

Topics in Interoperability: Structural
Programmatics in a System of Systems

James D. Smith II

October 2006

TECHNICAL NOTE
CMU/SEI-2006-TN-037

Integration of Software-Intensive Systems Initiative
Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2007 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-
nal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and
derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for
external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Table of Contents

Acknowledgment vii

Abstract ix

1 Introduction 1
1.1 Interoperability 1
1.2 Systems and Systems of Systems 2
1.3 Relationships Implemented by Systems 3
1.4 System Centric vs. System of Systems 4
1.5 Interoperable Acquisition 5

2 Context and Background 6

3 Specific Interoperability Issues 8

4 Potential Mitigation Strategies 11

5 Summary 13

References 14

 SOFTWARE ENGINEERING INSTITUTE | i

ii | CMU/SEI-2006-TN-037

List of Figures

Figure 1: The SOSI Model 2

Figure 2: Systems and Systems of Systems 3

Figure 3: Federated System- of-Systems Organizational Structure 8

Figure 4: Hierarchical System-of-Systems Organizational Structure 9

 SOFTWARE ENGINEERING INSTITUTE | iii

iv | CMU/SEI-2006-TN-037

List of Tables

Table 1: Single System versus System of Systems 4

 SOFTWARE ENGINEERING INSTITUTE | v

vi | CMU/SEI-2006-TN-037

Acknowledgment

The work on this technical note was partially supported by funding
from the Secretary of the Air Force/Acquisition (SAF/AQ).

 SOFTWARE ENGINEERING INSTITUTE | vii

viii | CMU/SEI-2006-TN-037

Abstract

This technical note presents a case study on how choices of structural programmatics (e.g., hierar-
chical or peer-to-peer organization, centralized or decentralized execution) affect the ability to
achieve programmatic interoperability in the context of large, complex systems of systems. Key
systems-of-systems concepts and definitions are introduced and explored through the case study.
In addition, this report illustrates the pitfalls of focusing on only one aspect of a problem and dis-
cusses the need to balance management’s desires for control with the realities of systems-of-
systems programmatics. This report also introduces an alternative to conventional program man-
agement practice that addresses the pitfalls previously identified.

 SOFTWARE ENGINEERING INSTITUTE | ix

x | CMU/SEI-2006-TN-037

1 Introduction

This report draws on some recent Carnegie Mellon® Software Engineering Institute (SEI) cus-
tomer engagements as the basis for a case study on how structural programmatics decisions im-
pact the ability to achieve programmatic interoperability in a large, complex system of systems.
This section introduces several important concepts, including interoperability (and, in particular,
systems-of-systems interoperability), interoperable acquisition, and the relevant differences be-
tween systems of systems and traditional (i.e., monolithic) systems. Portions of this section are
taken from some recent SEI reports: Interoperable Acquisition for Systems of Systems: The Chal-
lenges (CMU/SEI-2006-TN-034), Topics in Interoperability: Infrastructure Replacement in a
System of Systems (CMU/SEI-2005-TN-031), and Including Interoperability in the Acquisition
Process (CMU/SEI-2005-TR-004) [Smith 2006, Carney 2005a, Meyers 2005].

1.1 INTEROPERABILITY

Interoperability has traditionally been defined in an operational context (e.g., the ability of sys-
tems to exchange information). This definition is too imprecise and incomplete to describe the
essential characteristics of interoperability, much less to allow one to reason about possible strate-
gies to achieve—and maintain—interoperability. In the technical report entitled System of Systems
Interoperability (SOSI): Final Report, Morris and associates discuss how interoperability is not a
property of a system in isolation but is dependent on a particular context [Morris 2004]. Specifi-
cally, they define interoperability as

the ability of a set of communicating entities to (1) exchange specified state data and (2)
operate on that state data according to specified, agreed-upon, operational semantics

While this definition addresses the issue of context, it does not go far enough. The SOSI report
further identifies three distinct—but interrelated—aspects that, taken together, provide a richer
understanding of what is meant by interoperability. Figure 1, the SOSI model, illustrates the pro-
grammatic, constructive, and operational aspects of interoperability and their relationships within
and across programs [Morris 2004, Meyers 2005].

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

 SOFTWARE ENGINEERING INSTITUTE | 1

Figure 1: The SOSI Model

The three interoperability aspects are characterized as follows:
• Operational interoperability is closely aligned with the traditional definition of interoperabil-

ity (the ability of systems to exchange relevant information), but it adds the notion of com-
patible (or complementary) operational concepts.

