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Abstract

Despite increased awareness and efforts to reduce buffer overflows, they continue to be the
cause of most software vulnerabilities. In large part, these problems are due to the
widespread use of unsafe library routines among programmers. For reasons like efficiency,
such routines will continue to be used, even during the development of mission-critical and
safety-critical software systems. Effective certification techniques are needed to ascertain
whether unsafe routines are used in a safe manner.

This report presents a technique for certifying the safety of buffer manipulations in C
programs. The approach is based on two key ideas: (1) using a certifying model checker to
automatically verify that a buffer manipulation is safe and (2) validating the resulting
invariant and proving it with a decision procedure based on Boolean satisfiability. This report
also discusses the advantages and limitations of the approach with respect to today’s existing
solutions for buffer-overflow detection. Experimental results are presented that position the
technique favorably against other static overflow-detection tools and indicate that the
procedure can complement and augment these tools from a purely verification perspective.
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1 Introduction

A recent study funded by the U.S. Department of Commerce’s National Institute of
Standards and Technology (NIST) concluded that software bugs, or errors, are so prevalent
and so detrimental that they cost the U.S. economy an estimated $60 billion

annually [NIST 02]. A substantial portion of programmatic errors ultimately manifest
themselves as software vulnerabilities. For example, it is estimated that “hacker attacks cost
the world economy a whopping $1.6 trillion in 2000” and “U.S. virus and worm attacks cost
$10.7 billion in the first three quarters of 2001 [Jarzombek 04].” This problem is further
highlighted by the increasing number of attacks that exploit such vulnerabilities. For
example, The CMU CERT® Coordination Center? reported 76,404 attack incidents in the
first half of 2003, approaching the total of 82,094 for all of 2002 in which the incident count
was nearly four times the 2000 total.? In fact, CERT statistics often understate the problem
by counting all related attacks as a single incident.

Buffer overflows are widely recognized [Cowan 00] to be the prime source of vulnerabilities in
commodity software. For example, the CodeRed ? worm that caused $2.1 billion in global
damage in 2001 exploited a buffer overflow in Windows [Jarzombek 04]. In addition, Wagner
and colleagues report, on the basis of CERT advisories, that “buffer overruns account for up
to 50% of today’s vulnerabilities, and this ratio seems to be increasing over

time” [Wagner 00]. Buffer overflows are problematic because attackers use them to execute
arbitrary code (such as a shell) with administrative privileges. For example, a common
strategy is to overwrite a program’s activation record in order to redirect its control flow to
any desired point. As such, buffer overflows are extremely dangerous and can lead to
catastrophic system compromises and failures.

Broadly speaking, a buffer overflow occurs when a piece of data D is written to a buffer B
such that the size of D is greater than the allocated size of B. In the case of a type-safe
language or a language with explicit bounds checking (such as Java), an overflow leads to
either a (static) type error or a (runtime) exception. Unfortunately, the vast majority of
commercial and legacy software is written in unsafe languages (such as C or C++) that allow
buffers to be overflowed with impunity. Due to efficiency and other reasons, the unsafe use of
these languages is unlikely to abate. In fact, the overflow problem persists even when only
“safer” library routines, such as fgets, snprintf, and strncpy, are used because
programmers pass incorrect array bounds information to them. Therefore, it is important
that we develop techniques to guard against buffer overflows, while still allowing low-level
buffer accesses.

In this report, we present an automated approach that uses formal proofs as a means of
assurance against the possibility of buffer overflows. Given a C program P and a target
buffer operation O, our technique* leads to one of the following outcomes:

! CERT and CERT Coordination Center are registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University.

http://www.sei.cmu.edu/pacc/files/DOD-whitepaper.pdf.

3 http://www.cert.org/advisories/ CA-2001-19.html.

Our approach allows for multiple target operations. However, we use a single target in this report for
simplicity.
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e [t produces a program trace CF that potentially leads to a buffer overflow
at O. The counterexample CF acts as a diagnostic feedback and aids in
debugging P.

o [t yields a certificate Cert that attests to the fact that no buffer overflows
can occur while executing O. It also generates annotations for P that can
be used to validate Cert without having to trust either Cert or the
annotations.

Specifically, our technique achieves its goal in the following step-wise manner:

1. interpretation. First, the program P is transformed to a new program P
by adding extra code that keeps track of various buffer manipulations. We
also add an assertion A that fails if, and only if, a buffer can overflow at O.

2. verification. Next, a certifying software model checker, based on
automated iterative refinement, verifies that the assertion A cannot fail. If
the verification fails, we obtain a counterexample CE that leads to an
assertion failure at A. Then, our procedure terminates with a
counterexample CFE that shows how a buffer overflow can occur at O. The
counterexample CF is constructed by reverse interpreting CE. If, on the
other hand, the verification succeeds, the certifying model checker also
generates an invariant Inv, and we proceed to Step 3.

3. certification. The invariant Inv associates with each control flow point [
of P a condition on the variables in scope at [ that is true whenever the
execution of P reaches [. In this final stage, our procedure verifies that: (a)
Inv is indeed a valid invariant and (b) Inv implies the impossibility of the
failure of the assertion A. This verification is achieved by constructing a
verification condition VC—a logical formula equivalent to (a) and (b)
above—and then proving the validity of VC'. To prove VC, we use a
decision procedure based on Boolean satisfiability (SAT). Doing so enables
us to generate extremely compact proofs. The proof of VC acts as the
certificate Cert, while Inv is used to generate the annotations for P, and
our procedure terminates with these artifacts. Note that Cert can be
validated subsequently by: (a) reconstructing VC' using Inv and (b) using
a proof checker to ensure that Cert is indeed a valid proof of VC. More
importantly, this procedure does not require us to trust either Inv or Cert.

We believe that ours is the first approach to use automated iterative refinement and
certifying software model checking for buffer-overflow detection. In addition, our technique is
the first with the ability not only to find buffer overflows but also to certify their absence.
Furthermore, a relatively small trusted computing base (TCB)—comprised of a VC
generator and a proof checker—can validate the certificates our approach generates.
State-of-the-art software analysis tools are, themselves, complex software artifacts and thus
should not be trusted any more than the systems they analyze. Therefore, the elimination of
the verification engine from the TCB enhances considerably the confidence we have in our
certification process.
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We have implemented our technique in the COMFORT reasoning framework [Chaki 05] and
experimented with four suites of publicly available benchmarks. Our experimental results
indicate that, in addition to being unique on account of its certification capabilities, our
technique is positioned favorably against other static overflow-detection tools and can
complement and augment these tools even if we are primarily interested in verification.
Further details of our experiments are provided in Section 6. The remaining sections of this
report are organized as follows. In Section 2, we survey related work. The interpretation,
verification, and certification steps of our approach are presented in detail in Sections 3, 4,
and 5, respectively. Finally, we discuss our experimental results in Section 6 and present our
conclusions in Section 7.
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2 Related Work

In this section, we discuss existing techniques for overflow detection and software
certification. Manual approaches are inherently non-scalable; therefore, we focus on
procedures that involve a fair amount of automation. A number of approaches for overflow
detection are type-theoretic in nature [Shankar 01]. These approaches require that programs
be written in a type-safe language and not be applicable to the vast body of legacy and
in-production systems that involve type-unsafe languages such as C or C4++. Techniques
based on simulation or testing suffer from low coverage and are typically unable to provide
any reasonable degrees of assurance about critical software systems. Dynamic or runtime
buffer-overflow detection schemes [Ruwase 04, Jones 97, Dahn 03, Dhurjati 06] incur
performance penalties that can be unacceptable. Even when performance is not a serious
issue, we must be assured of the correctness of a system before it is deployed since any failure
in real-life would be catastrophic. Such guarantees can be obtained only via static
approaches.

