

A Proposed Taxonomy for Software
Development Risks for High-Performance
Computing (HPC) Scientific/Engineering
Applications

Richard P. Kendall
Douglass E. Post
Jeffrey C. Carver
Dale B. Henderson
David A. Fisher

January 2007

TECHNICAL NOTE
CMU/SEI-2006-TN-039

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2007 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-
nal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and
derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for
external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Table of Contents

Abstract iii

Introduction 1

A. Development Cycle Risks 5

B. Development Environment Risks 13

C. Programmatic Risks 21

References 25

Glossary 27

 SOFTWARE ENGINEERING INSTITUTE | i

ii | CMU/SEI-2006-TN-039

Abstract

Because the development of large-scale scientific/engineering application codes is an often diffi-
cult, complicated, and sometimes uncertain process, success depends on identifying and managing
risk. One of the drivers of the evolution of software engineering, as a discipline, has been the de-
sire to identify reliable, quantifiable ways to manage software development risks. The taxonomy
that follows represents an attempt to organize the sources of software development risk for scien-
tific/engineering applications around three principal aspects of the software development activity:
the software development cycle, the development environment, and the programmatic environ-
ment. These taxonomic classes are divided into elements and each element is further characterized
by its attributes.

 SOFTWARE ENGINEERING INSTITUTE | iii

iv | CMU/SEI-2006-TN-039

Introduction

Because the development of large-scale scientific/engineering application codes is an often diffi-
cult, complicated, and sometimes uncertain process, success depends on identifying and managing
risk. Failure of some sort has been a common occurrence in the software development milieu; the
literature indicates that more than 25% of all software development projects are cancelled outright
before completion and something like 80% overrun their budgets. It is no surprise, then, that one
of the drivers of the evolution of software engineering, as a discipline, has been the desire to iden-
tify reliable, quantifiable ways to manage software development risks (the possibility of suffering
harm or loss, or “the product of uncertainty associated with project risks times some measure of
the magnitude of the consequences” [Schmidt 2001]), stemming from, for example

• uncertain or inaccurate requirements

• requirements that change too rapidly

• overly optimistic scheduling

• institutional turmoil, including too much employee turnover

• poor team performance [DeMarco 1999]

Of course, these are risks for software development projects of every stripe, not just scien-
tific/engineering applications. Some important attributes specific to scientific/engineering soft-
ware application development projects that impact risk include the following:

• Although the laws of nature, the ultimate source of requirements for scientific/engineering
applications, are fixed, they may not be well understood for a given application. For exam-
ple, there is the issue of emergent behavior of physical phenomena that cannot be anticipated
at the start of a project. Moreover, a given set of physical requirements may be represented
by different, equally valid, but possibly mutually inconsistent algorithms in multi-physics
applications.

• Scientific and engineering code development is often very lengthy—spanning decades and
careers, so that the target problems of interest and the needs of the users necessarily evolve
and change during code development.

• To some extent it is true of most such projects that the requirements at levels below the most
obvious are not specified by the sponsor or customer because of (1) a desire to allow the pro-
ject some flexibility in execution, and (2) the fact that lower level details are not known or
even understood by the sponsor or customer. General project goals may be specified by the
sponsor or customer, but these stakeholders often rely on the software development team it-
self, or its management, to translate these very-high-level goals into requirements.

• Scientists tend to be averse to complicated or expensive “process”-oriented software devel-
opment methodologies whose value they question.

• The principal driver of scientific/engineering applications is, not surprisingly, science and
engineering; the developers of these codes are often not explicitly funded or trained to do
software engineering.

 SOFTWARE ENGINEERING INSTITUTE | 1

• Any scientific/engineering code running on a finite state machine—a computer—can only
approximate the generally continuous laws of nature. There are inherent inaccuracies that
arise from representing physical entities as object-based models.

• Many scientific/engineering software application development projects start out as research
projects, and the codes as research codes. In this state there cannot be a definitive relation-
ship between deliverables, schedule, and resources.

• It is often true that the developers are also the users or a significant part of the user commu-
nity.

• Scientific and engineering code development is strongly driven by prototypes, for example
prior codes that provide simpler, usually less comprehensive simulations of the laws of na-
ture. In a sense, science is a model of nature that scientists are continually improving and re-
fining. Scientific/engineering software is usually the latest embodiment of scientific models.

The taxonomy that follows represents an attempt to organize the sources of software development
risk for scientific/engineering applications around three principal aspects of the software devel-
opment activity:

• the software development cycle

• the development environment

• the programmatic environment

These taxonomic classes are divided into elements and each element is further characterized by its
attributes.

2 | CMU/SEI-2006-TN-039

Table 1: A Taxonomy for Sources of Software Development Risk in Scientific/Engineering Applications
A. Development Cycle Risks B. Development

 Environment Risks
C. Programmatic Risks

1. Requirements Risks
a. Predictability
b. Evolvability
c. Completeness
d. Clarity
e. Accuracy
f. Precedence
g. Execution Performance
 Expectations
h. Proportionality

2. Design Risks
a. Difficulty
b. Modularity
c. Usability
d. Maintainability
e. Portability
f. Reliability

3. Implementation Risks
a. Specifications
b. Project Plan
c. Scale of Effort

4. Test and Evaluation Risks
a. Verification

i. Unit Testing
ii. Integration Testing
iii. Interoperability Testing

b. Validation

1. Development Process
 Risks

a. Repeatability
b. Suitability
c. Control of Process
d. Familiarity with
 Process or Practice
e. Environment
 Change Control

2. Development System
 Risks

a. Hardware Capacity
b. Development System
 Capability
c. Suitability
d. Usability
e. Familiarity
f. Reliability
g. Target-Unique
 System Support
h. Security

3. Management Process
 Risks

a. Contingency
 Planning
b. Project Organization
c. Management
 Experience
d. Program Interfaces
e. Reward Systems

4. Management Methods
 Risks

a. Monitoring
b. Personnel Manage-
 ment (Staffing and
 Training)
c. Quality Assurance
d. Configuration
 Management

5. Work Environment Risks
a. Quality Attitude
b. Cooperation
c. Communication
d. Morale
e. Trust

1. Resources Risks
a. Schedule
b. Staff
c. Budget
d. Facilities
e. Management
 Commitment

2. Contract Risks
a. Contract Type
b. Restrictions
c. Dependencies

3. Program Interface Risks
a. Customer Communication
b. User Commitment
c. Sponsor Alignment
d. Subcontractor Alignment
e. Prime Contractor
f. Corporate Communication
g. Vendor Performance
h. Political

 SOFTWARE ENGINEERING INSTITUTE | 3

4 | CMU/SEI-2006-TN-039

A. Development Cycle Risks

The development cycle encompasses the activities that are associated with the development of
production-worthy code: requirements gathering, code design, the formulation of specifications,
project planning, implementation, and testing.
The elements/attributes associated with this class of risks will be limited in this taxonomy to those
sources of risk associated with the deliverable itself, independent of sources of risk associated
with the processes or tools used to produce it or programmatic risks introduced by finite resources
or external factors beyond project control. The risks arising from this class are usually considered
to be intrinsic risks, that is, risks that are manageable from within the software development pro-
ject itself. Risks that derive from external constraints are usually extrinsic, and those associated
with processes or tools lie somewhere in between.