• Constructive interoperability reflects the degree to which the different system design, engi-
neering, and production processes and tools are able to exchange information in an under-
standable manner.

• Programmatic interoperability expresses the ability of programs to exchange meaningful in-
formation about the management of the programs involved. This information can run the
gamut from budget and schedule information to details on how to interpret risks.

The emphasis on aspects is critical: there is no such thing as a programmatic, constructive, or op-
erational interoperability issue per se. Instead, there are interoperability issues that have implica-
tions or manifestations in any or (in most cases) all of the interoperability aspects. The partici-
pants in the SOSI study concluded that the impact of constructive and programmatic aspects on
interoperability is significant, whereas traditional treatments of interoperability largely ignore
those aspects. In fact, the participants concluded that the programmatic interoperability aspects
often overwhelm the operational and constructive aspects.

1.2 SYSTEMS AND SYSTEMS OF SYSTEMS

Almost every discussion of interoperability is plagued by one annoying reality: any construct that
we label a system in fact may be composed of several constituent systems, and this may be true
recursively at several levels. In other words, anything that at one level we can call a system may
internally be a system of systems, and any system of systems may itself be part of some larger
system of {systems of systems}, and so forth.

To illustrate, we imagine some hypothetical data systems that interoperate in some manner. These
data systems could all be elements (e.g., communication or navigation) of a military aircraft’s

2 | CMU/SEI-2006-TN-037

avionics system, which together with many other systems (weapons system, mission management
system) compose the total aircraft, which itself can be viewed as a single system. To continue to
even higher levels, the aircraft is an element in a larger system of systems, since it interoperates
with other aircraft and other military units in combat. The process can continue recursively
through ever larger systems of systems of systems of systems.

We illustrate this concept in Figure 2:

Figure 2: Systems and Systems of Systems

1.3 RELATIONSHIPS IMPLEMENTED BY SYSTEMS

A further facilitating device is that we use a common vocabulary regardless of the mechanism by
which a relationship is implemented. For example, we can imagine two systems (X and Y) whose
relationship is such that they must communicate data back and forth. Let us further suppose that
the relationship is implemented by some complex communication system. Since that communica-
tion system is, by definition, a system in its own right, it is easy to see that discussion of such a
collection may easily be complicated by two different opinions. One opinion sees a system of sys-
tems of three entities (X, Y, and the communication system). The other opinion sees a system of
systems of only two (i.e., by disregarding that the communication system is a system and viewing
it only as implementing the relationship between X and Y).

We argue that either view is possible, depending on the issues of immediate interest and what
questions are being asked. For instance, we may be interested in the semantics of shared data be-
tween X and Y and unconcerned with the manner in which the data is communicated. In that case,
we can rightly consider the communication system simply as the mechanism that implements the
X-Y relationship. On the other hand, if we are concerned with the specific details of how System
X locates System Y, with the significance of timing constraints and other such questions, we well
may consider that the relationships between System X, System Y, and the communication system
are all interoperability relationships in their own right.

 SOFTWARE ENGINEERING INSTITUTE | 3

1.4 SYSTEM CENTRIC VS. SYSTEM OF SYSTEMS

A system of systems has characteristics that are fundamentally different from that of a single sys-
tem. These differences are summarized in Table 1.1

Table 1: Single System versus System of Systems

Issue Single System System of Systems

Constituents All constituents are known and
visible.

Changing and potentially un-
known constituents

• Entity assembling a system of
systems may not know con-
stituents until runtime.

• Constituent may not know it is
part of a system of systems.

Purpose Predetermined by system owner
and conveyed to constituents

Continuously evolving, coopera-
tively determined, and may or
may not be known by systems
participating in systems of sys-
tems

Control Hierarchically structured with
central control by system owner

System owners participating in a
system of systems may have
control over their systems, but
they do not control how and
when their systems are used in
the system of systems.

Entity assembling a system of
systems has control over as-
sembly but not over the partici-
pating systems.

Requirements Defined and managed by sys-
tem owner

Systems participating in the sys-
tem of systems often have to
anticipate how their system will
be used.

Ownership Pieces developed are owned,
maintained, and evolved by sys-
tem owner.

Constituent systems are inde-
pendently owned, developed,
maintained, and evolved.