A number of static approaches for buffer-overflow detection have been proposed that rely on
static analysis of programs. These approaches are usually based on converting the
buffer-overflow problem into a constraint-solving problem (such as integer range

checking [Wagner 00] or integer linear programming [Ganapathy 03]) or into a static analysis
problem on an integer program [Dor 03]. In principle, static analysis amounts to a form of
model checking [Schmidt 98] over the control-flow graph (CFG) of a program. However, a
CFG is an extremely imprecise model because it retains control-flow information yet ignores

other semantic details completely. In practice, false positives plague static analysis based on
the CFG.

In the context of buffer-overflow detection, the abundance of false positives means that every
probable overflow flagged by static analysis must be manually inspected to ensure that it
corresponds to an actual problem and is not an artifact of the imprecise CFG model with no
concrete realization. Our overflow-detection technique is also static but based on a paradigm
called iterative refinement. We limit the number of false alarms by eliminating them in an
automated manner. You can find concrete details regarding the reduction in false positives
that our approach achieves in Section 6.

Our approach also builds on a long line of work on formal certification techniques such as
proof-carrying code [Necula 97|, certifying model checking [Namjoshi 01, Namjoshi 03], and
the combination of the latter with iterative-refinement-based software verification
[Henzinger 02]. Indeed, the verification and certification stages of our procedure can be
viewed as adaptations of our work on SAT-based software certification [Chaki 06] to the
certify the absence of buffer-overflow vulnerabilities.
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3 Interpretation

In this section, we present the interpretation of target program P to P in detail. To
understand our interpretation, let’s first agree on the syntax and semantics of programs. For
the sake of simplicity, we demonstrate our technique using a programming language with
rudimentary constructs. However, we will show that this language is expressive enough to
encode arbitrary C programs. In the following sections, for any function f, we write Dom(f)
and Range(f) to denote the domain and range of f, respectively.

3.1 Syntax

Let Z denote the set of variables and Var be a denumerable set of variables. We distinguish
between two types of expressions—Ivalues and rvalues. Specifically, an Ivalue is an rvalue
that is also associated with an address in memory. The set of lvalues LV and the set of
rvalues RV are defined in the following mutually recursive BNF form:

LV :=Var | xRV

RV :=Z|LV | &LV | RV op RV

where op is the usual suite of arithmetic, relational, logical, and bitwise operators in C. We
do not include the [ ] (array index) operator or structures and unions, since they can be
expressed via pointer arithmetic and dereferences. We also do not need typecasting, since all
variables are integral. Unary operators are left out for simplicity but can be included easily.
In the rest of this report, we use z,v,lv, and rv (and their primed versions) to denote
elements of Z, Var, LV, and RV, respectively. There are six types of statements in our
language: assignments, branches, allocs, frees, calls, and returns—each is described in detail
below. In the rest of this report, we use the terms location, control location, control point,
and control flow point synonymously.

asgn(lv, rv, rv’) sets lv to rv and continues execution from location rv’.

e bran(rv,rv’,rv") evaluates the branch condition rv. If the result is zero,
execution continues from location rv”; otherwise it continues from rv’.

e malloc(lv, rv,rv") allocates a fresh memory block of rv bytes and sets lv to
the first address of that block. Execution continues from location rv’.

o free(rv,rv’) frees the block of memory with starting address rv and
continues execution from location rv’.

e call(p,rv) calls procedure p and after executing p, continues from location
ru.

e ret returns from the current procedure.

A procedure is a tuple (G Var, LVar, Comm, ILoc) where

CMU/SEI-2006-TN-030 5



e GVar C Var and LVar C Var are the sets of global and local variables,
respectively.

e Comm : Z — Stmt is a partial function from locations to statements such
that (1) Dom(Comm) is finite and (2) if V' is the set of variables appearing
in the statements associated with Comm, V C GVar U LVar and retpc € V,
where retpc is a special variable that stores return locations from
procedures.

e [Loc € Dom(Comm) is the initial location.

For any procedure p = (G Var, LVar, Comm, ILoc), we write GVar(p) to mean G Var and
likewise for LVar, Comm, and ILoc. We use Proc to denote the set of all procedures. Finally,
a program is a pair (prs, ipr) where, (i) prs C Proc is a finite set of procedures such that

Vp € prs-Vp' € prs-p # p' = Dom(Comm(p)) N Dom(Comm(p')) = 0 and (ii) ipr € prs is
the initial procedure.

Encoding C Programs. You can use the following conventions to encode arbitrary C
programs in our language. Assignments, control flow, and procedure calls are already
included. Dynamic memory allocation and deallocation are handled with malloc and free.
Finally, since our language does not support procedure arguments and return values, we use
a set of special variables to pass them back and forth between callers and callees.

Modeling Memory. Normally, memory is modeled as a function from addresses to values.
However, for overflow detection we model the memory as a set of blocks, each with its own
ID. Formally, a memory configuration (memory, for brevity) is a five-tuple

(val, id, base, alloc, size), where (1) val : Z — 7 maps an address to its value, (2) id : Z — 7Z
maps an address to the ID of the block to which the address belongs, (3) base : Z < Z maps
a block ID to the starting address of that block, (4) alloc : Z — Z maps a block ID to the
number of bytes allocated for that block, and (5) size : Z < 7Z maps a block ID to the
number of bytes in that block up to and including the first occurrence of the “null” character.
In addition, a well-formed memory must satisfy the following conditions:

e Dom(id) = Dom(val)
e Dom(base) = Dom(alloc) = Dom(size) = Range(id)
e Dom(wval) is finite.

Next, we define a formal semantics of our language. If you are more interested in the actual
interpretation procedure, skip to Section 3.3.

3.2 Semantics

The empty memory pup is the memory satisfying the following condition:

Dom(val) = Dom(id) = Dom(base) = Dom(alloc) = Dom(size) = ()

6 CMU/SEI-2006-TN-030



Note that pp is well formed. We write Mem to denote the set of all memories. For any
memory p = (val, id, base, alloc, size), we write val(u) to mean val and likewise for
id, base, alloc, and size. Also, we write Dom(u) to mean Dom(val(w)).

Function Restriction. For any function f: X < Y and any X’ C X, the function
flx: Dom(f)N X" — Y is defined as follows: Vo € Dom(f)NX'- f |x/ () = f(x). In other
words, f |x+ is obtained by restricting the function f over the domain Dom(f) N X'.

Function Extension. For any function f: X — Y and any X’ C X, we write f + X' to
denote the set of functions f': Dom(f) U X" — Y such that f' | pomp\x'= f | Dom(s)\x"-
Thus, f + X' is the set of all functions that are obtained by extending the domain of f to
include X’. Any function in f’ € f 4+ X’ must agree with f over the set Dom(f)\ X’ and is
defined arbitrarily otherwise. To model allocation and deallocation, we define the new and
del operations.

Memory Allocation (new C Mem X Z x Mem x Z). Let p and p/ be any memories and
z € Z be any integer. Let i be any integer such that i € Range(id(n)). Then,
Ya € Z- ((u, 2), (i, a)) € new (denoted by (i, 2) =% (i, a)) if the following conditions hold:

e Va -a<d <a+z=d ¢& Dom(u)

e val(y') € val(p) +{d'|la <d <a+z}

o id(y)€id(p) +{dla<d <a+z}

e Vd -a<d <a+z=id(y)(d)=1

o base(y') € base(p) + {i} and base(y/)(i) = a
e alloc(p') € alloc(p) + {3} and alloc(p')(i) = =
o size(y') € size(pn) + {i}

Note that (u, z) =5 (4!, a) iff 1/ is derived from g by allocating a block of z bytes of memory
starting at address a.