1. Requirements Risks

Requirements analysis, definition and management are intrinsic elements of life-cycle manage-
ment. Risk attributes of the requirements risk element are associated with both the quality of the
software requirements specification and also the difficulty of implementing software that satisfies
the requirements.

In projects that start from poorly articulated requirements, as scientific/engineering projects often
do, there is inherently far more risk that imprecisely expressed expectations will not be met.
Technically difficult or imprecise requirements, coupled with the inability to negotiate relaxed
requirements or budgets or schedules is a well-recognized source of software engineering risk.

The following attributes will be employed to illuminate the nature of the risks that are associated
with the “requirements” element.

a. Predictability

Unexpected changes in requirements—that is, “unpredictability”—has been cited as the sixth
highest source of risk that all software projects face [Keil 1998].

Within the scientific/engineering software development environment, a lack of predictability in
requirements is often a consequence of the evolutionary nature of the requirements themselves.
Many scientific/engineering code development projects begin as research projects or have re-
search components throughout their life cycles. As such there is an inherent unpredictability about
the requirements that must be addressed in the budgets and schedules of the project. Often the
“iron triangle” of requirements, budgets, and schedules is inverted, with budgets and schedules
fixed and requirements the only unconstrained variable. Even so, change control remains an im-
portant risk management tool.

This attribute also covers the risk associated with an evolving technical architecture.

 SOFTWARE ENGINEERING INSTITUTE | 5

b. Evolvability

The failure to recognize and adequately address the continuous evolution of requirements, that is
“evolvability,” is an especially important source of risk in long-lived scientific and engineering
projects. This is particularly true in the period before the first significant deliverable, which may
be the better part of a decade for a complex multi-physics code. Such projects sometimes fail be-
cause they cannot manage evolving requirements.

c. Completeness

Incomplete requirements fail to describe either the full intent or true intent (or both) of the cus-
tomer. The principal consequence of this source of risk is that scope cannot be aligned with
schedule and budget (resources). One purpose of the specification step (below) is to better codify
the requirements and the intended design so that schedule and budget issues may be more fully
addressed. Moreover, testing and code verification, also described below, cannot be very rigorous
or complete without requirements against which to test.

d. Clarity

Clarity here is synonymous with understandability. Understandability is especially important
when high-level goals are expressed by a customer who expects the developers to translate them
into actionable requirements or a complete specification. The consequence of the lack of “clarity”
is that the true intent of the requirements may not be discovered until it impacts negatively the
schedule or budget of the project.

Lack of clarity of the requirements has been cited as the third highest source of risk faced by all
software development projects [Schmidt 2001, Keil 1998].

e. Accuracy

Accuracy refers to the expectation that the aggregate requirements, which are likely to evolve in
the case of many scientific/engineering software projects, reflect customer intentions or expecta-
tions for the application. If the requirements do not capture customer expectations, customer
commitment to the project may be jeopardized. User commitment, which typically depends
strongly on validity of the requirements, has been cited as the second highest source of software
risk [Schmidt 2001, Keil 1998].

f. Precedence

Any software development project that posits capabilities that have not been demonstrated in ex-
isting software or that are beyond the experience of the project team or institution—that is, for
which there is no “precedent”—may be vulnerable to this source of risk. The consequence may be
that the project managers and team may not recognize that the objectives are infeasible.

g. Execution Performance Expectations

If execution performance is a major driver of the code development project, then these expecta-
tions must be addressed in the requirements, design, specifications, and testing of the application.
Sometimes prototypes offer the best way to determine if performance expectations can be at-

6 | CMU/SEI-2006-TN-039

tained. Too little attention to this source of risk usually results in a discarded code that is other-
wise a technical success.

Especially in the high-performance computing (HPC) environment of cutting-edge hardware,
there exists the possibility that tacit and/or written performance expectations cannot be met. Ex-
amples of performance metrics sometimes specified in contracts include:

• degree of performance optimization

• degree of parallel scaling

• fraction of theoretical peak performance for specified benchmarks

• job processing time for important applications of the code

• number of production runs per unit time (week, month, etc.)

Execution performance expectations sometimes drive optimization to the detriment of the accu-
racy, flexibility and utility of the resulting code.

h. Proportionality

Proportionality refers to the possibility that the requirements may be disproportionate to the solu-
tion, that is, that the problem is over-specified. For example, too many and too specific nonessen-
tial requirements can preclude feasible solutions. This source of risk is not confined to technical
requirements; they often enter through management mandates that impact the function of the de-
velopment team.

2. Design Risks

Design encompasses those steps through which requirements are translated into an actionable de-
velopment plan. We distinguish three steps: software architecture (abstract or conceptual design),
specification, and design per se. The software architecture should be influenced by the scientific
domain and the mathematical attributes of the application (e.g., initial value problem, steady-state
problem, eigenvalue problem, time evolution problem). With only the requirements and architec-
ture, many software implementations are admitted; with a complete design and complete specifi-
cation, there are far fewer options. It is important therefore to vet these documents (usually re-
ferred to as a “baseline”) both ways: with the sponsor/customer to ensure that requirements (even
unstated) and expectations will be met, and with the implementation team to ensure that they are
confident of successful implementation. Finally, it is important that specifications and design be
documented and kept up-to-date (this is referred to as “baseline management”); otherwise the
work breakdown structure, scheduling, and budgeting (which should be based upon them) will be
faulty. This is typically assessed in a critical design review (CDR).

Another sometimes overlooked design risk is the impact of design on testing. Difficulty in testing
may begin with failure to include test features, especially those important to users, in the design.

The following attributes characterize different aspects of the risks inherent in the design element.
It is also important to recognize that while documentation is very important, there is a risk of be-
coming too enamored with this aspect of project management at the expense of continuous valida-
tion against changing needs.