Boundaries Closed with clearly defined
boundaries

In general, unbounded and part
of larger systems of systems

Visibility All aspects can be seen, under-
stood, and controlled.

Components and process as-
pects are beyond control and
visibility of developers, users,
and owners.

1 The contents of this table are taken from “Will My System ‘Play Nicely’ with Others? A Tutorial Exploring CMMI to Im-

prove Systems of Systems Success” presented at the Software Engineering Process Group conference in 2006 (SEPG
2006) by Lisa Brownsword, Suzanne Garcia, and Grace Lewis of the SEI.

4 | CMU/SEI-2006-TN-037

1.5 INTEROPERABLE ACQUISITION

As used in this report, interoperable acquisition consists of the set of practices that enable acqui-
sition, development, and operational organizations to more effectively collaborate to field interop-
erable systems. This concept is distinguishable from the processes used to acquire individual sys-
tems, in that the purpose of interoperable acquisition is to influence the acquisition behavior of the
constituents2 to maximize the likelihood of a successful system-of-systems outcome, as opposed
to maximizing the outcome for any individual system.

Why is this distinction important? Traditional system acquisition—as practiced through the
ages—focuses on achieving specified performance objectives (including functional requirements,
like such-and-such throughput and so-many transactions per second, as well as nonfunctional re-
quirements, including maintainability and reliability) within cost and schedule constraints. Each
system is developed in response to a perceived operational mission need and has its own opera-
tional requirements, community of interest, funding, and the like. This system-centric approach
has resulted in the proliferation of stovepiped systems that are integrable with difficulty—if at all.

However, the revolution in system-of-systems thinking, as epitomized by network-centric war-
fare, demands a degree of collaboration and coordination among constituent systems that cannot
be achieved by “adding in” something to a bunch of stovepipes (any more than maintainability,
reliability, or any other desirable quality can be added-in). Instead, the entire acquisition proc-
ess—from initial conception of the need for a material solution to eventual retirement of a sys-
tem—must be informed by the realities of systems of systems and account for their influences.
Doing so requires that the practitioner possess an understanding of the characteristics of systems
of systems, as well as the different aspects of interoperability. Imparting that understanding is the
focus of this report.

The rest of this report is organized as follows:
• Section 2 describes the context and background for systems-of-systems acquisition within

the U.S. Department of Defense (DoD) and explores some of the pressures that influence the
organizational programmatics.

• Section 3 introduces the case study and examines the approach used as well as its limitations.

• Section 4 explores some potential mitigation strategies, including an alternate approach that
addresses the previously-noted limitations.

• Section 5 provides a brief conclusion.

2 The term constituents encompasses all automated, mechanized, or human elements—including program offices, contrac-

tors, and systems—that have a role in a system of systems.

 SOFTWARE ENGINEERING INSTITUTE | 5

2 Context and Background

System acquisition, encompassing the entire life cycle—from initial formulation of a need; to pro-
gram planning and budgeting; to execution, development, deployment, and operations; and
through sustainment—is an inherently complex field. In the past decade, increased use of nonde-
velopmental components and systems—including commercial off-the-shelf (COTS), government
off-the-shelf (GOTS), and free and open source software (FOSS)—forced acquirers to confront
some of the limitations of systems acquisition and engineering, as traditionally practiced, and led
to a new understanding of the nature of program management and systems engineering. Likewise,
today’s emphasis on greater interoperability and interdependence between systems, as epitomized
by network-centric operations, is forcing acquirers to re-think traditional concepts about organiza-
tional programmatics and the relationship between individual programs and the larger systems of
systems in which they are employed.

Just as the changes necessitated by COTS (and reuse, in general) were—and continue to be—
difficult to accomplish within the cultural and regulatory context of the DoD, the clash between
that context and the best practices for systems of systems is proving difficult to overcome. The
reasons for this are many and include
• no single point of ownership or control for systems of systems

As discussed by Carney, Anderson, and Place in Topics in Interoperability: Concepts of
Ownership and Their Significance in Systems of Systems, there are many different notions of
“ownership” that are applicable in a system of systems, including [Carney 2005b]
− Ownership is not a matter of simple possession or control: There are multiple “owners”

for a system of systems, representing the different acquirer, developer, user, maintainer,
and other perspectives.

− Ownership of the interoperable relationships (human-human, human-machine, and ma-
chine-machine) is not clearly understood.

− Fundamental changes are needed in the programmatics of DoD acquisition to achieve
the goals of network-centric warfare.