Memory Deallocation (del : Mem x Z — Mem). Let u be any memory and a be any
address. If a € Dom(u), del(p,a) = p. Thus, deleting an invalid address has no effect on the
memory. Otherwise, let i = id(p)(a). If base(u)(i) # a, del(p,a) = p. Therefore, deleting an
address that is not the starting address of the corresponding memory block leaves the
memory unchanged. Otherwise, let X = Dom(u) \ {d'|a < d’ < a+ alloc(p)(7)} and

I = Dom(base(u)) \ {i}. Then, del(u,a) =y’ such that

1. wal(p') = val(p) | x
2. id(i) = id() |x
3. base(p') = base(p) |1

4. alloc(p') = alloc(p) |1

5. size(u') = size(p) |1

CMU/SEI-2006-TN-030 7



In other words, to obtain del(u,a), the memory block starting at address a from p is
deallocated.

Store. For any set X, we denote the set of all stacks of type X by stack(X). A store

o : Var — stack(Z) is a map from variables to stacks of addresses. The empty store oy maps
every variable to the empty stack. We write Sto to mean the set of all stores. For any store
o, variable v and address a we write

e push(o,v,a) to mean the store o’ such that for any variable v, if v/ = v,
o'(v") is obtained by pushing a on top of o(v') and otherwise ¢’(v) = o(v')

e pop(o,v) to mean the store o’ such that for any variable v/, if v = v, o/(v’)
is obtained by popping the top element off o(v') and otherwise
o' (v') = o)

Expression Evaluation. We distinguish between the evaluation of lvalues and rvalues and
use different notation to denote the two concepts. In essence, an lvalue evaluates to an
address, while an rvalue evaluates to a value. Let L be a special element not in Z that
denotes an undefined address or value. For any X € stack(Z), let top(X) evaluate to L if X
is empty and to the top element of X otherwise. We implicitly extend the domain of any
function ¢ from Z to Z U { L} by setting ¢(L) = L and the domain of the C operators to

Z U {L} by letting the result be L, if either of the operands is L.

Let o be a store and u = (val, id, base, alloc, size) be a memory. Then, the functions
(oyu)y : LV — ZU{L} and [o,p] : RV — Z U {L} are defined as follows:

o (o,p)(v) = top(o(v))

o (o, p)(xrv) = [0, pf(rv)

* [o,p(2) =

¢ [0, pl(lv) = val({o, ) (Iv))

o [0, pl(&lv) = (o, p)(lv)

® [o,pl(rv op rv') = [o, u)(rv) op [o, pl(r0')

Memory Update. For any o € Sto, p € Mem, lv € LV, and rv € RV, if (o, u)(lv) # L and
(o, p)(lv) € Dom(u) and [o, u](rv) # L, we write p[lv = rv] to denote the memory y' such
that

L. val(p') € val(p) + {{o, p)(lv)}
2. val(W)({o, p)(lv)) = [o, u)(rv)
3. dd(p') = id(p)

4. base(y') = base(u)

5. alloc(y) = alloc(y)

8 CMU/SEI-2006-TN-030



6. size(n') = size(p)

Note that y is uniquely defined, since val(p')({o, p)(Ilv)) = [o, u|(rv) and g’ must agree with
u at other addresses.

Definition 1 (Transition System). A Transition System (TS) is a triple (S, Init, o)
where: (1) S is a set of states, (2) Init C S is the set of initial states, and (3) 6 C S x S is
the transition relation.

Semantics. The semantics of a program P = (prs, ipr) is given as a TS [P] = (S, Init, ),
defined as follows:

e S =7 xStox Mem U {STOP}: a state is a triple consisting of a location,
a store, and a memory. The special state STOP denotes the termination
of the program.

o Let Upeprs GVar(p) = {v1,...,v,} be the set of global variables of P. Let
W1, .,y be a sequence of memories and a, ..., a, be a sequence of
addresses such that

(1) (19, 1) == (p1,a1)

(2) Vi€ {2,....n} - (i1, 1) ™5 (s, a;)

(3) Vie {1,....,n} - val(pn)(a;) =0

Also, let o1,...,0, be the sequence of stores such that
(1) o1 = push(og, v1,a1)

(2) Vi€ {2,...,n} - 0; = push(oi—1,vi,a;)

Then, (ILoc(ipr), op, tin) € Init. In other words, the initial state is obtained
by allocating memory for the global variables and initializing them to zero.

e The transition relation is defined with respect to the program statements
and is defined next.

Transitions. Let s = (I, 0, u) be any state. The successors of s according to the transition
relation § depend on the statement at location [ and are defined as follows [we write s — s’ to
mean that (s,s’) € d]:

o Let D = UpeprsDom(Comm(p)). If { ¢ D, s — STOP, else let cp be the
unique element of prs such that [ € Dom(Comm(cp)). Let
st = Comm(cp)(l). Thus, cp is the procedure to which the location [
belongs and st is the statement at location . We now consider subcases
based on the type of st. In the following, for any lvalue lv (respectively
rvalue rv) we write (lv) (respectively [rv]) to mean (o, u)(lv) (respectively

[0, 1] (rv)).

o st = asgn(lv,rv,rv'): If (lv) = L or (lv) & Dom(u) or [rv] = L or
[rv'] = L, s = STOP. Otherwise, s — ([rv'], o, u[lv = rv]). In other
words, the memory is updated by assigning the evaluation of rv to the
address obtained by evaluating [v.

CMU/SEI-2006-TN-030 9



e st = bran(rv,rv’,rv"): If [rv] = L or [rv'] = L or [rv"] = L, s — STOP.
Otherwise, if [rv] =0, s — ([rv"], 0, 1), else s — ([rv'], o, ).

e st = malloc(lv,rv,rv"): If (lv) = L or (lv) & Dom(u) or [rv] = L or
[rv'] = L, s = STOP. Otherwise, let ' be any memory such that

" € Mem -3a € Z - (u, [rv]) — (¢, a) Amem’ = p”[{lv) = a]. Then,
s — ([rv'], 0, 4").

o st = free(rv,rv’): If [rv] = L or [rv] € Dom(u) or [rv'] = L, s — STOP.
Otherwise, s — ([rv'], o, del(u, [rv])).

e st = call(p,rv): Recall that p is a procedure. If p & prs or [rv] = L,
s — STOP. Otherwise, let p = (GVar, LVar, Comm, ILoc), where
LVar = {v1,...,v,}. Let pi, ..., pn, p’ be a sequence of memories and
ai,...,an,a be a sequence of addresses such that

L (1) == (1,a1)
2. Vi€ {2,..,n}- (o1, 1) ™5 (ui, a;)
3. (pny 1) == (i, )
4. val(p')(a") = [rv]

Also, let o1,...,0,,0" be the sequence of stores such that

1. o1 = push(o,v1,a1)
2. Vi €{2,...,n} o; = push(oi_1,v;,a;)

3. o' = push(oy, retpc, a’)
Then, s — (ILoc,o’, ).

o st = ret: If [retpc] = L, s — STOP. Otherwise, let a be the top element of
o(retpc). Then, s — ([retpc|, pop(o, retpe), del(u, a)).