 SOFTWARE ENGINEERING INSTITUTE | 7

a. Difficulty

The existence of functional or performance requirements or expectations that are believed at the
outset to be “difficult” should be viewed as a potential source of risk. The obvious consequence is
that these requirements may not be met. Scientific/engineering software systems must deal with
complications like algorithm adequacy, mesh generation, problem setup, very complex debugging
and visualization, and the shear size of the calculations. The most serious manifestation of this
complexity may be that the requirements are discovered to be infeasible, that is, in conflict. Often
a major project should be preceded by a serious feasibility study; the results of which may cause
redefinition of requirements or even abandonment of the project before any coding is begun.

b. Modularity

Modularity refers to the extent to which the code has been created using components or units that
function independently from the other components. Software that has many direct interrelation-
ships between different parts of the code is said to be less modular. Ideally, scientific code should
be developed in modules that interact through well-defined interfaces and that capture functional-
ity that can be independently tested (verified and validated). Generally speaking, the less modular
a code is, the more likely it will not be maintainable or portable.

c. Usability

Usability is in the eye of the beholder, and since it is often true that the developers of scien-
tific/engineering codes are often users, this aspect of the requirements receives too little attention.
Even for developers, code that is difficult to use can strongly penalize the production phase and
even the testing phase of a software project. In scientific codes, a lack of usability often manifests
as opaque configuration options or grids that are difficult to set up. Scientific code developers,
while they may be experts in their scientific domains, may not be experts in usability, human fac-
tors, or even the use of their own codes by others. Usability is emerging as a major risk within the
HPC development environment as multi-discipline applications become ever more complex.

d. Maintainability

Maintainability, the ability to support the production phase of the product’s life cycle with a rea-
sonable level of resources, may be placed at risk by poor software architecture, design, specifica-
tion, coding, or documentation. These failures may result from undefined or un-enforced stan-
dards, or from neglecting to analyze the system from the perspective of future maintainability.
Maintainability is a strong function of attributes such as

• module cohesiveness and exclusivity

• interface minimization

• avoidance of complexity (the “KISS” principle)

• transparency and coding style

Because many significant scientific/engineering applications spend decades in the produc-
tion/maintenance stage of the software life cycle, risks associated with a lack of maintainability
must be addressed in design and implementation. The main consequence of a lack of maintain-

8 | CMU/SEI-2006-TN-039

ability is a shortened life expectancy of the code. Some typical measures or indicators of main-
tainability include [Process Impact]

• lines of code (the most common measure but least indicative of maintainability)

• function points

• cyclomatic or Halstead complexity

• data coupling

• comment lines

• modularity (cited above)

• level of documentation (including programmer documentation)

• logical flow

e. Portability

While some scientific/engineering codes are used only once, or only with one type of computer,
the majority of these codes outlast the generation of computers that they are first installed on, or
are required to run on multiple hardware platforms from the beginning. Portability is often a ne-
cessity when developing code for HPC environments, because access to the target platform may
be too limited to support the development timelines. Consequently, codes must be designed with
portability as a conscious goal. The consequences of inattention to this issue range from un-
planned effort to migrate the code to new hardware to, in the worst case, a complete rewrite.
Codes that are not portable have short lives.

There is a strong link between portability and maintainability. The evolution of computer archi-
tectures is driven by the need to increase performance, not the need to promote portability. Ide-
ally, the architectures of scientific/engineering software should be sufficiently flexible so that the
software can be ported to future generations of computers with architectures that are currently
unknown. To the extent that advances in performance are achieved through hardware, software
portability becomes more important than software efficiency.

f. Reliability

Reliability refers to the ability of the software to be used in a production setting. Software unreli-
ability has a number of sources:

• the target hardware not meeting its reliability specifications

• system complexity that creates the likelihood that schedules cannot be met

• unreliable supporting software in the development environment (e.g., compilers, debugging
tools, trace tools)

These sources of risk should be addressed during the design phase and are usually consigned to
the risk management agenda of the project.

 SOFTWARE ENGINEERING INSTITUTE | 9

3. Implementation Risks

This element addresses the sources of project risk associated with how the coding will be done,
that is, how the design will be translated into unit specifications and ultimately “units” of code.
Attributes of this element describe the nature of risks associated with the quality and stability of
software or interface specifications, and coding constraints or even “styles” that, if left unspeci-
fied, may exacerbate future maintenance and extensibility problems. Software specifications are
as important to the project success as are the more obvious higher level “requirements” explored
earlier. Project teams dominated by physical or natural scientists or engineers may not recognize
this, which often exacerbates the impacts of these risks.

a. Specifications

Specifications are typically the output of the design step; they describe how the requirements are
to be met in the code to be developed and drive the planning process. Requirements do not gener-
ally define an application code; the specification documentation (detailed design) should. There-
fore, vetting the specifications back to the sponsor/customer and ahead to the implementers is im-
portant, as mentioned above. Module interfaces, for example, are beyond the scope of most
requirements (sponsors have little reason to care), but should be fully spelled out in the specifica-
tions. Specifications may be inadequate in at least the following ways:

• they may not accurately reflect the requirements

• they may not be complete or detailed enough to guide the development activity

Specifications should also provide the basis for the test plan; often the adequacy of testing is
judged against the specification, not the requirements.

Another source of risk associate with the specifications is the lack of coherence, especially with
regard to third-party components.

b. Project Plan

A project plan translates the specifications into a plan of action with a schedule, resources, and
budget. In the scientific software environment, the project plan must be flexible and adaptable to
address the changing needs and goals of the project—especially those with research objectives or
unknown requirements. It is often true that the achievement of a project milestone has the poten-
tial to change the direction of the project. Moreover, rapidly evolving software, hardware, and
scientific technologies also have this potential. (“Rapidly evolving” refers to changes that occur
over shorter time scales than the code development project itself.)

Nevertheless, to project stakeholders, the project plan may be the only tangible project asset in the
initial phases. To the extent that there is no plan or one that does not adequately keep the stake-
holders in the project (i.e., upper management, sponsors, customers) informed, there is a risk that
the project may face problems with continued support. Of course, the execution is also at risk.

c. Scale of Effort

The technical challenges presented by the sheer scale of complex applications development typi-
cal of the HPC environment is a source of risks related to

10 | CMU/SEI-2006-TN-039

• the ability to satisfy hardware performance expectations, especially the scaling of perform-
ance with more resources such as processors

• the ability to utilize system resources (e.g., distributed memory, caches, and threading)

• the complexity of system integration involving multiple programming languages and fragile
operating systems

• the difficulty of debugging in an HPC environment

Also, as scientific/engineering software projects grow more complex, the ability of an individual
team member to grasp the consequences of individual actions on the unfamiliar parts of the pro-
ject is a source of risk. This is especially true in the “system of systems” case, that is, when the
code under development is a part of a much larger system whose other components are developed
by other teams.

In the Constructive Cost Model (COCOMO) estimation models, “scale” is the most important
factor contributing to a project’s (or, in the case of a system of systems, a major component’s)
duration and cost. Consequently, scale must be viewed as a potential source of risk [Boehm
1995].

