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Abstract

This report formalizes a notion of witnesses as the basis of certifying the correctness of
software. The first part of the report is concerned with witnesses for the satisfaction of linear
temporal logic specifications by infinite state programs and shows how such witnesses may be
constructed via predicate abstraction and validated by generating and proving verification
conditions. In addition, the first part of this report proposes the use of theorem provers
based on Boolean propositional satisfiability (SAT) and resolution proofs in validating these
verification conditions. In addition to yielding extremely compact proofs, a SAT-based
approach overcomes several limitations of conventional theorem provers when applied to the
verification of programs written in real-life programming languages.

The second part of this report formalizes a notion of witnesses of simulation conformance
between infinite state programs and finite state machine specifications. The report also
proves that computing a minimal simulation relation between two finite state machines is an
NP-hard problem. Finally, the report presents algorithms to construct simulation witnesses
of minimal size by solving pseudo-Boolean constraints. The author’s experiments on several
nontrivial benchmarks suggest that a SAT-based approach can yield extremely compact
proofs—in some cases by a factor of over 105—when compared to existing non-SAT-based
theorem provers.
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1 Introduction

There is an evident and urgent need for objective measures of confidence in the behavior of
software obtained from untrusted sources. In general, the lack of trust in a piece of code
stems from two sources: (1) the code producer and (2) the delivery mechanism of the code to
the consumer. Unfortunately, the vast majority of current software assurance techniques
target the above sources of mistrust in isolation but fail to account for them both.

For instance, cryptographic techniques are typically unable to say anything substantial about
the runtime behavior of the program. Techniques such as sandboxing and analytic
redundancy require mechanisms for runtime monitoring and appropriate responses to failure.
Additionally, such approaches are inherently dynamic and unable to provide adequate levels
of static correctness guarantees. Extrinsic software quality standards typically have a heavy
focus on process and are usually quite subjective. Moreover, software qualities are weakly
related to desired behavior, if at all.

This report presents a technique that uses proofs to certify software. More specifically, we
certify a rich set of safety and liveness policies on C source code. Our approach consists of
two broad stages. We first use model checking [Clarke 00, Clarke 82] in conjunction with
Counterexample-Guided Abstraction Refinement (CEGAR) [Clarke 03] and predicate
abstraction [Graf 97] to verify that a C program C satisfies a policy S. The policy S may be
expressed either as a linear temporal logic (LTL) formula or a finite state machine.

Subsequently, we use information generated by the verification procedure to extract a witness
Ω. We show how the witness may be used to generate a verification condition VC . We also
prove that C respects the policy S iff VC is valid. The witness Ω is constructed and shipped
by the code producer along with C and the proof P of VC . The code consumer uses Ω to
reconstruct VC and verify that P truly corresponds to VC . Therefore, in our setting, the
witness Ω and the proof P may together be viewed as the certificate that C respects S.

While the above strategy is theoretically sound, it must overcome two key pragmatic
obstacles. First, since certificates have to be transmitted and verified, they must be small
and efficiently checkable. Unfortunately, proofs generated by conventional theorem provers,
such as cvc and vampyre, are often prohibitively large. Second, conventional theorem
provers are usually unfaithful to the semantics of C. For example, they often do not support
features of integer operations such as overflow and underflow. This lack of such supoort
means that certificates generated by such theorem provers are, in general, not trustworthy.
For example, the following VC is declared valid by most conventional theorem provers,
including cvc and vampyre: ∀x � (x + 1) > x. However, that statement is actually invalid
according to the semantics of the C language, due to the possibility of overflow.
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In this report, we propose the use of Boolean satisfiability (SAT) to solve both these
problems. More specifically, we translate VC to a propositional formula Φ such that VC is
valid iff Φ is unsatisfiable. Therefore, a resolution refutation (proof of the unsatisfiability) of
Φ serves as a proof of the validity of VC . We use the state-of-the-art SAT solver
zchaff [Moskewicz 01], which also generates resolution refutations, to prove that Φ is
unsatisfiable. The translation from VC to Φ is faithful to the semantics of C and therefore
handles issues such as overflow.

We have implemented our proposed technique in the ComFoRT [Chaki 05b] reasoning
framework and experimented with several nontrivial benchmarks. Our results indicate that
the use of SAT leads to extremely compact (in some cases over 105 times smaller) proofs in
comparison to conventional theorem provers. One important reason for this improvement is
that the SAT formulas generated have extremely small UNSAT-cores (i.e., subformulas that
are themselves unsatisfiable). zchaff has sophisticated heuristics to locate small
UNSAT-cores of its input formula. Since the core is small, so is its refutation. Further details
of our experiments are provided in Section 7.

We believe that this report contributes not just to the area of software certification but to
the much broader spectrum of scientific disciplines where compact proofs are desirable.
Algorithms to compress proof representations are currently a topic of active research. This
report demonstrates that the use of SAT technology is a very promising idea in this context.

The rest of this report is organized as follows. We discuss related work in Section 2 and
present preliminary concepts in Section 3. In Section 4, we present our certification
formalism for LTL policies, and in Section 5, we describe our technique for obtaining
SAT-based certificates. In Section 6, we present our certification formalism for finite state
machine policies. Finally, we describe our experimental results in Section 7 and conclude our
ideas in Section 8.
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2 Related Work

Necula and Lee [Necula 96, Necula 97, Necula 98b] proposed Proof-Carrying Code (PCC) as
a means for checkably certifying that untrusted binaries respect certain fundamental safety
(such as memory safety) criteria. Foundational PCC [Appel 01, Hamid 02] attempts to
reduce the trusted computing base of PCC to solely the foundations of mathematical logic.
Bernard and Lee [Bernard 02] propose a new temporal logic to express PCC policies for
machine code. Non-SAT-based techniques for minimizing PCC proof sizes
[Necula 98a, Necula 01] and formalizing machine code semantics [Michael 00] have also been
proposed. Our work uses proofs to certify software but is applicable to safety as well as
liveness specifications and at the source code level.

Arons and colleagues [Arons 01] have proposed techniques to heuristically (and
automatically) lift an invariant for a small instance of a parameterized system to a candidate
invariant for the entire system. The candidate invariant is then checked for validity since,
unlike in our framework, it is not known whether the smaller instance of the parameterized
system is an abstraction for the full instance.

Certifying model checkers [Namjoshi 01, Kupferman 04] emit an independently checkable
certificate of correctness when a temporal logic formula is found to be satisfiable by a finite
state model. Namjoshi [Namjoshi 03] has proposed a two-step technique for obtaining proofs
of µ-calculus specifications on infinite state systems. In the first step, a proof is obtained via
certifying model checking. In the second step, the proof is lifted via an abstraction. This
approach is more general than ours as far as LTL model checking is concerned but does not
handle simulation. It also does not propose the use of SAT or provide experimental
validation.

Magill and colleagues1 have proposed a two-step procedure for certifying simulation
conformance between an infinite state system and a finite state machine specification. In the
first step, they certify that a finite state abstraction simulates the infinite state system. In
the second step, they prove simulation between the finite state abstraction and the
specification. Their approach does not cover LTL specifications and, in particular, is unable
to handle liveness policies. Also, it does not propose the use of SAT.

Predicate abstraction [Graf 97] in combination with CEGAR [Clarke 03] has been applied
successfully by several software model checkers such as slam [Ball 01], blast

[Henzinger 02b], and magic [Chaki 04a]. Out of these model checkers, slam and magic do
not generate any proof certificates when claiming the validity of program specifications.
blast includes a method [Henzinger 02a] for lifting linear time safety proofs through the
abstraction computed by their algorithm into a checkable proof of correctness for the original
program. It does not handle liveness specifications and uses the non-SAT-based theorem
prover vampyre for proof generation. The use of SAT for software model checking has also
been explored in the context of both sequential ANSI-C programs [Clarke 04] and
asynchronous concurrent Boolean programs [Cook 05a]. Proving program termination via
ranking functions is also a rich and developing research area [Cook 05b, Balaban 05].

1 Magill, S.; Nanevski, A.; Clarke, E.; & Lee, P. Simulation-Based Safety Proofs by MAGIC. In preparation.
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3 Preliminaries

In this section, we present preliminary definitions and results. Let Act be a denumerable set
of actions. We begin with the notion of labeled transition systems.