3.3 Interpretation

In essence, the interpretation step adds extra code to the target C program P to model the
manipulation of the memory by various statements of P. We have implemented the
interpretation step by extending the CIL tool [Necula 02]. In addition to supporting many of
the esoteric features of C, CIL provides us access to the complete type information associated
with P. Also, we assume that P is preprocessed. Recall that we have modeled memory as
consisting of five components: val, id, base, alloc, and size. The program itself manipulates
val directly, since program assignments modify values of variables. Thus, we have to add
extra code to model the manipulation of the remaining memory components. Let

P = (prs, ipr). First, we add four global arrays id, base, alloc and size that will be used
to model id, base, alloc, and size, respectively. We also add a global variable ID that stores
the ID of the next memory block allocated. Figure 1 shows a program that we use as a
running example.
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void foo() {
char x[20],x*y;
y = (charx)malloc(15);
strcpy(x,’’hello ‘¢);
strcpy(y,’’ world ...¢¢);
strcat(x,y + 1);

Figure 1. Example Program

Global Allocation. Let V' = Upeprs GVar(p) be the set of global variables of P. We create a
dummy initial procedure dummy main. In the body of dummy main, we first initialize ID to
zero. We then add the following code for each v € V:

id[&v] = ID; baselid[&v]] = &v;
alloc[id[&v]] = 1; v = 0; ID++;

This code allocates fresh memory for each global variable and initializes all the global
variables to zero. Finally, we call the actual initial procedure ipr. We create dummy main
because ipr may be called recursively multiple times, and we only want to allocate memory
for a global variable once.

Local Allocation. For any procedure p € prs, recall that LVar(p) denotes the set of local
variables of p. At the beginning of p, we add the following code for each v € LVar(p):

id[&v] = ID; baselid[&v]] = &v;
alloc[id[&v]] = 1; ID++;

In essence, the above code models the allocation of fresh memory for v. Note that local
variables are uninitialized.

Allocating Arrays. For statically defined arrays, we make two allocations—one for the
variable that holds the initial address of the array and another for the array itself.
Specifically, for each array variable v of size k, we add the following code (in dummy main if v
is global and at the beginning of procedure p if v is local to p):

id[&v] = ID; baselid[&v]] = &v;
alloc[id[&v]] = 1; ID++;

id[v] = ID; basel[id[v]] = v;
alloc[id[v]] = k; ID++;

For global arrays, we also set size[id[v]] to zero, since all global arrays are filled with zeros
by default. For arrays initialized explicitly, we set alloc[id[v]] and size[id[v]] based on
the initializer. For example, if we have the initializer char v[] = ‘‘hello’’, we set both
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alloc[id[v]] and size[id[v]] to 6. CIL makes all the information required to do this
assignment available.

For simplicity, we assume that the value of any variable can be stored in one byte of memory.
In practice, we will use type information that CIL provides to allocate memory appropriately
(i.e., set the value of alloc[...]). For example, suppose we have an array of int of size 10
and a variable of type int or int* requires four bytes. Then, we set alloc[...] to 4 for the
array variable and to 40 for the array itself. Here’s how each statement st of a procedure p is
handled by the interpretation based on the type of st:

e st = asgn(lv,rv,rv’): This statement is left as is, since the only component
of memory affected by this statement is val and the effect is modeled by
the statement itself.

o st = bran(rv,rv’,rv”): This statement is also left as is, since it does not
affect the memory at all.

e st = malloc(lv,rv,rv"): This statement means that we must allocate a
block of rv bytes of memory and store the address of the first byte of the
allocated block in lv. Hence, we replace st with the following code:

lv = *; id[1lv] = ID;
base[id[1v]] = 1v;
alloc[id[1v]] = rv; ID++;

The first assignment sets lv to a nondeterministic value, since the starting
address of the block of memory allocated is undefined. Such assignments
are handled appropriately in the subsequent verification stage. Also, since
the actual contents of the allocated block of memory is undefined, so is the
value of alloc[id[1v]].

o st = free(rv,rv’): This statement means that we must deallocate the
memory represented by rv. Therefore, we replace st with the following
assignment: alloc[id[rv]] = 0.

o st = call(p,rv): If the called procedure p is defined within the target
program P, we leave st unchanged. Otherwise, st is replaced by a set of
statements that model the effect of procedure p on the memory. Later, we
present some specific examples of p, along with the set of statements that
are used to replace p.

e st = ret: Since we are returning from the current procedure, we must
deallocate the memory for local variables. Therefore, for each v € LVar(p),
we add the following assignment just before the statement st:
alloc[id[&v]] = O.

Interpreting Procedures. As mentioned before, a procedure call without definition is
replaced with code that models the effect of this procedure on various memory components.
We now give some examples of this process. We do not consider calls to malloc and free,
since they are handled directly by malloc and free statements, respectively.
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Interpreting strepy. A call to strcepy(p,q) is replaced with the assignment size[id[p]] =
size[id[q]] - (q - basel[id[ql]) + (p - baselid[pl]).

Interpreting strncpy. A call to strncpy(p,q,r) is replaced with

if ((size[id[q]l] - (g-basel[id[ql]l)) > r)
sizel[id[p]] = *; else

size[id[p]] = ((sizel[id[ql]) -
(g-base[id[ql])) + (p-baselid[pll);

To understand the above two interpretations, consider the following excerpt from the Linux
manual pages:®

The strcpy(dest,src) function copies the string pointed to by src (including the termi-
nating null character) to the array pointed to by dest. The strncpy(dest,src,n) func-
tion is similar, except that not more than n bytes of src are copied. Thus, if there is
no null byte among the first n bytes of src, the result will not be null-terminated. In
the case where the length of src is less than that of n, the remainder of dest will be
padded with null bytes.

We leave it to the reader to verify that the interpretations described for strcpy and strcat
correspond to their specifications as shown above.

Interpreting strcat. A call to strcat(p,q) is replaced with the assignment size[id[p]] =
size[id[q]l] - (q - basel[id[ql]l) + (sizelid[pl] - 1).

Interpreting strncat. A call to strncat(p,q,r) is replaced with

if ((sizelid[ql]l-(gq-baselid[q]l]l+1))>r)
size[id[p]] = sizel[id[pl] + r;

else sizel[id[pl] = sizel[id[pl] +
(sizel[id[q]] - (g-baselid[q]]l+1));

In the above code, we assume that q is a pointer variable. If q is a string constant, we
eliminate (q - basel[id[ql]) and replace size[id[q]] with the number of characters in q
including the terminating null character. For instance, a call to strcpy(p,’’hello’’) is
replaced with the assignment size[id[p]] = 6 - (p - baselid[pl]). Calls to other
procedures that manipulate strings are treated in an appropriate manner. It is noteworthy
that our interpretation scheme handles most routines in the Microsoft StrsafeS library in
addition to the standard C string library.

Interpreting the Target Operation. Recall that the input to interpretation is a program
P and a target operation O and that O leads to the addition of an assertion A. In essence, A

® http://jamesthornton.com/linux/man /strcpy.3.html.
6 http://msdn.microsoft.com/library/default.asp?url=/library /en-us/dnsecure/html/strsafe.asp.
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asserts that if O affects the size of any buffer b, the new size of b does not exceed the number
of bytes allocated for b. For instance, in each procedure call described above, if the call is
also the target operation, we specify the assertion assert(size[id[p]l] <= alloc[id[p]])
in addition to the replacement code.

Logical Memory Model. We assume a logical model of memory, which means that the
result of any arithmetic involving a pointer p is assumed to point somewhere within the same
block of memory. This decision has the important consequence of making our procedure
conservative. Thus, we may report an overflow when it cannot happen in practice.

For instance, suppose p points to the beginning of a block b of 10 bytes of memory. Suppose
our program stores 20 bytes starting from the memory address p 4+ 100. Since we assume that
p + 100 still belongs to b and b has only 10 allocated bytes, we report a buffer overflow.
However, during actual execution, the memory layout may cause p + 100 to always point to
the beginning of another block 4" of 50 bytes. Thus, there would be no buffer overflows in
practice. Nevertheless, such situations are unpredictable and should be identified as flaws,
which is what our procedure does.