4. Testing and Evaluation Risks

In the original [Carr 1993], “testability” risks were an attribute of design risk, not a class by itself.
Owing to the importance of the verification and validation of scientific/engineering software, it
has been included as a source of risk at a higher level in this taxonomy. Just as scien-
tific/engineering software must have requirements and a design codified into a specification
document, it must also have a documented test plan. Most testing will address specifications, but
important validation (in part B, below) will address the requirements. All test plans should include
a test coverage matrix documenting just what is being tested and how. The main consequence of
the sources of risk cited below is that it will not be possible to demonstrate that the code is actu-
ally fit to purpose.

a. Verification

Verification refers to ensuring that the code solves the equations of the model correctly. Since
scientific/engineering software cannot be exhaustively tested through a deterministic, combinato-
rial approach, there is always a risk that some feature or aspect of it cannot be verified. Project
planning therefore demands the inclusion of better and perhaps more statistically sophisticated
test methods, often requiring the expertise of a group (typically statisticians) distinct from the de-
velopment team, to minimize the risk that the code does not implement the algorithms of the
model correctly. Another good reason to use an independent test organization is that they are less
prone to share unrecognized assumptions. Verification is typically conducted at different stages of
development:

i. Unit Testing

Unit testing refers to the testing of the basic features of the code, usually found in individual
modules or “units.” (A software “unit” is a component that is not subdivided into other compo-
nents [IEEE 1990]. Risk factors affecting unit testing include:

 SOFTWARE ENGINEERING INSTITUTE | 11

• availability of pre-planned test cases that have been verified to test unit requirements

• availability of a test bed consisting of the necessary hardware or emulators, and software or
simulators

• availability of test data to satisfy the planned test

• sufficient schedule to plan and carry out the test plan

ii. Integration Testing

Integration testing refers to the testing of multiple units of the code as an ensemble. The risk fac-
tors cited above for unit testing also apply here; however, the first one, the availability of pre-
planned cases, is often a larger issue and a more significant source of risk.

iii. Interoperability Testing

Here the scale of testing advances to include the interaction with the target hardware, if that has
not already occurred, as well as the interfaces to third-party applications that users, not develop-
ers, employ (like visualization tools), and other aspects of the actual user environment.

b. Validation

Validation refers to determining whether the mathematical model instantiated in the code faith-
fully mimics the intended physical behavior. This is a central difficulty for scientific/engineering
codes because, in many instances, the software is developed to model behavior that is too expen-
sive, too dangerous, or impossible to test in the first place. Another manifestation of the risk asso-
ciated with validation is that the region of applicability of the underlying model upon which the
code is based may not be known. These risks should be quantified up front as accurately as possi-
ble to ensure that unrealizable expectations are avoided. Finally, there is an increasing possibility
that the code is part of a larger system, each component of which carries the risks described above
in unknown proportions. Validating the components of a system is not the same as validating the
whole system. In a sense the users of scientific codes are the final arbiters of the domain of appli-
cability of these codes, but there is a risk that their determinations will not benefit from any
knowledge of the assumptions of the developers. It can be argued that one of the goals of valida-
tion testing should be to determine the region of applicability of the code. Validation testing can
usually only be done at the end of the development process.

12 | CMU/SEI-2006-TN-039

B. Development Environment Risks

The “development environment risk” class addresses the sources of risk inherent in an environ-
ment and the processes used to develop a software application. The risks here are usually intrinsic,
but in some instances the choice of development environment, or some of its features, is beyond
the control of the code development team. This environment includes the development philoso-
phy, (e.g., Capability Maturity Model [CMM], agile), workflow management model (e.g., incre-
mental, iterative, spiral, and others), the development system, project management methods, and
work environment. The risk elements associated with the development environment are character-
ized below.

1. Development Process Risks

This element refers to risks that can be experienced through a process or processes by which the
development team proposes to satisfy the customer’s requirements. The process is the sequence of
steps leading from the initial requirements gathering and specification to the final delivered soft-
ware product. Development processes themselves have attributes. Most conform to some degree
to a development philosophy like CMM, ISO, or agile. Most development processes can also be
identified with a workflow management model (called “development models” in the original SEI
risk taxonomy).

The development philosophy typically describes the approach to processes used to create a soft-
ware product [Paulk 1993]. Examples include formal methods favored by CMM or ISO, and agile
methods, which are often encountered in scientific/engineering code development projects.
CMM-endorsed processes emphasize a formal approach to the customary development phases
(i.e., life-cycle elements [IEEE 1990]) of requirements analysis, product design, product creation,
testing, delivery, and maintenance (sometimes called “production,” ending ultimately in the even-
tual retirement or decommissioning of the application). It includes both general management
processes such as costing, schedule tracking, and personnel assignment, and also project-specific
processes such as feasibility studies, design reviews, and regression testing. Importantly, ad-
vanced CMM organizations collect and utilize metrics about their own development processes
with a view to process improvements. Agile methods, on the other hand, focus at a philosophical
level on software development practices and people, not processes. Note that some agile methods
are very prescriptive; the reference above is intended to capture the shared philosophical basis of
this development methodology [Agile Software]. The lack of a methodology has been recognized
as a risk in and of itself. Specific sources of risk associated with the absence of a development
methodology include the absence of coherent change control, no project planning, and no repeat-
able processes or practices. Of course, the adoption of—or more likely, the imposition of—a
methodology incompatible with the goals of the project or the development team is also a source
of risk.

Workflow management models describe different approaches to the management and organiza-
tion of the development project workflow elements cited above [Beck 1999]. Various models
have been proposed for this: waterfall (the original conceptual model for software development),

 SOFTWARE ENGINEERING INSTITUTE | 13

incremental, iterative, evolutionary, spiral (emphasizing prototyping), and others. At the opposite
end of the spectrum from the waterfall model are approaches like extreme programming (XP) and
rapid application development (RAD). Note that the software engineering literature often aligns
these workflow management models with certain development methodologies, e.g., RAD with
agile.

This element groups risks that result from a development philosophy and/or workflow manage-
ment approach that

• does not reflect what is known at the beginning of the project

• is not suited to the activities necessary to accomplish the project goals

• is poorly communicated to the project staff and lacks enforceability

a. Repeatability

Product quality is strongly correlated with development process repeatability. Whether repeatabil-
ity is associated with formal development processes or rigorously followed practices, it is cited by
all of the major development philosophies as a requirement for success. The lack of repeatability
may result in the inability of the team to reconstruct, extend, or even modify in a deliberate way
its approach.

b. Suitability

Suitability refers to the support for the type and scope of the activities required for a specific
software development project provided by the selected development philosophy, process, meth-
ods, and tools. For example, the adoption of too much formality may put agility at risk in projects
where flexibility is important.

c. Control of Process

Some form of process control is usually necessary to ensure that

• the processes or practices adopted by the project are adhered to

• monitoring of quality and productivity goals occurs

Control may be complicated when development occurs at distributed sites. Control of process is
an important aspect of scheduling. Two significant control-related sources of risk here are (1) arti-
ficial deadlines, that is, deadlines not reflected in the project plan derived from the specifications,
and (2) preemption of the schedule by a project with higher priority. The main consequence of a
lack of control of process is that the software project management is not able to assess the state of
the project at any point in time (the “lost in the woods” syndrome).

d. Familiarity with Process or Practice

Lack of familiarity with the development process or practices often results in the failure of the
development team to adopt them. Scientific/engineering code developers tend to be process-
averse. Most are scientists or engineers, not software engineers or even professional programmers.
A special effort is usually necessary to get such teams to follow development processes, in par-

14 | CMU/SEI-2006-TN-039

ticular. Success is greatest when the teams recognize the value and benefits of the process or prac-
tice.

e. Environment Change Control

The development environment itself will inevitably not be static during long software develop-
ment cycles. Some orderly way to adapt to change is necessary, but is often overlooked by scien-
tific code developers. Unanticipated and unplanned changes in the development environment—
even something as simple as a compiler upgrade—can disrupt the development schedule.