Definition 1 (LTS). A Labeled Transition System (LTS) is a quadruple (S, Init , Σ, T )
where: (1) S is a finite set of states, (2) Init ⊆ S is a set of initial states, (3) Σ ⊆ Act is a
finite alphabet, and (4) T ⊆ S × Σ × S is a transition relation.

Given an LTS M = (S, Init , Σ, T ), we write s
α

−→ s′ to mean (s, α, s′) ∈ T . Also, for any
s ∈ S, and any α ∈ Σ we denote by Succ(s, α) the set of successors of s under α—in other
words,

Succ(s, α) = {s′ | s
α

−→ s′}

Linear Temporal Logic. We now define our notion of LTL. Unlike standard practice, the
flavor of LTL we use is based on actions instead of propositions. This distinction is, however,
inessential as far as this report is concerned. The syntax of LTL is defined by the following
grammar in Backus-Naur form (where α ∈ Act):

φ := α | ¬φ1 | φ1 ∧ φ2 | Xφ1 | φ1Uφ2

The semantics of LTL is fairly standard, and we do not describe it here. In fact, we do not
deal with LTL specifications directly but rather via an equivalent automata-theoretic
formalism called Büchi automata.

Definition 2 (Büchi Automaton). A Büchi automaton (or simply an automaton) is
5-tuple (S, Init , Σ, T, F ), where (1) S is a finite set of states, (2) Init ⊆ S is a set of initial
states, (3) Σ ⊆ Act is a finite alphabet, (4) T ⊆ S × Σ × S is a transition relation, and (5)
F ⊆ S is a set of final (or accepting) states.

As in the case of LTSs, given a Büchi automaton B = (S, Init , Σ, T, F ), we write s
α

−→ s′ to
mean (s, α, s′) ∈ T . Also, for any s ∈ S and any α ∈ Σ, we denote by Succ(s, α) the set
{s′ | s

α
−→ s′}. A trace t ∈ Actω is an infinite sequence of actions. The language accepted by

an automaton is a set of traces defined as follows.

Definition 3 (Language). Let B = (S, Init , Σ, T, F ) be any automaton and t = 〈α0, α1, . . .〉
be any trace. A run r of B on t is an infinite sequence of states 〈s0, s1, . . .〉 such that (1)

s0 ∈ Init and (2) ∀i ≥ 0 � si
αi−→ si+1. For any run r, we write Inf (r) to denote the set of

states appearing infinitely often in r. Then, a trace t is accepted by B iff there exists a run r
of B on t such that Inf (r) ∩ F 6= ∅. The language of B, denoted by L(B), is the set of traces
accepted by B.

4 CMU/SEI-2006-TN-004



We define the product between an LTS and an automaton in the standard manner as follows:

Definition 4 (Product Automaton). Let M = (S1, Init1, Σ1, T1) be an LTS and
B = (S2, Init2, Σ2, T2, F2) be an automaton such that Σ1 = Σ2. Then, the product of M and
B is denoted by M ⊗B and defined as the automaton (S, Init , Σ, T, F ) where (1) S = S1 ×S2,
(2) Init = Init1 × Init2, (3) Σ = Σ1, (4) F = S1 × F2, and (5) T is defined as follows:

∀s1, s
′
1 ∈ S1 � ∀s2, s

′
2 ∈ S2 � ∀α ∈ Σ � (s1, s2)

α
−→ (s′1, s

′
2) ⇐⇒ s1

α
−→ s′1 ∧ s2

α
−→ s′2

Program. We have applied our ideas to actual C programs. However, for clarity and
simplicity of presentation, we use a programming language based on guarded commands. Let
Var be a denumerable set of integer variables. The set of expressions Expr is defined over
Var using the operators +,−,×,÷, =, <,¬,∧, and the C bit-wise operators.

Program Syntax. An assignment is a pair (v, e) where v ∈ Var denotes the left-hand side
(LHS) and e ∈ Expr denotes the right-hand side (RHS). The set of assignments is denoted by
Asgn. A guarded command is a triple (Grd ,Evt ,Cmd) where Grd ∈ Expr is a guard,
Evt ∈ Act is an event, and Cmd ∈ Asgn is an assignment. The set of guarded commands is
denoted by GrdCmd . Given a guarded command gc = (g, e, c), we write Grd(gc), Evt(gc),
and Cmd(gc) to denote g, e, and c respectively. Finally, a program is a pair (I, C) where
I ∈ Expr expresses constraints on the initial states of the program and C ⊆ GrdCmd is a
finite set of guarded commands.

Store. A store is a function σ : Var → Z from variables to integers. The set of all stores is
denoted by Sto. Any store σ naturally induces a function from expressions to integers: σ(e)
is the integer obtained by evaluating e under σ.

Our language has a C-like semantics as far as variables and operators are concerned. Integers
are treated as 32-bit vectors. Also, the arithmetic, relational, Boolean, and bit-wise operators
are interpreted in a C-like manner. In particular, there is overflow and underflow, and zero is
treated as false, while all other integers are treated as true.

Definition 5 (Store Update). Given a store σ and an assignment a = (v, e), we write a[σ]
to denote the store resulting after executing a from σ. In other words, a[σ] is the same as σ
for all variables other than v, while a[σ](v) = σ(e).

Definition 6 (Satisfaction). Given a store σ and an expression e, we say that σ satisfies e
iff σ(e) 6= 0. We denote the satisfaction of e by σ as σ |= e and write σ 6|= e to mean
¬(σ |= e).

In the rest of this report, we use the terms formula and expression synonymously, since, as we
have seen, any expression e can also be viewed as a logical formula. The models of e are
simply the stores satisfying e.

Program Semantics. We now define the semantics of a program Prog in terms of a labeled
transition system. Intuitively, the states of the LTS are stores, its initial states are
determined by the initial condition of Prog , and its transitions are determined by the
guarded commands in Prog . Formally, let Prog = (I, C) be a program. Then, the semantics
of Prog , denoted by [[Prog ]], is an LTS (S, Init , Σ, T ) such that

CMU/SEI-2006-TN-004 5



1. S = Sto

2. Init = {σ | σ |= I}

3. Σ = {Evt(gc) | gc ∈ C}

4. σ
α

−→ σ′ iff: ∃gc ∈ C � σ |= Grd(gc) ∧ α = Evt(gc) ∧ σ′ = Cmd(gc)[σ]

Specification Satisfaction. Given a specification as a negated automaton Spec, we say that
Prog satisfies Spec and denote this by Prog |= Spec, iff L([[Prog ]] ⊗ Spec) = ∅.

6 CMU/SEI-2006-TN-004



4 Temporal Logic Witness

In this section, we present our proof framework for programs. We consider a program
Prog = (I, C). We begin with the notion of strongest postconditions. For any expression e,
variable v, and expression t, we denote the expression obtained by simultaneously replacing
all occurrences of v in e by t as e[v/t].

Definition 7 (Strongest Postcondition). Let Prog = (I, C) be a program, e be an
expression, and α be an action. Then, the strongest postcondition of e with respect to α is
denoted by SP[e]{α} and defined as follows:

SP[e]{α} = ∃v′ �
∨

(g,α,(v,t))∈C

(g ∧ e)[v/v′] ∧ (v = t[v/v′])

The concept of strongest postconditions is quite standard. In particular, the following fact
about strongest postconditions is fairly well-known. Recall that a state of Prog is a store.
Consider any expression e and any action α. Let σ and σ′ be stores such that σ |= e and
σ

α
−→ σ′. Then, σ′ |= SP[e]{α}. This idea is captured by the following well-known fact.

Fact 1 Let Prog be a program and [[Prog ]] = (S, Init , Σ, T ) be its semantics. Let e be any
expression. Then, the following holds:

∀σ ∈ S � ∀σ′ ∈ S � ∀α ∈ Σ � ((σ |= e) ∧ (σ
α

−→ σ′)) ⇒ (σ′ |= SP[e]{α})

In addition, the following lemma about strongest postconditions will be useful later on.