Normalization. The second consequence of using a logical memory model is a restriction on
the syntax of expressions. Specifically, we do not allow any “top-level” C operators to appear
as part of the index of the id array. Expressions that obey this restriction are said to be
normalized. In practice, we always normalize expressions by recursively replacing any
top-level expression of the form e op €’ in the index of id with e. For instance, the expression
id[*(x + y) + z] is normalized to id[*(x + y)]. The rationale behind normalization is
the logical memory model. Since pointer arithmetic does not alter the block of memory
involved, in a semantic sense, the block-ID of the operand is the same as the block-ID of the
result. Thus, these two block-IDs can be unified, which is precisely what normalization
achieves. In addition, normalization results in an expression in normal (i.e., simplest and
unique) form.

For example, the result of interpreting the program P in Figure 1 (on page 11) is shown as
program P in in Figure 2. The statements of P (specifically, the procedure calls) that are
replaced during interpretation are commented out in P. We assume that the target operation
is the call to strcat. Note that due to normalization, the expression id[y+1] is replaced with
id [y] while interpreting the target. We also annotate the statements of P with invariants
generated upon successful verification. The invariants are commented and enclosed in curly
braces. Multiple consecutive invariants are implicitly conjuncted. Further details about the
verification procedure and invariants are presented in Sections 4 and 5, respectively.
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void foo() {
char x[20],x*y;

id[&x] = ID; baselid[&x]] = &x;
alloc[id[&x]] = 1; ID++;

id[x] = ID; baselid[x]] = x;
alloc[id[x]] = 20; ID++;

id[&y] = ID; basel[id[&yl]l = &y;

alloc[id[&yl] = 1; ID++;
/*{(x - basel[id[x]]) == 0}x*/
/*{alloc[id[x]] == 20}*/
//y = (char*)malloc(15);
y = *; id[y] = ID; basel[id[yl] = y;
alloc[id[y]] 15; ID++;
/*{(x - base[id[x]]) +

2%(y - baselid[yl]) == 0}x*/
/*{alloc[id[x]] == 203}*/
//strcpy(x,’’hello ¢°);
size[id[x]] = 7 - (x - basel[id[x]]);
/*{size[id[x]] -

2x(y - basel[id[yll) == 7}*/
/*{alloc[id[x]] == 20}*/
//strcpy(y,’’ world ...“);
size[id[y]] = 11 - (y - basel[id[yll);
//strcat(x,y + 1);
/*{sizelid[y]l] - (y-baselid[yl]l) +

size[id[x]] == 18}*/
/*{alloc[id[x]] == 203}*/
size[id[x]] = sizel[id[y]] -

(y+1-base[id[yl]) + (sizelid[x]]-1);

/*{size[id[x]] == 16}*/
/*{alloc[id[x]] == 20}/
assert(sizel[id[x]] <= alloc[id[x]]1);

Figure 2: Result of Interpretation
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4 Verification

The result of the interpretation of P and O is a new program P containing an assertion A.
We now verify that A can never be violated when P is executed. A process of “certifying”
iterative refinement, shown in Figure 3, does this verification and consists of these steps:

1. abstraction. We construct a finite state conservative model M of the
target C program P using a technique called predicate abstraction. Also,
we construct a temporal logic specification ¢ such that if M satisfies ¢
(denoted by M = ¢), the assertion A can never be violated when executing
P. We proceed to Step 2.

2. certifying verification. We model check M |= ¢ using a certifying model
checker. If M |= ¢, from the above step we know that A can never fail
when P is executed. In this case, the model checker also generates an
invariant Inv, and the verification process terminates with success and
returns Inv. The invariant Inv is used subsequently to generate the
certificate, Cert, and the annotations for P that can be used to validate
Cert. On the other hand, suppose M [~ ¢. Let CE be the counterexample
returned by the model checker. We proceed to Step 3.

3. validation. We check if CE is also a counterexample with respect to the
original C program P.If so, the verification terminates with a failure and
returns the counterexample CE. Otherwise, CE is said to be spurious,
since it is a behavior that does not belong to P but was only introduced in
the model M by the abstraction process. We proceed to Step 4.

4. refinement. We construct a more precise model M using the spurious
CE. The new model is guaranteed not to contain CE as an admissible
behavior. We now repeat Step 2 above.

C
Program ifvi No bug
Abstraction —=| Certl_fylr_lg

Verification | |qyariant

Counterexample

Bug found
Real

counterexample

Spurious counterexample

Refinement Validation

Figure 3: Certifying Iterative Refinement

Note that iterative refinement improves upon static analysis by enabling automated
verification of counterexamples for spuriousness and automated model refinement to
eliminate spurious counterexamples. Iterative refinement is therefore extremely suitable for
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detecting violations of safety conditions (such as buffer overflows) in large-scale software
systems in an automated and scalable manner. In addition, the certifying iterative refinement
we use can generate invariants that are used to independently validate its result. Iterative
refinement, in both noncertifying [Ball 01] and certifying [Henzinger 02, Chaki 06] forms, has
been described in detail in the context of other verification projects. However, there is one
crucial difference between the iterative refinement (specifically, the predicate abstraction
step) used in those projects and in this work. We describe the difference in more detail below:

Predicate Abstraction. Predicate abstraction [Graf 97] creates a conservative finite state
machine model of a program. The basic idea behind predicate abstraction is to keep the
control-flow aspect of the program’s execution unchanged and to abstract the infinite possible
memory configurations that the program can reach during its execution into a finite set of
values for a collection of predicates. While the full details of predicate abstraction are beyond
the scope of this report, an important concept involved is that of a weakest precondition.
Indeed, this concept is also used in the validation step of iterative refinement.

Weakest Precondition. Given a memory m and an rvalue e, we say that m satisfies e, and
denote this as m = e, iff e evaluates to a nonzero value according to m. For instance, if e is
v >0, m = e iff v is assigned a positive value according to m. An rvalue e is said to be
weaker than an rvalue €’ iff m =€’ = e [i.e., m = (!¢/)||e as per our syntax] for any m. Thus,
v < 10 is weaker than v < 5. Then, the weakest precondition of an rvalue e with respect to
an assignment [hs = rhs, denoted by WP[e] {lhs = rhs}, is defined to be the weakest rvalue
¢’ such that the following holds: on executing the assignment lhs = rhs from any memory m/
such that m’ | ¢/, a program is guaranteed to reach a memory m such that m = e.

In practice, €’ is usually obtained by replacing every occurrence of lhs with rhs in e. To
understand why this works, let e be v < 10 and the assignment be v = v' + 5. Now, for v < 10
to hold after the assignment, it is necessary and sufficient for v' +5 < 10 to hold before the
assignment, and that is precisely the rvalue obtained by replacing v with v/ + 5 in e.
However, for our purposes, €' is computed by normalizing the result of replacing lhs with rhs
in e. For instance, if e is base[id[p]] = ¢ and the assignment is p =p + 1, WP[e] {p =p + 1}
is base[id[p]] = ¢. Note that due to the logical memory model, our result is equivalent to the
expression (specifically, base[id[p + 1]] = ¢) that we would obtain by the standard procedure.
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5 Certification

Recall in Step 2 of the iterative refinement process that if verification succeeds—the
inviolability of assertion A could be proved—we obtain an invariant Inv. The process by
which Inv is constructed has been described in the literature [Chaki 06] and we do not
present it here. Instead, we describe how Inv is used to generate (1) a certificate Cert that
proves why the operation O cannot lead to a buffer overflow and (2) annotations that enable
the independent validation of Cert.