2. Development System Risks

The development system risk element addresses those risks related to the choices of hardware and
software tools used in application development. The purpose of these tools is to facilitate applica-
tion development and in some cases (such as integrated development environments) to reduce
performance risk as well (for example, by introducing automated product control).

a. Hardware Capacity

Inadequate capacity of the development system may result from too few development worksta-
tions, insufficient access to the target platform, or other inadequacies in equipment to support the
scheduled pursuit of unit development, code integration, tuning, and testing activities. One or an-
other of these sources of risk exists for almost all projects at some point in their lives. The conse-
quence is project delay.

b. Development System Capability

This attribute refers primarily to the completeness and maturity of the tools of the trade for the
scientific/engineering software developer:

• compilers

• linkers

• schedulers

• debuggers

• memory checkers

• profiling toolkits and APIs

• tracers

• visualizers

• bug tracking tools

• integrated development environments

• mathematical program libraries

• memory management libraries

 SOFTWARE ENGINEERING INSTITUTE | 15

Secondarily, it refers to the capabilities of the hardware used for development, including the target
hardware. The performance, availability and long-term support of development tools is often (cor-
rectly) considered to be a major source of risk by scientific/engineering software developers.

c. Suitability

A development system that does not support the specific development models, processes, prac-
tices, methods, procedures, and activities required and selected for application development is a
source of code team performance risk. This attribute also includes risks introduced by the man-
agement, documentation, and configuration management processes. In HPC environments there
are often gaps in the availability of tools to support these activities. The closer the project is to the
cutting edge of hardware evolution, the greater the likelihood that the software development envi-
ronment will exhibit deficiencies that may not have been foreseen during scheduling.

d. Usability

Usability usually manifests in the presence of development system documentation, the accessibil-
ity of the system itself, and the ease of use of the features of the system. It is not uncommon for
the software environments of state-of-the-art HPC machines to be fragile (e.g., unstable compilers
or even operating systems), which limits the usability of the machines well into the development
cycle. Unusable or difficult-to-use systems endanger project schedules and budgets in ways that
may be difficult to quantify in advance.

e. Familiarity

Development system familiarity is a function of the prior use of the system by the host organiza-
tion and by project personnel, as well as adequate training for new developers. Software develop-
ers for state-of-the-art HPC machines, no matter how experienced, often face steep learning
curves when confronted with new languages, compilers, and computer architectures. It can be
difficult to predict the impact of this learning curve on code team productivity. The lack of famili-
arity usually manifests in unreliable project development schedules and budgets.

f. Reliability

Here reliability means dependability, not usability. An unreliable development system is a major
source of risk to code team productivity.

g. Target-Unique System Support

System support, including training and access to expert users and prompt resolution of problems
by vendors, is crucial in the HPC environment. Lack of it can stop a development project in its
tracks.

h. Security

Dealing with access security, especially in secure environments, usually adds steps to the devel-
opment process and typically an underestimation of the effort required to address them. The long
times required to obtain security clearances for capable and ready project staff is a common costly
example.

16 | CMU/SEI-2006-TN-039

3. Management Process Risks

This is the category of risks associated with planning, monitoring, and controlling budget and
schedule; controlling factors involved in defining, implementing, and testing the software applica-
tion; managing project personnel; and handling external organizations, including the customer,
senior management, matrix management, and other contractors. It is widely recognized that man-
agement actions determine, and management is ultimately responsibility for, much of the risk as-
sociated with software development projects. Management processes must support the following
central objectives [DeMarco 1999]:

• recruit the right staff

• match them to the right tasks

• keep them motivated

• help teams jell

Moreover, management commitment has been cited as the number one risk to long term project
success [Schmidt 2001, Keil 1998].

a. Contingency Planning

The existence of a well-defined plan that is responsive to contingencies as well as long-range
goals is necessary for the proper management of project resources, schedule, and budget. The plan
must be formulated with the input or at least acquiescence of those affected by it. Not doing so
has led to many software development failures.

b. Project Organization

The goal of project organization and management is to foster the creation and nurturing of a well-
functioning team. In a poorly organized team the roles and responsibilities are not understood or
followed. The importance of this attribute increases in proportion to the size and scope of the pro-
ject. One project organization scheme does not fit all situations. The most egregious examples of
faulty organization usually come from large, very informal, process-averse teams.

c. Management Experience

A lack of management experience can impede effective communication and decision making in
software projects, and can manifest at all levels regarding

• general management

• software development management

• the application domain

• scale and complexity of the project and targeted hardware system(s)

• selected development process or practices

• development environment

 SOFTWARE ENGINEERING INSTITUTE | 17

d. Program Interfaces

Ineffective interactions have a negative impact on decision making and can occur among manag-
ers at all levels with program personnel at all levels, and with external personnel such as the cus-
tomer, senior management, and peer managers.

e. Reward Systems

Reward systems are often a tacit component of the management process. Scientific/engineering
software development projects are usually meritocracies. Consequently, if the rewards system is
not perceived to be aligned with merit, there can be a negative impact on project morale.

4. Management Methods Risks

This element refers to the risks associated with methods adopted for managing both the develop-
ment of the product and program personnel. These include risks related to quality assurance, con-
figuration management, staff development with respect to program needs, and maintaining com-
munication about program status and needs. The continuity of management support over the life
of the project is an important facet of this element. Continuity is especially challenging in view of
the fact that many important scientific code development projects have a production phase that
spans careers—that is, decades long.

a. Monitoring

It is impossible to address problems if there is no mechanism in place to detect them. The main
consequence of risk associated with unmonitored projects is that they will exhibit unpredictable
and unexpected outcomes.

b. Personnel Management (Staffing and Training)

Personnel management generally refers to selection and training of program members to ensure
that they

• take part in planning and customer interaction for their areas of responsibility

• work according to plan or at least expectations

• receive the help they need or ask for to carry out their responsibilities

Poor team performance may stem from failures to address personnel management issues. Sources
of staffing risks include

• insufficient/inappropriate project staff

• staff volatility

• unnecessary use of outside consultants

• lack of domain and programming expertise

c. Quality Assurance

The term “software quality” typically refers to code that is as defect-free as is practical, and is
maintainable, portable, and well-written (transparent). In the typical scientific/engineering soft-

18 | CMU/SEI-2006-TN-039

ware development project, these attributes are not customarily specified contractually, but are ex-
pected deliverables of the development team. This does not necessarily happen spontaneously.
Without management attention, there is the possibility that quality assurance will be either lacking
or uncertain.