Lemma 1 Let e1, e2 be any expressions and α be any action. Then, the following holds:

(SP[e1]{α} ∨ SP[e2]{α}) ⇐⇒ SP[e1 ∨ e2]{α}

Proof.
SP[e1]{α} ∨ SP[e2]{α}

⇐⇒

∃v′ �
∨

(g,α,(v,t))∈C

(g ∧ e1)[v/v′] ∧ (v = t[v/v′])

∨

∃v′ �
∨

(g,α,(v,t))∈C

(g ∧ e2)[v/v′] ∧ (v = t[v/v′])

⇐⇒

∃v′ �
∨

(g,α,(v,t))∈C

(g ∧ (e1 ∨ e2))[v/v′] ∧ (v = t[v/v′])

⇐⇒

SP[e1 ∨ e2]{α}

This completes our proof.

CMU/SEI-2006-TN-004 7
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We are now ready to present the formal notion of a proof of Prog |= Spec. Recall that our
goal is to prove L([[Prog ]] ⊗ Spec) = ∅. Such a proof essentially encodes a stratified ranking
function between [[Prog ]] and Spec. Let us write M⊗ to mean [[Prog ]] ⊗ Spec. Let
M⊗ = (S⊗, Init⊗, Σ, T⊗, F⊗) and R be a finite set of integral ranks. Suppose that there exists
a ranking function ρ : S⊗ → R such that the following holds:

• (RANK1) Init⊗ ⊆ Domain(ρ), that is, all initial states of M⊗ have a
rank.

• (RANK2) ∀s
α

−→ s′ � s 6∈ F⊗ ⇒ ρ(s) ≥ ρ(s′)

• (RANK3) ∀s
α

−→ s′ � s ∈ F⊗ ⇒ ρ(s) > ρ(s′)

Then, there is no infinite path of M⊗ that visits an accepting state infinitely often, that is,
L(M⊗) = ∅. We use a witness to encode a ranking function. We also use appropriate
side-conditions to ensure that the ranking function satisfies the three conditions mentioned
above. We now state this formally:

Theorem 1 (LTL Witness). Let Prog = (I, C) be a program and Spec = (S, Init , Σ, T, F )
be a specification automaton. Let R be a finite set of integral ranks. Suppose that there exists
a function Ω : S × R → Expr that satisfies the following four conditions:

1. (C1) ∀s ∈ S � ∀r ∈ R � ∀r′ ∈ R � r 6= r′ ⇒ ¬(Ω(s, r) ∧ Ω(s, r′))

2. (C2) ∀s ∈ Init � I ⇒
∨

r∈R Ω(s, r)

3. (C3)
∀s ∈ S\F �∀α ∈ Σ�∀r ∈ R�∀s′ ∈ Succ(s, α)�SP [Ω(s, r)]{α} ⇒

∨
r′≤rΩ(s′, r′)

4. (C4)
∀s ∈ F � ∀α ∈ Σ � ∀r ∈ R � ∀s′ ∈ Succ(s, α) � SP[Ω(s, r)]{α} ⇒

∨
r′<r Ω(s′, r′)

Then, [[Prog ]] |= Spec and we say that Ω is a witness to [[Prog ]] |= Spec.

Proof. Let us write M⊗ to mean [[Prog ]] ⊗ Spec. Recall that the states of [[Prog ]] are stores,
and hence the set of states of M⊗ is Sto × S. Thus, it suffices to define a ranking function
ρ : Sto × S → R that satisfies conditions RANK1–RANK3 given above. Consider any store
σ and any specification state s. Due to condition C1, there can be at most one rank r such
that σ |= Ω(s, r). If such an r exists, we define ρ(σ, s) = r; else, ρ(σ, s) is undefined.

To show that ρ satisfies condition RANK1, consider any initial state (σ, s) of M⊗. Recall
that Prog = (I, C). Hence σ |= I and s ∈ Init . By condition C2, there exists r ∈ R such that
σ |= Ω(s, r). Therefore, ρ(σ, s) = r, which is what we want.

To show that ρ satisfies condition RANK2, consider any transition (σ, s)
α

−→ (σ′, s′) of M⊗

such that (σ, s) is not an accepting state of M⊗. According to Definition 4, this means
σ

α
−→ σ′, s

α
−→ s′, and s 6∈ F . Let ρ(σ, s) = r. From the definition of ρ, this means that

8 CMU/SEI-2006-TN-004



σ |= Ω(s, r). Hence from Fact 1, we know that σ′ |= SP[Ω(s, r)]{α}. Thus, from condition
C3, we know that there exists r′ ≤ r such that σ′ |= Ω(s′, r′). Therefore, by the definition of
ρ, we have ρ(σ′, s′) = r′ ≤ r = ρ(σ, s), which is again what we want.

To show that ρ satisfies condition RANK3, consider any transition (σ, s)
α

−→ (σ′, s′) of M⊗

such that (σ, s) is an accepting state of M⊗. According to Definition 4, this means σ
α

−→ σ′,
s

α
−→ s′, and s ∈ F . Let ρ(σ, s) = r. From the definition of ρ, this means that σ |= Ω(s, r).

Hence from Fact 1, we know that σ′ |= SP[Ω(s, r)]{α}. Thus, from condition C4, we know
that there exists r′ < r such that σ′ |= Ω(s′, r′). Therefore, by the definition of ρ, we have
ρ(σ′, s′) = r′ < r = ρ(σ, s), which completes the proof. �

Suppose we are given Prog , Spec = (S, Init , Σ, T ) and a candidate witness Ω over a set of
ranks R. Since S, Σ, and R are all finite, it is straightforward to generate a formula
equivalent to the conditions C1–C4 enumerated in Theorem 1. We call such a formula our
verification condition and denote it by VC (Prog ,Spec, Ω). In essence, on account of
Theorem 1, a valid proof of VC (Prog ,Spec, Ω) is also a valid proof of Prog |= Spec.

Theorem 1 is useful in checking the validity of a proposed witness Ω. However, it yields no
technique to construct such a Ω. In this section, we present a procedure called predicate
abstraction. In the next section, we show how to construct a valid witness using predicate
abstraction. More specifically, if our procedure actually results in a witness Ω, then Ω is
guaranteed to be valid. In other words, the verification condition VC (Prog ,Spec, Ω) is
guaranteed to be a valid formula. We begin with some preliminary definitions.

Definition 8 (Predicate). A predicate is simply an expression. Let P be a finite set of
predicates. A valuation of P is a function from P to {true, false}. The set of all valuations
of P is denoted by V(P). Given a valuation V ∈ V(P) of P, the concretization of P with
respect to V is denoted by γP(V ) and is the expression defined as follows:
γP(V ) =

∧
p∈P pV (p), where for any predicate p, we have ptrue = p and pfalse = ¬p.

In this report, we only consider finite sets of predicates. We write γ(V ) to mean γP(V ) when
P is clear from the context. The notion of concretization presented above means that any
valuation V can also be thought of as the expression γ(V ) and, therefore, leads naturally to
the notion of consistency between valuations and expressions and between two valuations.

Definition 9 (Consistency). Let V be a valuation of a set of predicates P and e be an
expression. We say that V is consistent with e and denote this by V  e, iff the expression
γ(V ) ⇒ ¬e is invalid. In other words, V  e ⇐⇒ ∃σ ∈ Sto � σ |= γ(V ) ∧ σ |= e.
Equivalently, ¬(V  e) iff the expression γ(V ) ⇒ ¬e is valid.

Consistency essentially means that a valuation and an expression are not mutually exclusive.
We now define the term weakest precondition, a concept closely related to the term strongest
postcondition. Recall that for any expression e, variable v, and expression t, we denote the
expression obtained by simultaneously replacing all occurrences of v in e by t as e[v/t].
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Definition 10 (Weakest Precondition). Let Prog = (I, C) be a program, e be an
expression, and α be an action. Then, the weakest precondition of e with respect to α is
denoted by WP[e]{α} and defined as

WP[e]{α} =
∨

(g,α,(v,t))∈C

g ∧ e[v/t]

The relationship between the strongest postconditions and weakest preconditions is expressed
formally by the following lemma.

