVCS2rCs, SCCS2rCs,

nwcalls, nwspxipx,
nwnim

Table 2: Scenario interactions by module for WRCS

1 each

One visualization technique we have used to highlight scenario interactionsis afish-eye view. In Figure 2
the WRCS architecture is presented with module size made proportional to the number of interacting sce-
narios which affect it. This figure shows where the scenario interactions lie, and the relative scale of the
interactions. It can be seen clearly that the component with most scenario interaction iswrcs. It iswithin

9

this component that most of the future development effort will be concentrated. Modules main, visdiff,
and hook also suffer from high scenario interaction, and ctrls has a small amount of scenario interaction.

. . win31)
| visdiff)‘ %
) ﬂ crls }
v
G E S oD
msar n200/¥ m al n < > -
J‘—|—>.-
make
v fntext
—(Evcs2rcs\/< @po_rt)

((sceszres)¢ v

WI'CS hook

o e] ey S—

Figure 3: Fish-eye Representation of Scenario Interactionsin WRCS

Thisinformation immediately calls attention to the most architecturally significant features of the system,
as it currently exists, and guides designers and developers in their allocation of time and effort. It has
proven to be a highly effective device for communication among team members in the WRCS case study.

Overall Evaluation

Once the scenarios have been determined, mapped onto the structural description, and all scenario inter-
actions have been determined, the extent of the implications of the scenarios is made manifest. All that
remains to be done is to prioritize the scenarios which have been identified as potentially problematic, in
order to arrive at an overall evaluation of the architecture.

3.1.3 What wastheresult?

The WRCS analysis identified a number of severe limitations in achieving the extra-functional qualities
of portability and modifiability. A major redesign of the system was recommended. Having gone through
an analysis procedure such as SAAM before implementation would have substantially contributed to
avoiding the problems which the WRCS devel opers now face.

3.1.4 What did welearn?

Within the organization the evaluation itself obtained mixed results. Senior developers and managers
found a very important tool in architectural analysis and plan to impose it in future devel opments of new
products. They realized that they can identify many potential problems early in the software life cycle and
at an extremely low cost. Within the WRCS team, however, this evaluation was regarded as just an aca-

10

demic exercise. We attribute this to the fact that senior devel opers and managers have enough perspective
to understand that the majority of the software development life cycle is spent in maintenance and feature
enhancements. For this reason, any effort that aids in improving a product's support for extra-functional
gualities is significant. However, the devel opers within the WRCS team did not have this broad perspec-
tive. When one is concerned with meeting the next release deadlines, or with finding a bug, there is no
time for the luxury of contemplating major changes to the architecture. In the words of one senior man-
ager, “They have features to implement!" This is why architectural analysis must be done early. Other-
wise, it will never be done or, if done, it will be meaningless.

SAAM alowed an insight to the product capabilities that could not be easily achieved from inspections of
code and design documents. In avery simple, straightforward and cost-effective way it exposed specific
limitations of the product. Furthermore, this was accomplished with only scant knowledge of the internal
workings of WRCS. Aswe said earlier, we had no access to the WRCS source code.

Most importantly, the process, and its frustrating lack of real usable results, has caused them to change
their practice for future development. It has convinced them of the need for architectural analysis up
front.

4 Resultsand L essons

Having now performed architectural evaluations on half a dozen small to medium sized software archi-
tectures and two large industrial systems, we have begun to see patterns emerging in the ways that archi-
tectural analysis proceeds, and in the benefits which accrue to the process.

4.1 SAAM isfor people

The strengths of SAAM are largely social. The process of analysis helps to focus attention on the impor-
tant details of the architecture, and allows users to ignore less critical areas. The use of scenarios has
proven to be an important tool for both communication anong a team of developers and for communica
tion between a development team and upper-level managers. The use of scenarios suggests where to:
refine an architectural description, ask more questions, refine an analysis. It is difficult to get agreement
on an “appropriate” set of scenarios; the process of doing so forces the system’s stakeholders to talk and
reach consensus. A collection of scenarios—particularly scenarios which have caused problems for simi-
lar systems in the past—can provide a benchmark with which to evaluate new designs.