• no explicit requirements or funding for systems-of-systems integration and
interoperability
Program managers frequently complain about being required to satisfy requirements along
the lines of “. . .shall be interoperable with system X”—without any characterization of what
that interoperability is to be composed of and how it will be demonstrated or any explicit
mention of these requirements in the documents used to prepare budget submissions, budget
exhibits, or relevant appropriations [Smith 2005, Meyers 2006]. A similar condition exists
today with the imposition of the Net-Ready Key Performance Parameter (NR-KPP).3 While
programs are required to incorporate the NR-KPP into their requirements, there is often no
funding explicitly identified for it; so interoperability becomes another unfunded mandate.

3 The NR-KPP has been “developed to assess net-ready attributes required for both the technical exchange of information

and the end-to-end operational effectiveness of that exchange” (http://akss.dau.mil/DAG/GuideBook/IG_c7.3.4.asp).

6 | CMU/SEI-2006-TN-037

http://akss.dau.mil/DAG/GuideBook/IG_c7.3.4.asp

• no incentives for altruistic behavior on the part of program offices or system developers
During the course of negotiating how to achieve interoperability between systems, it often
becomes apparent that changes are required of one or more systems. Changes can range from
the fairly innocuous (e.g., changing the meaning of a particular bit field in a protocol ex-
change message) to the decidedly less so (e.g., including new message types or new proto-
cols in a communicating system). Among a group of programs that are required to be inter-
operable, it may be preferable for one program rather than another to make such changes
(because, for instance, the total cost—for the system of systems—would be less). If there is
nothing in that program’s requirements to make such changes, however, a program manager
may be reluctant to do so—especially if making the changes would result in cost growth or
schedule delays in the program. Such altruism for the benefit of the system of systems could
be construed as “gold plating” and is not career-enhancing.

• inappropriate processes, tools, and the like
As shown in the foregoing, many of the assumptions underlying traditional systems acquisi-
tion—a single point of responsibility for a system, clearly-stated requirements with associ-
ated funding, and a manager’s focus on attaining cost, schedule, and performance goals—are
at odds with the principles of systems of systems. Not surprisingly, the processes and tools
that support acquisition are grounded in current practice and, thus, are inadequate in systems
of systems. That does not mean that program managers can ignore cost, schedule, and per-
formance in the pursuit of system-of-systems interoperability! What that does mean, how-
ever, is that decisions in those areas must be informed by the broader concerns of the system
of systems and that additional processes and tools are necessary [Brownsword 2006].

In the next section, we will explore how these conflicting pressures combine in potentially unde-
sirable ways—and how existing acquisition practices color what you perceive.

 SOFTWARE ENGINEERING INSTITUTE | 7

3 Specific Interoperability Issues

The system of systems under consideration in this case study consists of a loose confederation of
systems—most of which are major defense acquisition programs in their own right—under a sin-
gle program director, as shown in Figure 3. The system of systems provides a suite of capabilities
to a broad range of users; the users of the system of systems depend on it to enable them to carry
out their operational missions. The responsibility for developing the individual systems that com-
pose the “core” of the system of systems belongs to the respective program offices; sustainment of
that portion of the system of systems provided by the developing program offices is the responsi-
bility of a single organization within the system of systems. The systems that form the “edge” of
the system of systems are developed, acquired, deployed, and sustained by the various services’
procurement and sustainment organizations.

Program
Office

“A”
Program

Office
“B”

Director-
ate Head

Program
Office

“E”

Program
Office

“C”

Program
Office

“D”

Figure 3: Federated System- of-Systems Organizational Structure

While the individual program managers have a high degree of autonomy, they aren’t free to make
decisions that adversely affect other portions of the system of systems. Decisions that might cause
adverse effects require coordination between all the affected parties, with appropriate analysis to
support the recommended decision. All of those policies are standard in large program offices or
directorates.

However, despite this coordination, there had been several problems in this federated system of
systems, some of which only became apparent at the “11th hour,” by which point available reme-
dies were either technically undesirable, not easily affordable, or both. When later examined,
these problems were found to result mostly from ineffective communications between various
system-of-systems stakeholders and senior leadership. These deficiencies resulted in senior lead-
ership making decisions with a flawed understanding of the true state of the system of systems,
based on incomplete and, often, incorrect data.