Lemma 2 (Preconditions and Postconditions). Let e, e′ be expressions and α be an
action. Then, the following holds:

(e ⇒ ¬WP[e′]{α}) ⇒ (SP[e]{α} ⇒ ¬e′)

Proof. Let us begin with the assumption and prove the conclusion

e ⇒ ¬WP[e′]{α} (4.1)

Expanding out the definition of WP[e′]{α} in (1), we have

e ⇒ ¬
∨

(g,α,(v,t))∈C

g ∧ e′[v/t] (4.2)

Pushing negation inside from (2), we have

e ⇒
∧

(g,α,(v,t))∈C

¬g ∨ ¬e′[v/t] (4.3)

Hence from (3), for each (g, α, (v, t)) ∈ C, we have

e ⇒ ¬g ∨ ¬e′[v/t] (4.4)

Applying various proof rules on (4) gives us

¬e ∨ ¬g ∨ ¬e′[v/t] (4.5)

Let v′ be a completely fresh variable. Then, we have

∀v′ � ¬e[v/v′] ∨ ¬g[v/v′] ∨ ¬e′[v/t[v/v′]] (4.6)

∀v′ � ¬e[v/v′] ∨ ¬g[v/v′] ∨ ¬((v = t[v/v′]) ∧ e′) (4.7)

∀v′ � ¬e[v/v′] ∨ ¬g[v/v′] ∨ ¬(v = t[v/v′]) ∨ ¬e′ (4.8)

∀v′ � ¬(e[v/v′] ∧ g[v/v′] ∧ (v = t[v/v′])) ∨ ¬e′ (4.9)

Since (9) can be proved for each (g, α, (v, t)) ∈ C, we have

∧

(g,α,(v,t))∈C

∀v′ � ¬(e[v/v′] ∧ g[v/v′] ∧ (v = t[v/v′])) ∨ ¬e′ (4.10)
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Applying various proof rules on (10) gives us
∧

(g,α,(v,t))∈C

∀v′ � ¬((e ∧ g)[v/v′] ∧ (v = t[v/v′])) ∨ ¬e′ (4.11)

∀v′ �
∧

(g,α,(v,t))∈C

¬((g ∧ e)[v/v′] ∧ (v = t[v/v′])) ∨ ¬e′ (4.12)

Since v′ does not appear in e′

(∀v′ �
∧

(g,α,(v,t))∈C

¬((g ∧ e)[v/v′] ∧ (v = t[v/v′]))) ∨ ¬e′ (4.13)

Pulling out the negation

(¬∃v′ �
∨

(g,α,(v,t))∈C

((g ∧ e)[v/v′] ∧ (v = t[v/v′]))) ∨ ¬e′ (4.14)

∃v′ �
∨

(g,α,(v,t))∈C

((g ∧ e)[v/v′] ∧ (v = t[v/v′])) ⇒ ¬e′ (4.15)

Finally, using the definition of SP[e]{α} on (15), we get

SP[e]{α} ⇒ ¬e′ (4.16)

which is the desired conclusion. This completes our proof. �

We are now ready to formally define the predicate abstraction of a program with respect to a
set of predicates.

Predicate Abstraction. Let Prog = (I, C) be a program and P be a set of predicates. Let
[[Prog ]] = (S, Init , Σ, T ) be the semantics of Prog . Then, the predicate abstraction of Prog

with respect to P is denoted by {{Prog}}P and defined as an LTS (Ŝ, Înit , Σ̂, T̂ ) where (1)

Ŝ = V(P) : the states are the valuations of P, (2) Înit = {V ∈ V(P) | V  I}, (3) Σ̂ = Σ, and
(4) T̂ is defined as follows:

∀V, V ′ ∈ V(P) � ∀α ∈ Σ � V
α

−→ V ′ ⇐⇒ V WP[γ(V ′)]{α}

Predicate abstraction enables us to create finite LTS abstractions of our infinite state
programs. More importantly, it can be automated. Given Prog and P, it is easy to construct
{{Prog}}P from the definition given above. In order to check for consistency, we use an
automated theorem prover. More specifically, suppose we want to check if V  e. Then, in
accordance with Definition 9, we check for the validity of γ(V ) ⇒ ¬e using a (sound) theorem
prover. We assume ¬(V  e) iff the theorem says that γ(V ) ⇒ ¬e is valid.

Generating LTL Witnesses. We now present an algorithm WitGen for constructing a
valid witness to [[Prog ]] |= Spec. The input to WitGen is (1) a set of predicates P such that
{{Prog}}P |= Spec and (2) a ranking function ρ from the states of {{Prog}}P ⊗ Spec to a finite
set of ranks R that obeys conditions RANK1–RANK3 given in Section 4. We defer the
question as to how such a set of predicates P and ranking function ρ may be constructed
until later. The output of WitGen is a valid witness Ω. The following theorem conveys the
key ideas behind our algorithm.
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Theorem 2 (Valid Witness). Let Prog = (I, C) be a program, Spec = (S, Init , Σ, T, F ) be
a finite specification automaton and P be a set of predicates such that {{Prog}}P |= Spec. Let

{{Prog}}P = (V(P), Înit , Σ̂, T̂ ). Let R be a finite set of integral ranks and ρ : V(P)× S → R be
a ranking function that obeys conditions RANK1–RANK3 given in Section 4. Now
consider the witness Ω : S × R → Expr defined as follows: Ω(s, r) =

∨
V :ρ(V,s)=r γ(V ). Then,

Ω is a valid witness to [[Prog ]] |= Spec.

Proof. It suffices to show that Ω satisfies conditions C1–C4 given in Theorem 1. We first
prove C1 by contradiction. Consider any s ∈ S and r, r′ ∈ R such that r 6= r′ and
Ω(s, r) ∧ Ω(s, r′) is satisfiable. Now, we know that

∀V ∈ V(P) � ∀V ′ ∈ V(P) � V 6= V ′ ⇒ ¬(γ(V ) ∧ γ(V ′)) (4.1)

But this means there is some valuation V ∈ V(P) such that ρ(V, s) = r 6= r′ = ρ(V, s), which
is a contradiction. This completes the proof of C1. For the rest of the proof, we note that
the following formula is valid: ∨

V ∈V(P)

γ(V ) (4.2)

The above statement holds because it is logically equivalent to the following formula:

∧

p∈P

(p ∨ ¬p) (4.3)

To prove C2, consider any s ∈ Init and any V ∈ Înit . From Definition 4, we know that (V, s)
is an initial state of {{Prog}}P ⊗ Spec. Since ρ satisfies RANK1, there exists r ∈ R such that
ρ(V, s) = r. Hence, from the definition of Ω, we have

∨

V ∈Înit

γ(V ) ⇒
∨

r∈R

Ω(s, r) (4.4)

Now, from the definition of predicate abstraction, we know that I ⇒ ¬γ(V ) for each

V ∈ V(P) \ Înit . Hence, the following holds:

I ⇒ ¬
∨

V ∈V(P)\Înit

γ(V ) (4.5)

Also, from (2), we can conclude the following:

¬
∨

V ∈V(P)\Înit

γ(V ) ⇒
∨

V ∈Înit

γ(V ) (4.6)

From (5) and (6), we know that

I ⇒
∨

V ∈Înit

γ(V ) (4.7)

Finally, from (4) and (7), we have

I ⇒
∨

r∈R

Ω(s, r) (4.8)
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which is precisely C2. To prove C3, consider any s ∈ S \ F , any α ∈ Σ, any r ∈ R, and any
V such that ρ(V, s) = r. From the definition of predicate abstraction, we know that, for each
V ′ ∈ V(P) \ Succ(V, α), the following holds:

γ(V ) ⇒ ¬WP[γ(V ′)]{α} (4.9)

Using Lemma 2, for each V ′ ∈ V(P) \ Succ(V, α), we have

SP[γ(V )]{α} ⇒ ¬γ(V ′) (4.10)

Hence, the following holds:

SP[γ(V )]{α} ⇒ ¬
∨

V ′∈V(P)\Succ(V,α)

γ(V ′) (4.11)

Also, from (2), we can conclude

¬
∨

V ′∈∈V(P)\Succ(V,α)

γ(V ′) ⇒
∨

V ′∈Succ(V,α)

γ(V ′) (4.12)

From (11) and (12), we have

SP[γ(V )]{α} ⇒
∨

V ′∈Succ(V,α)

γ(V ′) (4.13)

Now consider any s′ ∈ Succ(s, α). From Definition 4, we know that
∀V ′ ∈ Succ(V, α) � (V, s)