Another aspect of quality assurance is related to the concept of validation—can the code be vali-
dated as consistent with the laws of nature that it is intended to model. The consequence here is
that even the perfect specimen satisfying the definition of the previous paragraph is of unknown
value.

d. Configuration Management

For scientific/engineering codes the consequences of faulty configuration management (of both
code and documentation) grow in proportion to

• the age of the code

• the size of the code

• the size of the code team

• the failure to use repeatable processes

• the failure to enforce standards

The main consequence of faulty configuration management is an unmanageable program library.

5. Work Environment Risks

This element refers to risks arising from subjective aspects of the environment such as the amount
of care given to ensuring that stakeholders, including the management, users, sponsors, and the
development team itself, are kept informed of program goals and information, the way they work
together, their responsiveness to staff inputs, and the attitude and morale of the program person-
nel. A well-functioning development team has already been identified as a critical success factor
for software development projects, scientific/engineering or otherwise.

a. Quality Attitude

It is important to recognize that scientists and engineers are usually more concerned with develop-
ing code that supports their scientific goals than with code that conforms to the customary notions
of IT software quality. As far as the science is concerned, the code may be excellent, but it may be
lacking in quality attributes important to sponsors and users. Nevertheless, it is the drive, focus,
and scientific integrity of scientific code developers that is the source of quality in scien-
tific/engineering applications. Misunderstandings about this are a constant source of tension be-
tween sponsors, managers, and code teams; education about the importance of sound software
engineering process and practice continues to be needed.

b. Cooperation

Poor team relationships, which engender a lack of cooperation, can destroy code development
projects. These may result from factors such as conflicting egos or even burnout. Management
may not identify problems here soon enough to avoid damage to the project.

 SOFTWARE ENGINEERING INSTITUTE | 19

c. Communication

The goal of management communication is to ensure that knowledge of the mission, goals, re-
quirements, and design goals and methods of the project are broadly understood by all of the
stakeholders, specifically including the development team itself. Ineffective communications usu-
ally result in a misalignment between the goals of the stakeholders.

d. Morale

Morale has a strong impact on enthusiasm, performance, productivity and creativity. At the ex-
treme end of consequences is anger that may result in intentional damage to the project or the
product, an exodus of staff from the project, and harm to the reputation of the project organization
that makes it difficult to recruit.

e. Trust

Trust is an attribute that is often taken for granted in the work environment. The consequence of a
lack of trust is that all of the preceding attributes—cooperation, communication, morale, and even
a quality attitude—will be diminished with an accompanying impact on project deliverables.

20 | CMU/SEI-2006-TN-039

C. Programmatic Risks

Programmatic risks refer to those project risks emanating from “external” forces acting on scien-
tific/engineering software development projects. These are sources of risk that are usually outside
the direct control of the code development team, that is, extrinsic risks. From the development
team’s point-of-view, these risks are often considered “acts of God.”

1. Resources Risks

This element addresses sources of project risk arising from resource dependencies or constraints
that the project must honor. These dependencies/constraints include schedule, staff, budget, and
facilities.

a. Schedule

The stability (and in some cases, feasibility) of the project schedule in the presence of changing
internal and external events or dependencies—as well as the validity of estimates and planning for
all phases and aspects of the project—is a source of risk that almost all software development pro-
jects face. Tight schedules and rigid deadlines are usually incompatible with scien-
tific/engineering software development projects, which rarely can be planned at a fine level of
granularity. Experience has shown that when schedules and milestones are dictated, projects are
likely to fail.

b. Staff

The availability of project staff with adequate skills and experience is a prerequisite for success.
Commitments to milestones and schedules are at risk if the project staff is deficient in numbers or
skills and experience.

c. Budget

Like the schedule, the budget is a well-recognized [Boehm 1991] source of project risk. This
tends to be a greater risk for software projects that extend over many budget cycles. Many long-
lived scientific/engineering development projects are tied to annual budget cycles that force the
code teams to manufacture artificial deliverables to ensure continued funding. There is an invio-
late relationship between requirements, specifications, budget and schedule: imposing all of them
a priori—absent design, specification and agreement from the implementers—is a recipe for fail-
ure.

d. Facilities

The availability of adequate project facilities, including computer and software support for devel-
opment, integration, and testing of the application can impact project schedules. This is often
overlooked in the project design and planning phases.

 SOFTWARE ENGINEERING INSTITUTE | 21

e. Management Commitment

A lack of management commitment has been cited as the greatest risk to software development
projects of all stripes [Schmidt 2001, Keil 1998]. For many scientific/engineering software devel-
opment projects in start-up mode, the first significant deliverable may not be available for three to
six years from the start of the project. The managers who approved the project may well have
moved on to other jobs, forcing the project team to remarket itself to new managers. A lack of
management commitment is often fatal to a software development project.

2. Contract Risks

Risks associated with the program contract are classified according to contract type, restrictions,
and dependencies.

a. Contract Type

Scientific/engineering code projects are often governed by level-of-effort agreements, cost plus
award fee, cost plus fixed fee, or research grants. Any contract agreement that does not recognize
the inherent difficulty associated with rigorous specification of the requirements increases the risk
that contractual expectations will not be met. For example, cost and schedule are often estimated
based on the history of previous similar projects. The contract vehicle must recognize the inherent
uncertainties in this approach. Contract elements like the statement of work, data collection, test-
ing requirements, and the amount and conditions of customer involvement are all subject to misin-
terpretation and are, therefore, potential sources of risk.

b. Restrictions

Contractual directives to use specific development methods, third-party software, or equipment
may introduce uncertainties that cannot be addressed without evaluation. If development starts
without this step, the project may founder.

c. Dependencies

Contractual dependencies on outside contractors or vendors, customer-furnished equipment or
software, or other outside products and services are well-recognized sources of software devel-
opment risk.

3. Program Interface Risks

This element consists of the various interfaces with entities and organizations outside the devel-
opment program itself.

a. Customer Communication

Difficult working relationships or poor mechanisms for attaining customer agreement and approv-
als, not having access to certain customer factions, or not being able to communicate with the cus-
tomer in a forthright manner are all sources of risk to the continued funding and ultimate accep-
tance of the software application.