8 | CMU/SEI-2006-TN-037

To the program director, it appeared that the root cause of the ineffective communications—and
thus, the incorrect or late decisions—was the decentralized decision-making process. Thus, it was
decided to centralize all programmatic decisions: individual program managers would ensure that
accurate data was passed “up the chain,” and the directorate office would obtain the necessary
coordination with all the programs. Only then—when all the staff work and interprogram coordi-
nation was completed—would a decision be made. It was expected that this would result in deci-
sions being coordinated, avoiding the problems that had recently plagued the system of systems.
The ensuing organizational structure is shown in Figure 4.

Figure 4: Hierarchical System-of-Systems Organizational Structure

While it was known that a hierarchical structure could increase the time required to pass critical
information to the program director, the magnitude of this effect was unanticipated. The time re-
quired to gather, normalize, and aggregate the data and prepare the necessary documentation to
support the decision-making process (through several organizational layers) was significantly
longer than the time it took for the data to become outdated. As a consequence, by the time deci-
sions were made, the circumstances were often so sufficiently changed that the decision was no
longer correct or even relevant. So, instead of solving the problem, centralizing programmatic
decisions lengthened decision timelines, while the effectiveness of interstakeholder communica-
tions remained fairly constant. The net result was, arguably, even more problems.

A couple of illustrations demonstrate this effect. One is a familiar operational analogy, the OODA
Loop: Observe, Orient, Decide, and Act. A principle of U.S. military doctrine is to operate “in-
side” your opponent’s OODA loop (i.e., to be able to see what is happening, understand the situa-
tion, and determine and implement an appropriate course of action before your opponent is able to
react). The opponent in this case—composed of the system of systems and the continuously shift-
ing state of the systems, stakeholders, and their interrelationships—was changing significantly
faster than the directorate’s ability to assimilate disparate information and respond accordingly.

 SOFTWARE ENGINEERING INSTITUTE | 9

A second example, drawing on control theory, presents a system of systems and its decision-
making process as a nonlinear closed-loop feedback system.4 The control loop time constant is
the time required to gather and interpret the data and make a decision; the system-of-systems tim
constant is the rate at which circumstances within the system-of-systems were changing. In this
case, the control loop time constant was much greater than the system-of-systems time constant,
resulting in

e

• instability of the system of systems (i.e., decisions made so late that they tend to aggravate
the situation, as opposed to mitigating issues)

• schedule delays

• cost growth

• all of the above—instability, schedule delays, and cost growth

In the case of this system of systems, the diagnosis of the root cause for the problems being ex-
perienced—ineffective communications between peers in a loose confederation—led to the for-
mulation of a mitigation strategy intended to bring order and discipline to the decision-making
process, ensuring that all decisions were properly staffed and coordinated. For a variety of rea-
sons—including the time required to gather data, roll it up, and perform the necessary coordina-
tion prior to making any decision—problems remained. While the chosen strategy did give all
relevant parties the opportunity to review the provided information prior to the decision—and
concur or disagree—it didn’t address the fundamental problem leading to the ineffective commu-
nications in the first place. Specifically, the strategy didn’t address the questions of what informa-
tion should be shared, how it should be shared, or how it should be used to effectively inform sen-
ior leadership. Consequently, decisions continued to be made with incomplete, incorrect, or
conflicting information … but now they took longer.

4 In engineering, control theory deals with the behavior of dynamical systems. For some background on control theory, go
to http://en.wikipedia.org/wiki/Control_theory.

10 | CMU/SEI-2006-TN-037

http://en.wikipedia.org/wiki/Control_theory

4 Potential Mitigation Strategies

One key to any effective system-of-systems decision process is identifying the relevant informa-
tion to be shared. But what are the alternatives to achieve this? One approach could be to require
that everyone share everything with everybody. While this might appeal on some “we’re all in
this together” level, the realities are that
• There is far too much information to share.

• Not all information needs to be—or even should be—shared.

In part, those realities are the reason why the attempt to solve the communications problems in the
system of systems detailed in Section 3 failed.

An alternative approach would be based on sharing the relevant information with all concerned
parties. This approach requires taking the time to garner an understanding of what information
really needs to be shared, with whom, for what purposes, and the like—and to share only that.
This is a radical departure from current practice, wherein a program manager typically decides
what information another program needs. Success with this self-selection process, however, de-
pends upon the first program manager having an accurate understanding of the information needs
of the other program manager(s), as well as an understanding of the nature of the interrelation-
ships between the programs. This level of insight is not something that can be obtained through
conventional program status reviews, “stoplight charts,” or integrated baseline schedules. As an
example, consider the following:

Program 1 indicates that it has a “need date” for a system (provided by Program 2) to be
delivered by a certain date. This delivery is necessary so that Program 1 can complete
system testing in time to meet a critical schedule milestone. Program 2 indicates that it
will meet the required delivery date. Both programs are on schedule.