α
−→ (V ′, s′) is a transition of {{Prog}}P ⊗ Spec and also that (V, s) is

not an accepting state of {{Prog}}P ⊗ Spec. Since ρ obeys condition RANK2, we know that
ρ(V ′, s′) ≤ ρ(V, s) = r. Hence, from the definition of Ω, we have

γ(V ′) ⇒
∨

r′≤r

Ω(s′, r′) (4.14)

Since V ′ is an arbitrary element of Succ(V, α), from (14), we have

∨

V ′∈Succ(V,α)

γ(V ′) ⇒
∨

r′≤r

Ω(s′, r′) (4.15)

From (13) and (15), we have

SP[γ(V )]{α} ⇒
∨

r′≤r

Ω(s′, r′) (4.16)

Since V is any valuation such that ρ(V, s) = r, from (16), we have

∨

V :ρ(V,s)=r

SP[γ(V )]{α} ⇒
∨

r′≤r

Ω(s′, r′) (4.17)

From (17) and Lemma 1, we have

SP[
∨

V :ρ(V,s)=r

γ(V )]{α} ⇒
∨

r′≤r

Ω(s′, r′) (4.18)
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Finally from (18) and the definition of Ω, we have

SP[Ω(s, r)]{α} ⇒
∨

r′≤r

Ω(s′, r′) (4.19)

which is precisely C3. The proof of C4 is very similar to that of C3. We present it here for
the sake of completeness. Consider any s ∈ F , any α ∈ Σ, any r ∈ R, and any V such that
ρ(V, s) = r. From the definition of predicate abstraction, we know that, for each
V ′ ∈ V(P) \ Succ(V, α), the following holds:

γ(V ) ⇒ ¬WP[γ(V ′)]{α} (4.20)

Using Lemma 2, for each V ′ ∈ V(P) \ Succ(V, α), we have

SP[γ(V )]{α} ⇒ ¬γ(V ′) (4.21)

Hence, the following holds:

SP[γ(V )]{α} ⇒ ¬
∨

V ′∈V(P)\Succ(V,α)

γ(V ′) (4.22)

Also, from (2), we can conclude

¬
∨

V ′∈∈V(P)\Succ(V,α)

γ(V ′) ⇒
∨

V ′∈Succ(V,α)

γ(V ′) (4.23)

From (22) and (23), we have

SP[γ(V )]{α} ⇒
∨

V ′∈Succ(V,α)

γ(V ′) (4.24)

Now consider any s′ ∈ Succ(s, α). From Definition 4, we know that
∀V ′ ∈ Succ(V, α) � (V, s)

α
−→ (V ′, s′) is a transition of {{Prog}}P ⊗ Spec and also that (V, s) is

an accepting state of {{Prog}}P ⊗ Spec. Since ρ obeys condition RANK3, we know that
ρ(V ′, s′) < ρ(V, s) = r. Hence, from the definition of Ω, we have

γ(V ′) ⇒
∨

r′<r

Ω(s′, r′) (4.25)

Since V ′ is an arbitrary element of Succ(V, α), from (25), we have

∨

V ′∈Succ(V,α)

γ(V ′) ⇒
∨

r′<r

Ω(s′, r′) (4.26)

From (24) and (26), we have

SP[γ(V )]{α} ⇒
∨

r′<r

Ω(s′, r′) (4.27)

Since V is any valuation such that ρ(V, s) = r, from (27), we have

∨

V :ρ(V,s)=r

SP[γ(V )]{α} ⇒
∨

r′<r

Ω(s′, r′) (4.28)
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From (28) and Lemma 1, we have

SP[
∨

V :ρ(V,s)=r

γ(V )]{α} ⇒
∨

r′<r

Ω(s′, r′) (4.29)

Finally, from (29) and the definition of Ω, we have

SP[Ω(s, r)]{α} ⇒
∨

r′<r

Ω(s′, r′) (4.30)

which is precisely C4. This completes the proof. �

Getting Predicates and Ranking Functions. Theorem 2 immediately leads to an
algorithm WitGen to construct a valid witness Ω to Prog |= Spec. However, WitGen
requires as input an appropriate set of predicates P such that {{Prog}}P |= Spec, as well as a
ranking function ρ satisfying the conditions mentioned in Theorem 2. A suitable P may be
constructed by combining predicate abstraction with CEGAR. More specifically, starting
with an initially empty P, we use the following iterative procedure:

1. Construct {{Prog}}P .

2. Check if {{Prog}}P |= Spec. If so, we are done. Otherwise, we obtain a
counterexample CE to {{Prog}}P |= Spec.

3. Check if CE is a valid counterexample. If so, then Prog 6|= Spec. Hence, no
suitable P exists, and we exit unsuccessfully.

4. Otherwise, we construct a new set of predicates P such that P eliminates
CE and then go back to Step 1.

Full details of such a procedure can be found elsewhere [Chaki 04b]. Due to the fundamental
undecidability of the problem, such an approach is not always guaranteed to terminate.
However, CEGAR-based techniques have been reported to be quite
successful [Ball 01, Henzinger 02b, Chaki 04a] in software verification in recent times.

Generating the Ranking Function. Once an appropriate set of predicates P has been
found by the above procedure, we have to construct a ranking function ρ. More precisely,
suppose that {{Prog}}P = (V(P), Înit , Σ̂, T̂ ) and Spec = (S, Init , Σ, T, F ). Then, we have to
construct (1) a finite set of integral ranks R and (2) a ranking function ρ : V(P) × S → R
that obeys conditions RANK1–RANK3 given in Section 4. We now give an algorithm to
achieve these two goals.

Let us denote {{Prog}}P ⊗ Spec by M⊗ and let M⊗ = (S⊗, Init⊗, Σ, T⊗, F⊗). Without loss of
generality, we assume that both S⊗ and F⊗ only contain the states of M⊗ that are reachable
from Init⊗ via the transition relation. Our ranking function is defined on only S⊗, and
undefined for unreachable states of M⊗.

First, we note that M⊗ can be viewed as a directed graph G⊗ = (N, E) such that
(N = S⊗)

∧
(E = {(s, s′) | ∃α ∈ Σ � s

α
−→ s′}). Given any two nodes s and s′, we say that

s s′ iff there is a path from s to s′ in G. In other words, s s′ iff there exists a finite
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Figure 1: Example Graph G and Induced Directed Acyclic Graph GSCC

non-empty sequence of states s1, s2, . . . , sk such that
(s = s1)

∧
(s′ = sk)

∧
(∀i ∈ {1, . . . , k − 1} � (si, si+1) ∈ E). A strongly connected component

(SCC) of G⊗ is a set of nodes X ⊆ N such that ∀s ∈ X � ∀s′ ∈ X � s s′. A node of G⊗ that
does not belong to any SCC is called a finitary node. It is evident that a node n is finitary iff
for every run x of M⊗ we have n 6∈ Inf (x). We also know that {{Prog}}P |= Spec and hence
L(M⊗) = ∅. This means that every accepting state s ∈ F⊗ must be finitary.

It is also well-known that every directed graph G induces a directed acyclic graph GSCC . The
nodes of GSCC are the maximal strongly connected components and the finitary nodes of G,
while its edges are induced by those of G. Let GSCC

⊗ be the directed acyclic graph induced by
G⊗. Let O = 〈n1, n2, . . . , nk〉 be a topological ordering of the nodes of GSCC

⊗ such that if
ni  nj , then nj appears before ni in O. We now fix our set of ranks R to be {1, 2, . . . , k}
where k = |O|. We first define a ranking function ρSCC for the nodes of GSCC

⊗ as follows:
ρSCC (n) = i iff n = ni according to the ordering O. We then use ρSCC to define a ranking
function ρ for G⊗ as follows:

• If n is a finitary node, it is also a node of GSCC
⊗ . Then ρ(n) = ρSCC (n).

• Otherwise n belongs to an unique maximal SCC nSCC , which is a node of
GSCC

⊗ . In this case, ρ(n) = ρSCC (nSCC ).

As an example, Figure 1 shows a G on the left and the induced GSCC on the right. Each
node of G is labeled by its rank inferred from a particular topological ordering.