Invariant. Let P = (prs, ipr) and L = Upeprs Dom(Comm(p)) be the set of locations of the
procedures of P. Then, Inv : L — RV is a function that maps each location [ to an rvalue rv.
For any location [ € L, let st be the statement at location . Then, in essence, Inv(l)
expresses a condition that must hold whenever the execution of P reaches st. For instance,
suppose that Inv(l) = (z < y). Then, the value of variable z must be less than the value of y
whenever P is about to execute the statement at [. Figure 2 shows our example P annotated
with invariants.

Certificate Construction. In essence, Cert is a proof of a verification condition VC', which
is a logical statement of the following three facts:

e (Invl) Inv is satisfied by the initial state of P.
e (Inv2) Inv is preserved by the execution of P.

e (Inv3) Let A assert the rvalue e and let [ be the location of A.

Then, Inv(l) implies e. Note that the facts Invl and Inv2 above assert that Inv is indeed a
valid invariant for P, while Inv3 asserts that Inv implies the inviolability of A.

To construct Cert, we use the following two steps:

e (Certl) Construct VC.

e (Cert2) Prove VC using a proof-generating theorem prover.

For Step Cert2, we use a theorem prover based on Boolean satisfiability (SAT). The idea is
to translate the logical negation of VC into a propositional formula €2 and check for the
satisfiability of €2 using a proof-generating SAT solver like ZCHAFF [Zhang 03]. If Q is
unsatisfiable (which is equivalent to VC being valid), Cert is the resolution proof emitted by
the SAT solver. Such a SAT-based approach yields extremely compact certificates in practice
and is described in detail elsewhere [Chaki 06]. We now describe Step Certl—that is, the
procedure for constructing VC—beginning with a generalization of the concept of weakest
preconditions to statements.

Statement Precondition. For any invariant Inv and any statement st, we write

Pre(st, Inv) to mean the weakest condition that must hold before the execution of st in order
for the invariant to be satisfied at each of the successor locations of st. For instance, suppose
that st is asgn(lv,rv,rv’). Then, Pre(st, Inv) is simply WP[Inv(rv")] {lv = rv}. Also, if st is
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bran(rv,rv’,rv"), Pre(st, Inv) = (rv && Inv(rv')) || (Irv && Inv(rv”)). For other types of
statements, Pre(st, Inv) is defined appropriately. Henceforth, we use the terms formula and
rvalue synonymously.

Constructing VC. We generate VC by conjunction over a set W of formulas defined as
follows:

o Letl = ILoc(ipr(ﬁ)) be the initial location of the initial procedure of P.
Note that Inwv(l) is logically equivalent to fact Invl above. Then,
Inv(l) € 0.

e For each statement st of ﬁ, let [ be the location of st. The formula
¢ = (Inv(l) = Pre(st, Inv)) asserts that Inv is preserved by the execution
of st. Then, ¢ € W.

o Let A assert the rvalue e and let [ be the location of A. Note that the
formula ¢ = (Inv(l) = e) is equivalent to Inv3 above. Then, ¢ € .

Ezxample. With respect to Figure 2, ¥ contains the following formula, which states the
inviolability of the assertion and is clearly valid:

(size[id[x]] == 16)&&(alloc[id[x]] == 20)
= (size[id[x]] <= alloc[id[x]])

We leave it up to you to verify that the other elements of ¥ are also valid formulas.

Annotations. Recall that, in addition to Cert, we generate annotations for the original
program P that can be used to validate Cert. These annotations are simply rvalues
associated with the statements of P and are derived from the invariant Inv in the following
manner. Consider any statement st of P. Suppose that st is also a statement of the
interpreted program P. Let | be the location of st. Then, we annotate st with the rvalue
Inv(l). Otherwise, we know that st was replaced in P with a sequence of statements X. Let
l1,...,l, be the locations of the statements in X. Then, we annotate st with the sequence of
lvalues Inv(ly),. .., Inv(ly).

Certificate Validation. The annotations generated above are used to validate Cert in the
following manner:

1. (Step 1) First, we use interpretation to reconstruct P from P. Note that
doing so is possible, since interpretation is a completely deterministic
procedure and is guaranteed to yield the same output given identical
inputs.

2. (Step 2) Next, using the annotations, we reconstruct the invariant Inv.
Once again, this is possible since the annotations are generated in a
deterministic manner. Also, for the same P and P there is a one-to-one
mapping between invariants and annotations.

3. (Step 3) Once we have Inv, we reconstruct VC' using P and Inv. Due to
the deterministic nature of the procedure for computing VC', we are
assured of obtaining the exact same V(' obtained during the generation of
Cert.
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4. (Step 4) Finally, we use a suitable proof checker to confirm that Cert is a
proper proof of the validity of VC.

Trusted Computing Base. The trusted computing base (TCB) required for validating
Cert consists of the tools needed to perform Steps 1 to 4 described above. Specifically, it
contains the

e interpreter needed for Step 1
e program for reconstructing Inv from the annotations
e V( generator

e proof checker required in Step 4

Thus, the TCB is much smaller and simpler (and hence more trustworthy or amenable to
formal verification) than the software model checker required to verify P or the theorem
prover necessary for proving VC. Indeed, measurements on our own infrastructure showed
that the TCB is about 15 times smaller than the rest of the system.

20 CMU/SEI-2006-TN-030



6 Experimental Validation

We implemented our approach on top of the COMFORT reasoning framework and the CIL
tool. Specifically, we implemented interpretation as an extension of CIL, while the verification
and certification stages were implemented by extending COMFORT. We experimented with a
set of four publicly available benchmarks. All our experiments were carried out on a quad 2.4
GHz machine with 4GB RAM running RedHat Linux 9.

Tool FlawFinder ITS4 RATS Splint | BOON | ComFoRT
# % #H1 % | # | % | H#| D | H#| N | # %
Actual Errors | 10 91 11 | 100 | 11 | 100 | 3 | 27 | 4 | 36 | 11 100
False Alarms | 6 67 4 | 44|16 | 67 |0 0 313310 0
Safe Proved 3 33 5156 | 3|39 100|667 |9 100
Missed Errors | 1 9 0 0 0 0 8| 73 | 7|64 |0 0

Figure 4. Wilander Suite Results

Wilander Suite. The first set of benchmarks was designed by Wilander and Kamkar to
compare a set of publicly available static intrusion-detection tools (FlawFinder, ITS4, RATS,
Splint, and BOON) [Wilander 02]. The suite consisted of a set of procedures to check for
buffer-overflow and format-string vulnerabilities. For our experiments, we used only the
subset of benchmarks targeted toward overflows containing 9 safe and 11 buggy (i.e., unsafe)
examples. Our results are summarized in Figure 4 under the COMFORT column. The
remaining results are reproduced from those of Wilander and Kamkar [Wilander 02]. The
subcolumns under “#” contain actual numbers, while those under “%” contain percentages.
We see that our approach (COMFORT) is the only one with zero false positives (i.e., false
alarms) and zero false negatives (i.e., missed errors). Moreover, the size of Cert (625 bytes)
was negligible compared to the benchmark file size (14KB).