What’s wrong with this? After all, both programs have clearly expressed their information needs
and dependencies (delivery by a date certain to support a critical milestone). Unfortunately, Pro-
gram 1 expected delivery to mean “installed, checkout complete, and ready for testing,” but Pro-
gram 2 considered it to be “sitting on the manufacturer’s shipping dock.” In this instance, the
difference between those understandings amounted to nearly three months, forcing Program 1 to
delay a critical milestone.

How did this happen? From various program reviews and quarterly information exchanges, Pro-
gram 2 knew that Program 1 was concerned with the delivery date. But the understanding didn’t
extend beyond that. Program 2 didn’t know, for instance, that Program 1 intended to commence
testing the week after “delivery.” Similarly, Program 1 did not understand that when Program 2
said its system was “delivered,” it meant the system had been delivered to the manufacturer’s
shipping department for packing and shipping to Program 1. Because of this lack of understanding
about the semantics of the word “delivered,” neither party recognized the impending three-month
program slip until very late.

Gaining an accurate understanding of these information sharing needs requires discussion—and
some negotiation—with every relevant stakeholder. To do so, all parties must understand the na-

 SOFTWARE ENGINEERING INSTITUTE | 11

ture of the relationships that exist between them. That insight, in turn, requires a common under-
standing of the semantics of the relationships and information needs: what is needed, by when, for
what purpose, and so on. One approach to achieving this common understanding is described in a
recent SEI report entitled System-of-Systems Navigator: An Approach for Managing System-of-
Systems Interoperability [Brownsword 2006]. Key aspects of the System-of-Systems Navigator
approach include
• establishing a common understanding of the overarching goals for the system of systems as

well as how every constituent contributes to the achievement of those goals (e.g., what is this
“thing” supposed to do, and how does my piece contribute to the success of the whole?)

• enumerating the influence relationships between the constituents (e.g., what organizations—
program offices, oversight bodies, standards groups, etc.—must my program interact with in
order to be successful?)

• defining the semantics of these interrelationships (e.g., what does “delivered” mean?)

• attaining—and maintaining—agreements about these influence relationships (e.g., what are
the implications to another program of a funding cut imposed on my program?)

The Navigator approach further goes on to describe some desirable characteristics of systems (or
rather, system-of-systems) engineering and management processes suitable for a system of sys-
tems, as well as some considerations that need to be given to defining a rewards structure that mo-
tivates “good” system-of-systems behavior. Note: Navigator is not the only approach possible for
dealing with the realities of systems of systems, but it does show some promise after some early
pilot efforts, including one of the organizations whose experiences contributed to this case study.

12 | CMU/SEI-2006-TN-037

5 Summary

The significant differences between traditional systems and systems of systems have profound
implications to acquisition, especially when you take a broad view of acquisition. This technical
note illustrates some of the pitfalls in addressing the perceived causes—instead of those actually
responsible—for interoperability problems.

If, as discussed in this report, the root cause of poor decision making lies with ineffective com-
munications, rearranging the organization chart isn’t going to solve the problem. What is needed,
instead, is a recognition that sharing information—an essential aspect of programmatics—
• is critical to the success of the system of systems

• needs to be treated with the same degree of seriousness afforded to creating a system archi-
tecture

Achieving this recognition requires processes to elicit an understanding of the nature of the inter-
relationships between the different system-of-systems constituents and involves a shared under-
standing of the system-of-system’s objectives and constraints, as well as the role of each individ-
ual component to inform decisions about what information to share and how to share and use it.
While the effort to achieve this recognition may appear unwieldy and cumbersome, its cost is con-
siderably less than that of a wrong decision—or no decision at all.

 SOFTWARE ENGINEERING INSTITUTE | 13

References

[Brownsword 2006]
Brownsword, L.; Fisher, D.; Morris, E.; Smith, J.; & Kirwan, P. System-of-Systems Navigator: An
Approach for Managing System-of-Systems Interoperability (CMU/SEI-2006-TN-019). Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon University, 2006.
http://www.sei.cmu.edu/publications/documents/06.reports/06tn019.html.