We now show that ρ satisfies conditions RANK1–RANK3 given in Section 4. Condition
RANK1 holds because Init⊗ ⊆ S⊗ = Domain(ρ). For condition RANK2, consider any
transition s

α
−→ s′ of M⊗ such that s 6∈ F⊗. Now, since s s′, we have ρ(s) ≥ ρ(s′), which is
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precisely RANK2. For condition RANK3, consider any transition s
α

−→ s′ of M⊗ such that
s ∈ F⊗. Recall that in this case, s must be a finitary node. Hence ρ(s) 6= ρ(s′). Since s s′,
we have ρ(s) > ρ(s′), which is precisely RANK3.

The use of ranking functions for proofs of liveness properties is well studied, and ours is but
another instance of this methodology. The use, and limitations, of CEGAR for generating
appropriate predicates are orthogonal to the witness construction procedure. In practice, any
oracle capable of providing a suitable set of predicates can be substituted for CEGAR. For
instance, some of the predicates can be supplied manually, and the remaining predicates may
be constructed automatically.
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5 SAT-Based Certificates

Suppose we are given a program Prog , a specification Spec, and a candidate witness Ω. We
wish to check the validity of Ω. To this end, we construct the verification condition
VC = VC (Prog ,Spec, Ω) and prove that VC is valid. One way to achieve this goal is to pass
VC as a query to an existing proof-generating automated theorem prover such as cvc or
vampyre. However, there are at least two shortcomings to this approach.

First, most theorem provers treat integers, as well as operations on integers, in a manner that
is incompatible with the semantics of our programming language. For example, our language
defines integers to be 32-bit vectors, and operations such as addition and multiplication are
defined in accordance with two’s-complement arithmetic. In contrast, for most theorem
provers, integers have an infinite domain, and the operations on them are the ones we learned
in primary school. An important consequence of this discrepancy is that certificates
generated by conventional theorem provers may be untrustworthy for our purposes. For
example, the following verification condition is declared valid by most conventional theorem
provers, including cvc and vampyre: ∀x � (x + 1) > x. However, that statement is actually
invalid according to our language semantics due to the possibility of overflow.

In addition, the proofs generated by such theorem provers are usually quite large (see
Figure 3). We propose the use of a SAT-based proof-generating decision procedure to
overcome both hurdles. Recall that the verification conditions we are required to prove are
essentially expressions. Given a verification condition VC , we check its validity as follows:

1. We translate VC to a SAT formula Φ in conjunctive normal form such that
VC is valid iff Φ is unsatisfiable. In essence, Φ represents the negation of
VC .

2. We check for the satisfiability of Φ using a SAT solver. If Φ is found to be
satisfiable, VC is invalid. Otherwise, Φ is unsatisfiable, and therefore VC
is valid. In such a case, our SAT solver also emits a resolution2 proof P
that refutes Φ. We use P as the proof of validity of VC .

In our implementation, we use the cprover [Kroening 02] tool to perform Step 1 above.
Step 2 is performed by the state-of-the-art SAT solver zchaff [Moskewicz 01], which is
capable of generating resolution-based refutation proofs [Zhang 03]. The zchaff distribution
also comes with a proof checker, which we use to verify the correctness of the proofs emitted
by zchaff as a sanity check. We discuss our experimental results in detail in Section 7. We
note here that, in almost all cases, SAT-based proofs are over 100 times (in one case, over 105

times) more compact than those generated by cvc and vampyre. Of course, our proofs are
additionally faithful to the semantics of our programming language.

It is important to understand how our approach addresses the two shortcomings of
conventional theorem provers presented at the beginning of this section. The first problem
regarding language semantics is handled by the translation from VC to Φ in Step 1 above.

2 Resolution is a sound and complete inference rule for refuting propositional formulas.
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Of course, the translator itself now becomes part of our trusted computing base. However, we
believe that such a decision is amply justified by the resulting benefits.

The second difficulty with large proof sizes is mitigated by the fact that a Φ generated from
real-life programs and specifications often has an extremely compact resolution refutation.
Intuitively, if a program is correct, it is usually so because of some simple reason. In practice,
this simple reason for correctness results in Φ having a much smaller unsatisfiable core C. In
essence, C is a subset of the clauses in Φ that is itself unsatisfiable. Since Φ is in CNF form,
it is possible to refute Φ by simply refuting C. State-of-the-art SAT solvers, such as zchaff,
leverage this idea by first computing a small unsatisfiable core of the target formula and then
generating a refutation for only the core. Section 7 contains more details about the kind of
compression we are typically able to obtain by using the unsatisfiable core.

Finally, we note that the use of SAT guarantees trustworthiness of the generated certificate,
even if we use a non-SAT-based theorem prover, such as simplify [Nelson 80], for predicate
abstraction. The trustworthiness of the generated certificate enables us to use fast, but
potentially unfaithful, theorem provers during the verification stage and still remain faithful
to C semantics as far as certification is concerned.
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6 Simulation

While LTL allows us to reason about both safety and liveness properties, it is nevertheless
restricted to a purely linear notion of time. Simulation enables us to reason about the
branching time properties of programs, since it preserves all specifications in the ACTL*
temporal logic.

Definition 11 (Simulation). Let M1 = (S1, Init1, Σ, T1) and M2 = (S2, Init2, Σ, T2) be two
LTSs. Note that M1 and M2 have the same alphabet. A relation R ⊆ S1 × S2 is said to be a
simulation relation if it satisfies the following condition: (SIM) ∀s1 ∈ S1 � ∀s′1 ∈ S1 � ∀s2 ∈

S2 � ∀α ∈ Σ � (s1, s2) ∈ R ∧ s1
α

−→ s′1 ⇒ ∃s′2 ∈ S2 � s2
α

−→ s′2 ∧ (s′1, s
′
2) ∈ R. We say that M1 is

simulated by M2 and denote this by M1 4M2, iff there exists a simulation relation
R ⊆ S1 × S2 such that ∀s1 ∈ Init1 � ∃s2 ∈ Init2 � (s1, s2) ∈ R.

Simulation Witness. We are now ready to present the formal notion of a proof of
Prog 4 Spec. Such a proof essentially encodes a simulation relation between Prog and Spec.
The idea is to use a mapping Ω from states of Spec to expressions such that for any state s of
Spec, Ω(s) is satisfied by those states of Prog that are simulated by Spec. We now state this
formally.

Theorem 3 (Simulation Witness). Let Prog = (I, C) be a program and
Spec = (S, Init , Σ, T ) be a finite LTS. Suppose that there exists a function Ω : S → Expr that
satisfies the following two conditions: (D1) I ⇒

∨
s∈Init

Ω(s) and (D2)
∀s ∈ S � ∀α ∈ Σ � SP[Ω(s)]{α} ⇒

∨
s′∈Succ(s,α) Ω(s′). Then, [[Prog ]] 4 Spec, and we say that Ω

is a witness to [[Prog ]] 4 Spec.

Proof. Recall that the states of [[Prog ]] are stores. Consider the relation R ⊆ Sto × S defined
as follows : (σ, s) ∈ R ⇐⇒ σ |= Ω(s). We first show that (GOAL1) R is a simulation
relation by proving that R satisfies condition (SIM) from Definition 11.

1. Let (i) (σ, s) ∈ R and (ii) σ
α

−→ σ′.

2. From 1(i) and the definition of R, we know that σ |= Ω(s).

3. From 1(ii), 2, and Fact 1, we know that σ′ |= SP[Ω(s)]{α}.

4. From 3 and condition D2, we know that

∃s′ ∈ Succ(s, α) � σ′ |= Ω(s′)

5. From 4 and the definition of R, we have (σ′, s′) ∈ R. This completes the
proof of GOAL1.
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Next, we prove that (GOAL2) for every initial state σ of [[Prog ]], there is an initial state s of
Spec such that (σ, s) ∈ R. From the definition of program semantics, we know that σ |= I.
Then, from condition (D1) above, we know that ∃s ∈ Init � σ |= Ω(s). Therefore, from the
definition of R, we have (σ, s) ∈ R. This completes the proof of GOAL2. Finally, from
GOAL1, GOAL2, and Definition 11, we conclude that [[Prog ]] 4 Spec.

�

Suppose we are given Prog , Spec = (S, Init , Σ, T ) and a candidate witness Ω. Since both S
and Σ are finite, it is straightforward to generate a formula equivalent to the conditions
D1–D2 enumerated in Theorem 3. We call such a formula our verification condition and
denote it by VC (Prog ,Spec, Ω). In essence, on account of Theorem 3, a valid proof of
VC (Prog ,Spec, Ω) is also a valid proof of Prog 4 Spec.