Tool TD | DR | FA | FAR | TC | CR
ARCHER | 264 | 90.7 | 0 0 0 0
BOON 2 1069| O 0 0 0
PolySpace | 290 | 99.7 | 7 2.4 7 2.4
Splint 164 | 56.4 | 35 12 35 12
UNO 151 | 519 O 0 0
ComFoRT | 208 | 71.5 | O 0 0 0

Figure 5: Kratciewicz Suite Results

Kratciewicz Suite. The second set of benchmarks was developed by Kratciewicz
[Kratciewicz 05]. This set is similar to Wilander’s but is more comprehensive. Specifically, it
consists of 291 test cases involving illegal array accesses, shared memory, signal handling, and
function pointers. These benchmarks were also used originally to compare a suite of public
tools, namely, ARCHER, BOON, PolySpace, Splint, and UNO. The results of our approach
on these benchmarks are summarized in Figure 5 in the row labelled COMFORT. The other
rows are reproduced from Kratciewicz’s thesis. The columns in Figure 5 have the following
meaning: TD = number of examples handled; DR = rate of handling examples; FA =
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number of false alarms; FAR = false alarm rate; TC = number of confusions; CR = confusion
rate. Our approach yields zero false alarms and zero confusions (i.e., the inability to
distinguish between correct and buggy versions of the same example) and is second only to
ARCHER overall. Also, the average size of Cert (56 bytes) was negligible compared to the
benchmark file size (3KB). The main reason for our partial coverage of the benchmarks is the
inability of our model checker to handle features of C, such as function pointers.

Category TP | TPD | TN | TNC
Strings 14 10 11 7
Pointer Subterfuge 1 1 1 1
Dynamic Memory 4 4 2 2

Figure 6: Seacord Suite Results

Seacord Suite. We derived the third set of our benchmarks from examples in a book on
secure programming in C/C++ [Seacord 06]. We selected a set of 31 code snippets dealing
with string buffer overflow, pointer vulnerabilities, and dynamic memory allocation. The
results of our experiments with this benchmark suite are presented in Figure 6. The columns
in the figure should be read as follows: TP = true positives; TPD = true positives detected;
TN = true negatives; TNC = true negatives confirmed. Our approach was perfect on
examples involving pointer subterfuge and dynamic memory allocation. However, it could
not handle some of the string examples due to limitations of the model checker. The average
file size for the correct (i.e., safe) examples was over 1.3KB, while the average size of Cert
was just 71 bytes.

Tool P(d) | P(f) | P(—f|d)
PolySpace | 0.87 0.5 0.37
Splint 0.57 | 0.43 0.30
BOON 0.05 | 0.05 -
ARCHER | 0.01 0 -
UNO 0 0 -

CoMFORT | 0.43 | 0.21 1.00

Figure 7: Zitser Suite Results

Zitser Suite. The final set of our benchmarks was developed by Zitser and colleagues to test
the same set of tools that Kratciewicz used for her thesis [Zitser 04]. This test suite was the
most realistic and consisted of code from real-life software (bind, sendmail and wu-ftpd) with
known vulnerabilities. Zitser, Lippmann and Leek created 14 buggy examples (4 from bind, 7
from sendmail, and 3 from wu-ftpd) that contained actual vulnerabilities previously found in
these programs. For each buggy example, they also created a correct version by applying the
patches used in reality to fix these errors.

The results of our technique are summarized in Figure 7 in the COMFORT row. As usual,
the other rows are reproduced from those of Zitser, Lippmann, and Leek [Zitser 04]. The
columns in Figure 7 can be understood as follows: Let T'(d) be the maximum number of
overflow detections possible and C(d) be the number of overflows actually detected. Let T'(f)
and C(f) be the corresponding numbers for false alarms. Then, P(d) = C'(d)/T(d) and
P(f)=C(f)/T(f). Also, let C(df) be the number of times a detection was paired with a
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false alarm (i.e., a confusion) for a given buggy/correct pair of programs. Then,

P(~fld) =1—C(df)/C(d). We note that our approach has the lowest false alarm rate (we
ignore the results for BOON, ARCHER, and UNO, since they were insignificant [Zitser 04]).
Moreover, we have a perfect 1.0 score for P(—f|d), meaning that when our approach found
an actual buffer overflow in a program, it could also prove the fixed version of the same
program to be correct. Finally, the average size of Cert was just 172 bytes against the
average benchmark file size of 12KB.
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7 Conclusion

We presented a framework for finding and certifying the absence of buffer overflows in C
programs. Our approach is based on a combination of a novel interpretation technique and
certifying software model checking. Experimental results with an early prototype indicate
that our technique is effective on a set of public and real-life benchmarks. Most of the issues
we faced were due to limitations of the model checker—limitations that must be addressed to
make our approach more widely adoptable. Finally, a more general memory model and
interpretation procedure are needed to extend our approach to a wider class of vulnerabilities
such as format string errors.

24 CMU/SEI-2006-TN-030



References

[Ball 01]

[Chaki 05]

[Chaki 06]

[Cowan 00]

[Dahn 03]

[Dhurjati 06]

[Dor 03]

Ball, T. & Rajamani, S. K. “Automatically Validating Temporal
Safety Properties of Interfaces”, 103-122. Proceedings of the Sth
International SPIN Workshop on Model Checking of Software
(SPIN ’01), volume 2057 of Lecture Notes in Computer Science.
Toronto, Canada, May 19-20, 2001. New York, NY:
Springer-Verlag, 2001.

Chaki, S.; Ivers, J.; Sharygina, N.; & Wallnau, K. “The ComFoRT
Reasoning Framework”, 164-169. Proceedings of the 17th
International Conference on Computer Aided Verification (CAV
'05), volume 3576 of Lecture Notes in Computer Science.
Edinburgh, Scotland, July 6-10, 2005. New York, NY:
Springer-Verlag, 2005.

Chaki, S. “SAT-Based Software Certification”, 151-166.
Proceedings of the 12th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS
'06), volume 3920 of Lecture Notes in Computer Science. Vienna,
Austria, March 25-April 2, 2006. Berlin, Germany:
Springer-Verlag, 2006.

Cowan, C.; Wagle, P.; Pu, C.; Beattie, S.; & Walpole, J. “Buffer
Overflows: Attacks and Defenses for the Vulnerability of the
Decade”, 119-129. Proceedings of the DARPA Information
Survivability Conference and Ezpo (DISCEX). Hilton Head, South
Carolina, January 25-27, 2000. Los Alamitos, CA: IEEE Computer
Society, 2000.

Dahn, C. & Mancoridis, S. “Using Program Transformation to
Secure C Programs Against Buffer Overflows”, 323-333.
Proceedings of the 10th Working Conference on Reverse
Engineering (WCRE ’03). Victoria, BC, Canada, November 13-16,
2003. Los Alamitos, CA: IEEE Computer Society, 2003.

Dhurjati, D. & Adve, V. S. “Backwards-Compatible Array Bounds
Checking for C with Very Low Overhead”, 162-171. Proceedings of
the 28th International Conference on Software Engineering (ICSE
’06). Shanghai, China, May 20-28, 2006. New York, NY:
Association for Computing Machinery, 2006.

Dor, N.; Rodeh, M.; & Sagiv, S. “CSSV: Towards a Realistic Tool
for Statically Detecting All Buffer Overflows in C”, 155-167.
Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation (PLDI ’03).
San Diego, CA, June 9-11, 2003. New York, NY: Association for
Computing Machinery, 2003.

CMU/SEI-2006-TN-030



[Ganapathy 03] Ganapathy, V.; Jha, S.; Chandler, D.; Melski, D.; & Vitek, D.
“Buffer Overrun Detection Using Linear Programming and Static
Analysis”, 345-354. Proceedings of the 10th ACM Conference on
Computer and Communications Security (CCS ’03). Washington,
DC, October 27-30, 2003. New York, NY: Association for
Computing Machinery, 2003.

[Graf 97] Graf, S. & Saidi, H. “Construction of Abstract State Graphs with
PVS”, 72-83. Proceedings of the 9th International Conference on
Computer Aided Verification (CAV ’97), volume 1254 of Lecture
Notes in Computer Science. Haifa, Israel, June 22-25, 1997. New
York, NY: Springer-Verlag, 1997.