Finally, visualization has proven to be an effective tool in communicating design problems to the stake-
holders. The visualization of an architecture, emphasizing scenarios and scenario interaction focuses
attention, effectively proposing areas for discussion.

4.2 SAAM and traditional architectural metrics

Architectural evaluation has an interesting relationship with the more traditional design notions of cou-
pling and cohesion. Good architectures exhibit low coupling and high cohesion in terms of some break-
down of functionality. What does this mean in terms of a SAAM analysis? Low coupling means that a
single scenario doesn't affect large numbers of structural components. High cohesion means that struc-
tural components are not host to scenario interactions. The implication of this correspondence is that
architectural analysisis ameans of determining coupling and cohesion in a highly directed manner.

Architectural metrics such as structural complexity, as well as metrics for coupling and cohesion, have
been criticized as being crude instruments of measure. SAAM improves upon these metrics by allowing

11

one to measure coupling and cohesion with respect to a particular scenario or set of scenarios. In thisway
the instruments of measures become much sharper, and hence more meaningful. For example, in the stan-
dard interpretation of coupling, if two components are coupled, they are coupled irrespective of whether
they communicate once (say, for initialization) or repeatedly. Similarly, structural complexity measures
(based upon data inflows and outflows from components) do not consider predicted future changes to a
given part of the architecture. They simply record a part of the architecture with a high structural com-
plexity as being “bad”. Scenarios, on the other hand, will tease cases such as these apart.

4.3 Determining the proper level of architectural description

Aswe have already said, one of the benefits of software architecture is the ability to view software from a
higher level of abstraction. This means that an architectural diagram, to be useful, must choose an appro-
priately high level of description. However, how do the designers of the architecture know what that level
should be? The simple answer is. whatever level the scenarios dictate. This is exactly what happened
when we iterated through our three versions of the representation of the WRCS system.

When the architecture has been given itsinitial structural description, we need to map the scenarios onto
the structure. In particular, for each indirect scenario, we need to highlight the components and connec-
tions which will be affected by the change that the scenario implies. We are primarily interested in indi-
rect scenarios as they represent the extra-functional qualities which the architecture is to satisfy, whereas
the direct scenarios represent the system’s function. Direct scenarios, and their interactions are interesting
only insofar as the indicate a component’s potential compl exity.

The mapping of scenarios onto the structural description serves two purposes: it guides the process of
architectural evaluation, and it aidsin validating scenario interaction (a difficult process without this step,
as|[7] describes). What does it mean to have multiple indirect scenarios that affect a single module? There
are three possible meanings.

e Firgt, the interaction could mean that the scenarios are all of the same class. That is, they could be
variants of the same basic scenario. For this case, the fact that the scenarios are of the same class
and cluster together in the same module can be taken to be a good sign. It means that the system’s
functionality is sensibly allocated. Put another way, it means that the architecture exhibits high
cohesion with respect to this class of scenarios.

e Second, the interaction could mean that the scenarios are of different classes and that the module
can be further subdivided, but that it was not shown subdivided in the original architectural repre-
sentation. Recall that we said that there is no a priori right level of description for architectural
description, but that the scenarios would dictate the appropriate level. For example, it might be
that the module is really composed of three functions, each of which deals neatly with one of the
scenarios. In this case, the process of scenario-based architectural analysis has helped to refine the
level at which the software architectureis presented.

e Third, the interacting scenarios could be of different classes and the module cannot be further sub-
divided. This case reveals a potential problem area within the architecture, since, if scenarios from
different classes are affecting the same module then the architecture is not appropriately separat-
ing concerns.

4.4 Determining the proper set of scenarios

Given the great emphasis that SAAM places on scenarios, an interesting question is: “when has one gen-
erated a sufficient number of scenarios to adequately test the architecture’? Or, put another way: “when

12

should one stop generating new scenarios’ ? There are two possible answers to this question. The simple
answer is. “when you run out of resources’. The more complex and meaningful answer is that one can
stop generating scenarios when the addition of a new scenario no longer perturbs the design. In this way
scenario generation is much like software testing: you cannot prove that you have a sufficient number of
test cases, but you can determine a point at which the addition of new test cases is providing negligible
improvement to the software.