Generating Simulation Witnesses. We now present an algorithm WitGenSimul for
constructing a valid witness to [[Prog ]] 4 Spec. The input to WitGenSimul is a set of
predicates P such that {{Prog}}P 4 Spec and a simulation relation R between the states of
{{Prog}}P and the states of Spec. We defer the question as to how such a set of predicates P
and simulation relation R may be constructed until later. The output of WitGenSimul is a
valid witness Ω. The following theorem conveys the key ideas behind our algorithm.

Theorem 4 (Valid Witness). Let Prog = (I, C) be a program, Spec = (S, Init , Σ, T ) be a
finite LTS, and P be a set of predicates such that {{Prog}}P 4 Spec. Let

{{Prog}}P = (V(P), Înit , Σ̂, T̂ ) and R ⊆ V(P) × S be a simulation relation such that

(A1) ∀V ∈ Înit � ∃s ∈ Init � (V, s) ∈ R. Let us also define a function θ : S → 2V(P) as follows:
(A2) ∀s ∈ S � θ(s) = {V | (V, s) ∈ R}. Now, consider the witness Ω : S → Expr defined as
follows: (A3) ∀s ∈ S � Ω(s) =

∨
V ∈θ(s) γ(V ). Then, Ω is a valid witness to [[Prog ]] 4 Spec.

Proof. Clearly, the following formula is valid:
∨

V ∈V(P)

γ(V ) (6.1)

This is because (1) is equivalent to the following formula:

∧

p∈P

(p ∨ ¬p) (6.2)

First, we show that condition D1 of Theorem 3 holds. From A1, A2, and A3 above, we
conclude that the following is valid:

∨

V ∈Înit

γ(V ) ⇒
∨

s∈Init

Ω(s) (6.3)

Now, from the definition of predicate abstraction, we know that I ⇒ ¬γ(V ) for each

V ∈ V(P) \ Înit . Hence, the following holds:

I ⇒ ¬
∨

V ∈V(P)\Înit

γ(V ) (6.4)
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Also, from (1), we can conclude the following:

¬
∨

V ∈V(P)\Înit

γ(V ) ⇒
∨

V ∈Înit

γ(V ) (6.5)

From (4) and (5), we know that

I ⇒
∨

V ∈Înit

γ(V ) (6.6)

Finally, from (3) and (6), we have

I ⇒
∨

s∈Init

Ω(s) (6.7)

which is precisely D1. We now show that condition D2 of Theorem 3 holds. Consider any
state s ∈ S, any V ∈ θ(s), and any α ∈ Σ. From the definition of predicate abstraction, we
know that, for each V ′ ∈ V(P) \ Succ(V, α), the following holds:

γ(V ) ⇒ ¬WP[γ(V ′)]{α} (6.8)

Using Lemma 2, for each V ′ ∈ V(P) \ Succ(V, α), we have

SP[γ(V )]{α} ⇒ ¬γ(V ′) (6.9)

Hence, the following holds:

SP[γ(V )]{α} ⇒ ¬
∨

V ′∈V(P)\Succ(V,α)

γ(V ′) (6.10)

Also, from (1), we can conclude

¬
∨

V ′∈∈V(P)\Succ(V,α)

γ(V ′) ⇒
∨

V ′∈Succ(V,α)

γ(V ′) (6.11)

From (10) and (11), we have

SP[γ(V )]{α} ⇒
∨

V ′∈Succ(V,α)

γ(V ′) (6.12)

Since (V, s) ∈ R and R is a simulation relation, we have

Succ(V, α) ⊆
⋃

s′∈Succ(s,α)

θ(s′) (6.13)

Hence, from (12) and (13), we know that

SP[γ(V )]{α} ⇒
∨

s′∈Succ(s,α)

∨

V ′∈θ(s′)

γ(V ′) (6.14)

From (14) and the definition of Ω, we have

SP[γ(V )]{α} ⇒
∨

s′∈Succ(s,α)

Ω(s′) (6.15)
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Since V is any element of θ(s), from (15), we have

∨

V ∈θ(s)

SP[γ(V )]{α} ⇒
∨

s′∈Succ(s,α)

Ω(s′) (6.16)

From (16) and Lemma 1, we have

SP[
∨

V ∈θ(s)

γ(V )]{α} ⇒
∨

s′∈Succ(s,α)

Ω(s′) (6.17)

Again, from (17) and the definition of Ω, we have

SP[Ω(s)]{α} ⇒
∨

s′∈Succ(s,α)

Ω(s′) (6.18)

which is precisely D2. This completes our proof. �

Getting Simulation Predicates. Theorem 4 immediately leads to an algorithm
WitGenSimul to construct a valid witness Ω to Prog 4 Spec. However, WitGenSimul
requires as input an appropriate set of predicates P such that {{Prog}}P 4 Spec. As in the
case of LTL model checking, such a P may be constructed by combining predicate
abstraction with CEGAR. More specifically, starting with an initially empty P, we use the
following iterative procedure:

1. Construct {{Prog}}P .

2. Check if {{Prog}}P 4 Spec. If so, we are done. Otherwise, we obtain a
counterexample CE to {{Prog}}P 4 Spec.

3. Check if CE is a valid counterexample. If so, then Prog 64 Spec. Hence, no
suitable P exists, and we exit unsuccessfully.

4. Otherwise, we construct a new set of predicates P such that P eliminates
CE and then go back to Step 1.

Full details of such a procedure can be found elsewhere [Chaki 05a]. As in the case of LTL,
due to the fundamental undecidability of the problem, such an approach is not always
guaranteed to terminate but has been found to be quite effective in practice.

Witness Minimization. It is clear from Theorem 4 that the size of witnesses and proofs
generated by WitGenSimul is directly related to the size of the simulation relation R
between {{Prog}}P and Spec. In this section, we describe an algorithm to construct a minimal
simulation relation between two finite LTSs, if such a relation exists. Clearly, such an
algorithm can be used to construct an R of minimal size, which would, in turn, lead to a
witness Ω of small size.

Our algorithm relies on a well-known technique [Chaki 04a] to check for simulation between
finite LTSs using satisfiability for weakly negated HORNSAT formulas. More specifically,
suppose we are given two finite LTSs M1 = (S1, Init1, Σ, T1) and M2 = (S2, Init2, Σ, T2).
Then, we can construct a propositional CNF formula Ψ such that the set of variables
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appearing in Ψ is S1 × S2. Intuitively, a variable (s1, s2) stands for the proposition that state
s1 can be simulated by state s2.

The clauses of Ψ encode constraints imposed by a simulation relation and are constructed as
follows. For each s1 ∈ S1, each s2 ∈ S2, each α ∈ Σ, and each s′1 ∈ Succ(s1, α), we add the
following clause to Ψ: (s1, s2) ⇒

∨
s′
2
∈Succ(s2,α)(s

′
1, s

′
2). Intuitively, the above clause expresses

the requirement that for s2 to simulate s1, at least one α-successor of s2 must simulate s′1.
Also, for each s1 ∈ Init1, we add the following clause to Ψ:

∨
s2∈Init2

(s1, s2). These clauses
assert that every initial state of M1 must be simulated by some initial state of M2. Now, Ψ
has the following simple property. Let X be any satisfying assignment of Ψ, and for any
variable v = (s1, s2), let us write X(s1, s2) to mean the Boolean value assigned to v by X.
Then, the relation R = {(s1, s2) | X(s1, s2) = true} is a simulation relation between M1 and
M2.

Therefore, we can construct a minimal simulation between M1 and M2 by constructing Ψ
and then looking for a satisfying assignment X such that the number of variables assigned
true by X is as small as possible. This task can be achieved by using a solver for
pseudo-Boolean formulas [Aloul 02]. A pseudo-Boolean formula is essentially a propositional
formula coupled with an arithmetic constraint over the propositional variables (where true

is treated as one and false as zero). More specifically, recall that the set of variables of Ψ is
S1 × S2. We thus solve for Ψ along with the constraint that the following sum be minimized:
Υ =

∑
s∈S1×S2

s. We then construct a minimal simulation relation using any satisfying
assignment to Ψ that also minimizes Υ.