[Carney 2005a]
Carney, D.; Smith, J.; & Place, P. Topics in Interoperability: Infrastructure Replacement in a Sys-
tem of Systems (CMU/SEI-2005-TN-031, ADA444901). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/05.reports/05tn031.html.

[Carney 2005b]
Carney, D.; Anderson, W.; & Place, P. Topics in Interoperability: Concepts of Ownership and
Their Significance in Systems of Systems (CMU/SEI-2005-TN-046, ADA447053). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/05.reports/05tn046.html.

[Fisher 2006]
Fisher, D. An Emergent Perspective on Interoperation in Systems of Systems (CMU/SEI-2006-
TR-003). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2006.
http://www.sei.cmu.edu/publications/documents/06.reports/06tr003.html.

[Meyers 2005]
Meyers, C.; Monarch, I.; Levine, L.; & Smith, J. Including Interoperability in the Acquisition
Process (CMU/SEI-2005-TR-004, ADA441244). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/05.reports/05tr004.html.

[Meyers 2006]
Meyers, B.; Smith, J.; Capell, P.; & Place, P. Requirements Management in a System-of-Systems
Context: A Workshop (CMU/SEI-2006-TN-015). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2006.
http://www.sei.cmu.edu/publications/documents/06.reports/06tn015.html.

[Morris 2004]
Morris, E.; Levine, L.; Meyers, B. C.; Place, P. R. H; & Plakosh, D. System of Systems Interop-
erability (SOSI): Final Report, (CMU/SEI-2004-TR-004, ADA455619). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2004.
http://www.sei.cmu.edu/publications/documents/04.reports/04tr004.html.

[Smith 2005]
Smith II, J. & Meyers, B. Exploring Programmatic Interoperability: Army Future Force Work-
shop (CMU/SEI-2005-TN-042, ADA443482). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/05.reports/05tn042.html.

14 | CMU/SEI-2006-TN-037

http://www.sei.cmu.edu/publications/documents/04.reports/04tr004.html
http://www.sei.cmu.edu/publications/documents/05.reports/05tn042.html.
http://www.sei.cmu.edu/publications/documents/06.reports/06tn019.html
http://www.sei.cmu.edu/publications/documents/05.reports/05tn031.html
http://www.sei.cmu.edu/publications/documents/05.reports/05tn046.html
http://www.sei.cmu.edu/publications/documents/06.reports/06tr003.html
http://www.sei.cmu.edu/publications/documents/05.reports/05tr004.html
http://www.sei.cmu.edu/publications/documents/06.reports/06tn015.html

[Smith 2006]
Smith, J. & Phillips, M. Interoperable Acquisition for Systems of Systems:
The Challenges (CMU/SEI-2006-TN-034). Pittsburgh, PA: Software Engineering Institute, Car-
negie Mellon University, 2006.
http://www.sei.cmu.edu/publications/documents/06.reports/06tn034.html.

 SOFTWARE ENGINEERING INSTITUTE | 15

http://www.sei.cmu.edu/publications/documents/06.reports/06tn034.html

16 | CMU/SEI-2006-TN-037

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Head-
quarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the
Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

October 2006
3. REPORT TYPE AND DATES

COVERED
Final

4. TITLE AND SUBTITLE
Topics in Interoperability: Structural Programmatics in a System of Systems

5. FUNDING NUMBERS
FA8721-05-C-0003

6. AUTHOR(S)
James D. Smith II

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2006-TN-037

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
This technical note presents a case study on how choices of structural programmatics (e.g., hierarchical or peer-to-peer organization,
centralized or decentralized execution) affect the ability to achieve programmatic interoperability in the context of large, complex sys-
tems of systems. Key systems-of-systems concepts and definitions are introduced and explored through the case study. In addition,
this report illustrates the pitfalls of focusing on only one aspect of a problem and discusses the need to balance management’s desires
for control with the realities of systems-of-systems programmatics. This report also introduces an alternative to conventional program
management practice that addresses the pitfalls previously identified.

14. SUBJECT TERMS
System, systems of systems, system of systems, programmatics, interoperability, organiza-
tion

15. NUMBER OF PAGES
28

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Topics in Interoperability: Structural Programmatics in a System of Systems
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgment
	Abstract
	1 Introduction
	2 Context and Background
	3 Specific Interoperability Issues
	4 Potential Mitigation Strategies
	5 Summary
	References