One way of minimizing the number of scenarios needed (again, on analogy with testing), is to group sce-
narios into equivalence classes, as discussed earlier. However, this merely generates a new question.
Given the emphasis on classes of scenarios to determine architectural cohesion, how can we determine
whether scenarios are appropriately grouped into classes? Another way of thinking about the problem of
scenario classes is: al domain experts should cluster scenarios the same way. If they do not, then they
must have additional, implicit scenarios in mind, and these must be elicited.

5 Acknowledgments

The authors would like to acknowledge the efforts and contributions of Mauricio de Simone and Linda
Northrop in the creation of this paper: This work was sponsored in part by the National Sciences and
Engineering Research Council of Canada and the U. S. Department of Defense.

6 References

[1] Atwood, J. The Systems Analyst, Hayden, 1977.

[2] Brown, A., Carney, D., Clements, P., “A Case Study in Assessing the Maintainability of aLarge,
Software-Intensive System”, Proceedings of the International Symposium on Software Engineer-
ing of Computer Based Systems, Tucson, Az., IEEE Computer Society, March 1995.

[3] Clements, P., Bass, L., Kazman, R., Abowd, G., “Predicting Software Quality by Architecture-
Level Evaluation”, 5th Inter national Conference on Software Quality, (Austin, TX), October 1995,
to appear.

[4] Dardenne, A., “On the Use of Scenarios in Requirements Acquisition”, CIS-TR-93-17, Depart-
ment of Computer and Information Science, University of Oregon, 1993.

[5] Dean, T., Cordy, “A Syntactic Theory of Software Architecture”, Transactions on Software Engi-
neering, 21(4), April 1995, 302-313.

[6] Garlan, D., Shaw, M. “ An Introduction to Software Architecture”. Advancesin Software Engineer-
ing and Knowledge Engineering, Volume |, World Scientific Publishing, 1993.

[7] Gough, P., Fodemski, F., Higgins, S., Ray, S., “Scenarios - an Industrial Case Study and Hyper-
media Enhancements’, Proceedings of the Second IEEE International Symposium on
Requirements Engineering, Y ork, England, March, 1995, 10-17.

[8] Henry, S., Kafura, D. “Software Structure Metrics Based on Information Flow”, IEEE Transac-
tions on Software Engineering, SE-7(5), Sept. 1981.

[9] Heyliger, G., “Coupling”, Encyclopedia of Software Engineering, J. Marciniak (ed.), 220-228.

[10] Jacobson, 1., Christerson, M., Jonsson, P. and Overgaard, G. Object-Oriented Software Engineer-
ing: A Use Case Driven Approach. Addison-Wesley, 1992.

13

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

14

Kazman, R., Bass, L., Abowd, G., Webb, M., “SAAM: A Method for Analyzing the Properties of
Software Architectures’, Proceedings of ICSE 16, Sorrento, Italy, May 1994, 81-90.

Kazman, R., Bass, L., “Toward Deriving Software Architectures from Quality Attributes’, CMU/
SEI-94-TR-10, Software Engineering Institute, Carnegie Mellon University, 1994.

Kazman, R., Bass, L., Abowd, G., and Clements, P., “An Architectural Analysis Case Study: Inter-
net Information Systems,” Proceedings, First International Workshop on Software-Intensive
Systems, Seattle, April 1995. (Also available as CMU-CS-TR-95-151, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh).

Mettala, E., Graham, M. (eds.), “The Domain-Specific Software Architecture Program”, CMU/
SEI-92-SR-9, Software Engineering Institute, Carnegie Mellon University, 1992.

Parnas, D, “On the design and development of program families,” |EEE Transactions on Software
Engineering, SE-2(1), 1976, 1-9.

Parnas, D., “On the criteriafor decomposing systemsinto modules,” Communications of the ACM,
15(12), December 1972, 1053-1058.

Shaw, M., “Larger Scale Systems Require Higher-Level Abstractions’, Proceedings of Fifth Inter-
national Workshop on Software Specification and Design, |IEEE Computer Society, 1989, 143-
146.

Tichy, W. “RCS—A System for Version Control”, Software—Practice & Experience, 15(7), July
1985, 637-654.

Weiss, D., Parnas, D., “Active Design Reviews: Principles and Practices,” Proceedings, Eighth
International Conference on Software Engineering, 1985, 132-136.