22 | CMU/SEI-2006-TN-039

b. User Commitment

Customers and users are not synonymous. Failure to gain user commitment and to manage user
expectations has been cited as one of the top five threats to the success of all software develop-
ment projects [Keil 1998].

c. Sponsor Alignment

In many cases, the customer, end user, and sponsor of a scientific/engineering software develop-
ment project may not be the same, as is the case with most federally funded projects. The mis-
alignment of the goals and expectations of the sponsor(s) with those of the customer(s) or end
users is a source of project risk.

d. Subcontractor Alignment

Subcontractor alignment risks refer to those risks that arise from inadequate task definitions and
subcontractor management mechanisms, or the failure to transfer subcontractor technology and
knowledge to the program or host organization. Failure to transfer key technology from subcon-
tractors places the sustainability of the code at risk.

e. Prime Contractor

When the project is a subcontract, performance risks may arise from poorly defined task defini-
tions, complex reporting arrangements, or dependencies on technical or programmatic informa-
tion.

f. Corporate Communication

Risks in the corporate management arena include poor communication and direction from senior
management as well as non-optimum levels of support. Long-term projects are often buffeted by
changes in the senior management of the host organization.

g. Vendor Performance

Vendor performance risks may present themselves in the form of unanticipated dependencies on
deliveries and support for critical system components.

h. Political

Political risks may accrue from relationships with the company, customer, associate contractors,
or subcontractors, and may affect technical decisions, schedules, and even support for the project.

 SOFTWARE ENGINEERING INSTITUTE | 23

24 | CMU/SEI-2006-TN-039

References

[ACM]
ACM Taxonomy, www.computer.org/portal/site/ieeecs.

[Agile Software]
Manifesto for Agile Software Development, http://agilemanifesto.org.

[Beck 1999]
Beck, K. “Embracing Changes with Extreme Programming,” Computer/IEEE, vol. 32, no. 10,
1999, pp. 70-77.

[Boehm 1991]
Boehm, B. W. “Software Risk Management: Principles and Practices,” Software/IEEE, vol. 8, no.
1, 1991, pp. 32-41.

[Boehm 1995]
Boehm, B, et al. “Cost Models for Future Software Life Cycle Processes: COCOMO 2.0,” Annals
of Software Engineering, vol. 1, no. 1, 1995, pp. 57-94.

[Carr 1993]
Carr, Marvin J., et al. “Taxonomy-Based Risk Identification,” Technical Report CMU/SEI-93-
TR-006, June 1993. http://www.sei.cmu.edu/publications/documents/93.reports/93.tr.006.html.

[DeMarco 1999]
DeMarco, T. & Lister, T. Peopleware, Productive Projects and Teams. Dorset House, New York,
1999.

[DeMarco 2003]
DeMarco, T. & Lister, T. Waltzing with Bears: Managing Risks in Software Projects. Dorset
House, New York, 2003.

[IEEE 1990]
IEEE Standard Computer Dictionary, “A Compilation of IEEE Standard Computer Glossaries,”
IEEE Computer Society, IEEE-STD-610, ISBN 1-55937-079-3, 1990.

[Keil 1998]
Keil, Mark, et al. “A Framework for Identifying Software Project Risks,” Communications of the
ACM, vol. 41, no. 11, 1998, pp. 76-83.

[Paulk 1993]
Reference to “methodologies” in Cockburn, A. and Highsmith, J. “Agile Software Development,
The People Factor;” Computer /IEEE, vol. 34, no. 11, pp 131-133. Also see Capability Maturity
Model, v1.1, Paulk, M.C. et al. Software/IEEE, vol. 10, no.4, 1993, pp. 18-27.

[Process Impact]
See http://www.processimpact.com/articles/metrics_primer.html.

 SOFTWARE ENGINEERING INSTITUTE | 25

http://www.computer.org/portal/site/ieeecs
http://www.processimpact.com/articles/metrics_primer.html
http://agilemanifesto.org
http://www.sei.cmu.edu/publications/documents/93.reports/93.tr.006.html

[Schmidt 2001]
Schmidt, R. et al. “Identifying Project Risks: An International Delphi Study,” Journal of Man-
agement Information Systems, vol. 17, no. 4, 2001, pp. 5-36.

[Weinberg 1998]
Weinberg, G. M. The Psychology of Computer Programming. Dorset House, New York, Silver
edition, 1998.

26 | CMU/SEI-2006-TN-039

Glossary

acceptance criteria
The criteria that a system or component must satisfy to be accepted by a user, customer, or other
authorized entity. [IEEE-STD-610.12]

acceptance testing
Formal testing conducted to determine whether or not a system satisfies its acceptance criteria and
to enable the customer to determine whether or not to accept the system. [IEEE-STD-610.12]

application domain
Refers to the nature of the application. Here we are concerned with the high performance end of
domain of scientific and engineering application.

audit
An independent examination of a work product or set of work products to assess compliance with
specifications, standards, contractual agreements, or other criteria. [IEEE-STD-610.12]

availability
The degree to which a system or component is operational and accessible when required for use.
Usually expressed as the ratio of time available for use to some total time period or as specific
hours of operation. [IEEE-STD-610.12]

baseline
A specification or product that has been formally reviewed and agreed upon, that thereafter serves
as the basis for further development, and that can be changed only through formal change control
procedures. [IEEE-STD-610.12]

baseline management
In configuration management, the application of technical and administrative direction to desig-
nate the documents and changes to those documents that formally identify and establish baselines
at specific times during the life cycle of a configuration item. [IEEE-STD-610.12]

benchmark
A standard against which measurements or comparisons can be made. [IEEE- STD-610.12]

change control
A part of configuration management that reviews, approves, and tracks progress of alterations in
the configuration of a configuration item delivered, to be delivered, or under formal development,
after formal establishment of its configuration identification [IEEE-STD-610.12].

configuration
In configuration management, the functional and physical characteristics of hardware or software
as set forth in technical documentation or achieved in a product [IEEE-STD-610.12].

configuration management
A discipline applying technical and administrative direction and surveillance to identify and
document the functional and physical characteristics of a controlled item, control changes to a

 SOFTWARE ENGINEERING INSTITUTE | 27

configuration item and its documentation, and record and report change processing and imple-
mentation status [IEEE-STD-610.12].

configuration management function
The organizational element charged with configuration management.

configuration management system
The processes, procedures, and tools used by the development organization to accomplish con-
figuration management.

critical design review (CDR)
(1) A review conducted to verify that the detailed design of one or more configuration items sat-
isfy specified requirements; to establish the compatibility among the configuration items and
other items of equipment, facilities, software, and personnel; to assess risk areas for each configu-
ration item; and, as applicable, to assess the results of producibility analyses, review preliminary
hardware product specifications, evaluate preliminary test planning, and evaluate the adequacy of
preliminary operation and support documents. See also: preliminary design review; system design
review. (2) A review as in (1) of any hardware or software component. [IEEE-STD-610.12]

customer
The person or organization receiving a product or service. There may be many different customers
for individual organizations within a program structure. Government program offices may view
the customer as the user organization for which they are managing the project. Contractors may
view the program office as well as the user organization as customers.

design specifications
A document that prescribes the form, parts, and details of the product according to a plan (also see
design description. [IEEE-STD-610.12]

detailed design
(1) The process of refining and expanding the preliminary design of a system or component to the
extent that the design is sufficiently complete to be implemented. See also: software development
process. (2) The result of the process in (1). [IEEE-STD-610.12]

development computer
The hardware and supporting software system used for software development.

development facilities
The office space, furnishings, and equipment that support the development staff.

development model (also workflow management model)
The abstract visualization of how the software development functions (such as requirements defi-
nition, design, code, test, and implementation) are organized. Typical models are the waterfall
model, the iterative model, and the spiral model.

development process
The implemented process for managing the development of the deliverable product. For software,
the development process includes the following major activities: translating user needs into soft-
ware requirements, transforming the software requirements into design, implementing the design
in code, testing the code, and sometimes, installing and checking out the software for operational
use. These activities may overlap and may be applied iteratively or recursively.