[Henzinger 02] Henzinger, T. A.; Jhala, R.; Majumdar, R.; Necula, G. C.; Sutre,
G.; & Weimer, W. “Temporal-Safety Proofs for Systems Code”,
526-538. Proceedings of the 14th International Conference on
Computer Aided Verification (CAV ’02), volume 2404 of Lecture
Notes in Computer Science. Copenhagen, Denmark, July 27-31,
2002. New York, NY: Springer-Verlag, 2002.

[Jarzombek 04] Jarzombek, J. “Systems, Networks and Information Integration
Context for Software Assurance”.
http://www.sei.cmu.edu/products/events/acquisition /2004~
presentations/jarzombek /jarzombek.pdf, (January
2004).

[Jones 97] Jones, R. & Kelly, P. “Backwards-Compatible Bounds Checking for
Arrays and Pointers in C Programs”, 13-26. Proceedings of the
Third International Workshop on Automatic Debugging
(AADEBUG ’97), volume 2(009) of Linkoping Electronic Articles
in Computer and Information Science. Linkoping, Sweden, May
26-27, 1997. Linkoping, Sweden, 1997.

[Kratciewicz 05] Kratciewicz, K. “Evaluating Static Analysis Tools for Detecting

Buffer Overflows in C Code”. Master’s diss., Harvard University,
Cambridge, MA, 2005.

[Namjoshi 01] Namjoshi, K. S. “Certifying Model Checkers”, 2—-13. Proceedings of
the 13th International Conference on Computer Aided Verification
(CAV ’01), volume 2102 of Lecture Notes in Computer Science.
Paris, France, July 18-22, 2001. New York, NY: Springer-Verlag,
2001.

[Namjoshi 03] Namjoshi, K. S. “Lifting Temporal Proofs through Abstractions”,
174-188. Proceedings of the 4th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI
'03), volume 2575 of Lecture Notes in Computer Science. New
York, NY, January 9-11, 2002. New York, NY: Springer-Verlag,
2003.

26 CMU/SEI-2006-TN-030


http://www.sei.cmu.edu/products/events/acquisition/2004-presentations/jarzombek/jarzombek.pdf
http://www.sei.cmu.edu/products/events/acquisition/2004-presentations/jarzombek/jarzombek.pdf

[Necula 97]

[Necula 02]

[NIST 02]

[Ruwase 04]

[Schmidt 98]

[Seacord 06]

[Shankar 01]

[Wagner 00]

[Wilander 02]

[Zzhang 03]

Necula, G. C. “Proof-Carrying Code”, 106-119. Proceedings of the
24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’97). Paris, France, January
15-17, 1997. New York, NY: Association for Computing Machinery,
1997.

Necula, G. C.; McPeak, S.; Rahul, S. P.; & Weimer, W. “CIL:
Intermediate Language and Tools for Analysis and Transformation
of C Programs”, 213-228. Proceedings of the 11th International
Conference on Compiler Construction (CC ’02), volume 2304 of
Lecture Notes in Computer Science. Grenoble, France, April 8-12,
2002. New York, NY: Springer-Verlag, 2002.

National Institute of Standards and Technology. “Planning Report
02-3: The Economic Impacts of Inadequate Infrastructure for
Software Testing.”

http://www.nist.gov /director/prog-ofc/report02-3.pdf (May 2002).

Ruwase, O. & Lam, M. S. “A Practical Dynamic Buffer Overflow
Detector”, 159-169. Proceedings of the 11th Annual Network and
Distributed System Security Symposium (NDSS ’04). San Diego,
CA, February 5-6, 2004. Reston, VA: Internet Society, 2004.

Schmidt, D. A. “Data Flow Analysis is Model Checking of
Abstract Interpretations”, 38-48. Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’98). San Diego, CA, January 19-21, 1998. New
York, NY: Association for Computing Machinery, 1998.

Seacord, R. Secure Coding in C and C++. Upper Saddle River,
NJ: Addison-Wesley, 2006.

Shankar, U.; Talwar, K.; Foster, J. S.; & Wagner, D. “Detecting
Format String Vulnerabilities with Type Qualifiers”, 201-216.
Proceedings of the 10th USENIX Security Symposium. Washington,
D.C., August 13-17, 2001. Berkeley, CA, 2001.

Wagner, D.; Foster, J. S.; Brewer, E. A.; & Aiken, A. “A First Step
Towards Automated Detection of Buffer Overrun Vulnerabilities”.
Proceedings of the Tth Annual Network and Distributed System
Security Symposium (NDSS ’00). San Diego, CA, February 24,
2000: Internet Society, 2000.

Wilander, J. & Kamkar, M. “A Comparison of Publicly Available
Tools for Static Intrusion Prevention”, 68-84. Proceedings of the
7th Nordic Workshop on Secure IT Systems (NORDSEC "02).
Karlstad, Sweden, November 7-8, 2002. Karlstad, Sweden:
Karlstad University Press, 2002.

Zhang, L. & Malik, S. “Validating SAT Solvers Using an
Independent Resolution-Based Checker: Practical Implementations

CMU/SEI-2006-TN-030


http://www.nist.gov/director/prog-ofc/report02-3.pdf

and Other Applications”, 10880-10885. Proceedings of 2003
Design, Automation and Test in Furope Conference and Ezxposition
(DATE 2003). Munich, Germany, March 3-7, 2003. Los Alamitos,
CA: IEEE Computer Society, 2003.

[Zitser 04] Zitser, M.; Lippmann, R.; & Leek, T. “Testing Static Analysis
Tools Using Exploitable Buffer Overflows from Open Source
Code”, 97-106. Proceedings of the 12th ACM SIGSOFT
Symposium on Foundations of Software Engineering (FSE '04).
Newport Beach, CA, October 31-November 5, 2004. New York,
NY: Association for Computing Machinery, 2004.

28 CMU/SEI-2006-TN-030



Form Approved

REPORT DOCUMENTATION PAGE OME No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORTDATE 3. REPORT TYPE AND DATES COVERED
(Leave Blank) September 2006 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Certifying the Absence of Buffer Overflows FA8721-05-C-0003

6. AUTHOR(S)
Sagar Chaki & Scott Hissam

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2006-TN-030

SPONSORING/MONITORING AGENCY
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 12B DISTRIBUTION CODE

Unclassified/Unlimited, DTIC, NTIS

13.  abstract (maximum 200 words)

Despite increased awareness and efforts to reduce buffer overflows, they continue to be the cause of most
software vulnerabilities. In large part, these problems are due to the widespread use of unsafe library routines
among programmers. For reasons like efficiency, such routines will continue to be used, even during the
development of mission-critical and safety-critical software systems. Effective certification techniques are
needed to ascertain whether unsafe routines are used in a safe manner.

This report presents a technique for certifying the safety of buffer manipulations in C programs. The approach
is based on two key ideas: (1) using a certifying model checker to automatically verify that a buffer
manipulation is safe and (2) validating the resulting invariant and proving it with a decision procedure based
on Boolean satisfiability. This report also discusses the advantages and limitations of the approach with
respect to today's existing solutions for buffer-overflow detection. Experimental results are presented that
position the technique favorably against other static overflow-detection tools and indicate that the procedure
can complement and augment these tools from a purely verification perspective.

14. SUBJECT TERMS 15. NUMBER OF PAGES

software validation, security, buffer overflow, model checking 38

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT
UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102




	Certifying the Absence of Buffer Overflows
	Table of Contents
	List of Figures
	Acknowledgment
	Abstract
	1 Introduction
	2 Related Work
	3 Interpretation
	4 Verification
	5 Certification
	6 Experimental Validation
	7 Conclusion
	References