28 | CMU/SEI-2006-TN-039

development sites
The locations at which development work is being conducted.

development system
The hardware and software tools and supporting equipment that will be used in product develop-
ment including such items as computer-aided software engineering (CASE) tools, compilers, con-
figuration management systems, and the like.

external dependencies
Any deliverables from other organizations that are critical to a product's success.

external interfaces
The points where the software system under development interacts with other systems, sites, or
people.

hardware specifications
A document that prescribes the functions, materials, dimensions, and quality that a hardware item
must meet.

implementation
The process of translating a design into software. [IEEE-STD-610.12]

integration
The process of combining software components, hardware components, or both, into an overall
system. [IEEE-STD-610.12]

integration environment
The hardware, software, and supporting tools that will be used to support product integration.

integration testing
Testing in which software components, hardware components, or both are combined and tested to
evaluate the interaction between them. See also: component testing; interface testing; system test-
ing; unit testing. [IEEE-STD-610.12]

internal interfaces
The points where the software system under development interacts with other components of the
system under development.

maintainability
The ease with which a software system can be modified to correct faults, improve performance or
other attributes, or adapt to a changed environment. [IEEE-STD-D610.12]

modularity
The degree to which a computer program is composed of discrete components such that a change
to one component has a minimal impact on other components. [IEEE-STD-610.12]

portability
The ease with which a system or component can be transferred from one hardware or software
environment to another. [IEEE-STD-610.12]

 SOFTWARE ENGINEERING INSTITUTE | 29

preliminary design
The process of analyzing design alternatives and defining the architecture, components, inter-
faces, and timing and sizing estimates for a system or component. See also: detailed design.

procedure
A written description of a course of action to be taken to perform a given task. [IEEE-STD-
610.12]

process
A sequence of steps performed for a given purpose; for example, the software development proc-
ess. [IEEE-STD-610.12]

process control (as in management)
The direction, control and coordination of work performed to develop a product. [IEEE-STD-
610.12]

product integration
The act of assembling individual hardware and software components into a functional whole.

quality assurance
A planned and systematic pattern of actions necessary to provide adequate confidence that a prod-
uct conforms to established technical requirements. [IEEE-STD-610.12]

reliability
The ability of a system or component to perform its required functions under stated conditions for
a specified period of time. Usually expressed as the mean time to failure. [IEEE-STD-610.12]

requirements analysis
(1) The process of studying user needs to arrive at a definition of system, hardware, or software
requirements. (2) The process of studying and refining system, hardware, or software require-
ments. [IEEE-STD-610.12]

reuse
Hardware or software developed in response to the requirements of one application that can be
used, in whole or in part, to satisfy the requirements of another application.

safety
The degree to which the software product minimizes the potential for hazardous conditions during
its operational mission.

security
The degree to which a software product is safe from unauthorized use.

software architecture
The organizational structure of the software or module.

software life cycle
The period of time that begins when a software product is conceived and ends when the software
is no longer available for use. The software life cycle typically includes a concept phase, require-
ments phase, design phase, implementation phase, test phase, installation and checkout phase,
operation and maintenance phase, and, sometimes, retirement phase. [IEEE-STD-610.12]

30 | CMU/SEI-2006-TN-039

software requirement
A condition or capability that must be met by software needed by a user to solve a problem or
achieve an objective. [IEEE-STD-610.12]

software requirements specification (SRS)
Documentation of the essential requirements (functions, performance, design constraints, and at-
tributes) of the software and its external interfaces. [IEEE-STD-610.12]

system integration
The act of assembling hardware and/or software components into a deliverable product.

system requirement
A condition or capability that must be met or possessed by a system or system component to sat-
isfy a condition or capability needed by a user to solve a problem.

system testing
Testing conducted on a complete, integrated system to evaluate the system's compliance with its
specified requirements. See also: component testing; integration testing; interface testing; unit
testing. [IEEE-STD-610.12]

target computer (machine)
The computer on which a program is intended to execute. [IEEE-STD-610.12]

test specifications
A document that prescribes the process and procedures to be used to verify that a product meets
its requirements (sometimes referred to as a test plan). [IEEE-STD-610.12]

traceability
The degree to which a relationship can be established between two or more products of the devel-
opment process, especially products having a predecessor-successor or master-subordinate rela-
tionship to one another. [IEEE-STD-610.12]

unit
(1) A separately testable element specified in the design of a computer software component. (2) A
logically separable part of a computer program. (3) A software component that is not subdivided
into other components. [IEEE-STD-610.12]

unit testing
Testing of individual hardware or software units or groups of related units. See also: component
testing; integration testing; interface testing; system testing. [IEEE-STD-610.12]

 SOFTWARE ENGINEERING INSTITUTE | 31

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Head-
quarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the
Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

January 2007
3. REPORT TYPE AND DATES

COVERED
Final

4. TITLE AND SUBTITLE
A Proposed Taxonomy for Software Development Risks for High-Performance Computing
(HPC) Scientific/Engineering Applications

5. FUNDING NUMBERS
FA8721-05-C-0003

6. AUTHOR(S)

Richard P. Kendall; Douglass E. Post; Jeffrey C. Carver; Dale B. Henderson; & David A. Fisher
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2006-TN-039

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
Because the development of large-scale scientific/engineering application codes is an often difficult, complicated, and sometimes un-
certain process, success depends on identifying and managing risk. One of the drivers of the evolution of software engineering, as a
discipline, has been the desire to identify reliable, quantifiable ways to manage software development risks. The taxonomy that follows
represents an attempt to organize the sources of software development risk for scientific/engineering applications around three princi-
pal aspects of the software development activity: the software development cycle, the development environment, and the program-
matic environment. These taxonomic classes are divided into elements and each element is further characterized by its attributes.

14. SUBJECT TERMS

managing risk, software development risks, taxonomy, software development activity, soft-
ware development cycle, development environment, programmatic environment

15. NUMBER OF PAGES
39

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	A Proposed Taxonomy for Software Development Risks for High-Performance Computing (HPC) Scientific/Engineering Applications
	Table of Contents
	Abstract
	Introduction
	A. Development Cycle Risks
	B. Development Environment Risks
	C. Programmatic Risks
	References
	Glossary