Hardness of Finding Minimal Simulation Relations. One may complain that solving
pseudo-Boolean formula satisfiability (an NP-complete problem) to verify simulation (for
which polynomial time algorithms exist) is overkill. However, the use of a pseudo-Boolean
solver is justified by the fact that finding a minimal simulation between two finite LTSs is
actually an NP-hard problem.

We now prove this claim by reducing subgraph isomorphism, a well-known NP-complete
problem, to the problem of finding a minimal simulation relation between two LTSs. In the
rest of this section, whenever we mention a simulation relation between the LTSs M1 and M2,
we also tacitly assume that every initial state of M1 is simulated by some initial state of M2.

Definition 12 (Graph). An undirected graph is a pair (V ,E ) where V is a set of vertices
and E ⊆ V × V is a symmetric irreflexive relation denoting edges.

Definition 13 (Subgraph Isomorphism). Given two graphs G1 = (V1,E1) and
G2 = (V2,E2) such that |V1| < |V2|, we say that G1 is subgraph isomorphic to G2 iff there
exists an injection µ : V1 → V2 that obeys the following condition:
∀v ∈ V1 � ∀v′ ∈ V1 � (v, v′) ∈ E1 ⇐⇒ (µ(v), µ(v′)) ∈ E2.

Note that we do not allow self-loops in graphs. It is well-known that, given two arbitrary
graphs G1 and G2, the problem of deciding whether G1 is subgraph isomorphic to G2 is
NP-complete. We now show that this problem has a log-space reduction to the problem of
finding a minimal simulation relation between two LTSs. In essence, from G1 and G2, we

24 CMU/SEI-2006-TN-004



2M

a

a a

b

b

b

G 2

1M

a a

b

G 1

Figure 2: Example Graphs and LTSs Constructed from Them

construct the LTSs M1 and M2 such that G1 is subgraph isomorphic to G2 iff a minimal
simulation relation between M1 and M2 has the same size as G1.

Recall that G1 = (V1,E1). We construct M1 = (S1, Init1, Σ, T1) as follows: (1) the states of
M1 are exactly the vertices of V1, i.e., S1 = V1, (2) all states of M1 are initial (i.e.,
Init1 = S1), (3) M1 has two actions a and b (i.e., Σ = {a, b}), and (4) the transitions T1 of
M1 are set up as follows: (1) for each (v, v′) ∈ E1 we add v

a
−→ v′ and v′

a
−→ v to T1 and (2)

for each (v, v′) 6∈ E1 we add v
b

−→ v′ and v′
b

−→ v to T1. The LTS M2 is constructed from
graph G2 in an analogous manner. As an example, Figure 2 shows two graphs G1 and G2, as
well as the LTSs M1 and M2 constructed from them. A bidirectional arrow between two
states (of M1 or M2) represents a pair of transitions—one from each state to the other. Note
that M1 and M2 can be constructed using logarithmic additional space. Now our
NP-hardness reduction is completed by the following theorem.

Theorem 5 (Reduction). Let n be the number of states of M1 (i.e., n = |S1|). Then, G1

is subgraph isomorphic to G2 iff a minimal simulation relation between M1 and M2 has n
elements.

Proof. Let R be any minimal simulation relation between M1 and M2. First, note that since
every state of M1 is initial, R must have at least n elements. To prove the forward
implication, assume that G1 is subgraph isomorphic to G2, and let µ be a function satisfying
the condition of Definition 13. Then, the following relation R is clearly a minimal simulation
relation, since it has exactly n elements:

R = {(v, µ(v)) | v ∈ S1}

To prove the reverse implication, suppose that R is a minimal simulation relation between
M1 and M2 containing n elements. Since each of the n states of M1 must be simulated, R
must relate each state of M1 to a unique state of M2. Now, consider the function
µ : S1 → S2, which is defined as follows:

µ(v1) = unique v2 ∈ S2 such that (v1, v2) ∈ R
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We show that µ satisfies the criterion in Definition 13 as follows:

(v, v′) ∈ E1 ⇒ v
a

−→ v′ ⇒ µ(v)
a

−→ µ(v′) ⇒ (µ(v), µ(v′)) ∈ E2

(v, v′) 6∈ E1 ⇒ v
b

−→ v′ ⇒ µ(v)
b

−→ µ(v′) ⇒ (µ(v), µ(v′)) 6∈ E2

Now, we must show that µ is an injection. Suppose that µ was not an injection. In that case,
we have two elements v1 and v′1 of V1 such that µ(v1) = µ(v′1) = v2, let’s say. But then, M2

must contain at least one of the following two transitions: v2
a

−→ v2 or v2
b

−→ v2. This is
clearly impossible, and it also completes our proof. �
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7 Experimental Results

We implemented our techniques in ComFoRT [Chaki 05b] and experimented with a set of
Linux and Windows NT device drivers, OpenSSL, and the Micro-C operating system. All our
experiments were carried out on a dual Intel Xeon 2.4 GHz machine with 4 GB RAM running
Redhat 9. Our results are summarized in Figure 3, which obeys the following convention.

Name LOC cvc vampyre SAT Cert Core Improve

ide.c (safe) 7428 80720 × 100 703 >2000 807
ide.c (live) 7428 82653 × 100 1319 >2000 827
tlan.c (safe) 6523 11145980 × 517 4663 >200 21559
tlan.c (live) 6523 90155057 × 572 74281 >200 157614

aha152x.c (safe) 10069 247435 × 210 2102 >1500 1178
aha152x.c (live) 10069 247718 × 210 3968 >1500 1180
synclink.c (safe) 17104 9822 × 53 185 >500 185
synclink.c (live) 17104 9862 × 53 327 >500 186
hooks.c (safe) 30923 597642 × 369 2004 >1500 1629
hooks.c (live) 30923 601175 × 368 3102 >1500 1624

cdaudio.c (safe) 17798 248915 156787* 209 2006 >1000 750
diskperf.c (safe) 4824 117172 × 106 955 >2500 1105
floppy.c (safe) 17386 451085 60129* 318 2595 >3000 189
kbfiltr.c (safe) 12131 56682 7619* 51 528 >2500 149

parclass.c (safe) 26623 460973 × 262 2156 >4500 1759
parport.c (safe) 61781 2278120 102967* 529 3568 >5000 195

SSL-srvr (simul) 2483 1287290 19916 261 1055 >150 76
SSL-clnt (simul) 2484 189401 27189 155 740 >200 175

Micro-C (safe) 6272 416930 118162 262 2694 >5500 451
Micro-C (live) 6272 435450 × 263 7571 >5500 1656

Figure 3: Comparison of cvc, vampyre, and SAT-Based Proof Generation

The symbol × indicates that results are not available. Best figures appear in boldface. The
LOC column contains lines of code. The cvc, vampyre, and SAT columns refer to proof
sizes in bytes (after compressing with the gzip utility) obtained with cvc, vampyre, and
SAT, respectively. The cvc statistics were obtained via ComFoRT. The blast statistics
were obtained using either Version 2.0 of blast or an existing publication (indicated by an
asterisk [*]). The Cert column mentions the gzipped certificate (i.e., witness + proof of the
verification condition) size with SAT. The Core column contains the factors by which the
unsatisfiable core is smaller than the original SAT formula. Finally, the Improve column
refers to factors by which SAT-based proofs are smaller than the nearest other proofs.

The Linux device drivers were obtained from kernel 2.6.11.10. We checked that the drivers
obey the following conventions with spin lock and spin unlock: (1) locks must be acquired
and released alternately beginning with an acquire (safe) and (2) every acquire must be
eventually followed by a release (live). The Windows drivers are instrumented so that an
ERROR location is reached if any illegal behavior is executed. We certified that ERROR is
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unreachable for all the drivers we experimented with. For OpenSSL (Version 0.9.6c), we
certified that the initial handshake between a server and a client obeys the protocol specified
in the SSL 3.0 specification. For Micro-C (Version 2.72), we certified that the calls to
OS ENTER CRITICAL and OS EXIT CRITICAL obey the two locking conventions mentioned
above.

In almost all cases, SAT-based proofs are over 100 times more compact than those generated
by cvc and vampyre. In one instance—tlan.c (live)—the improvement is by a factor of
more than 105. We also find that an important reason for such improvement is that the
UNSAT-cores are much smaller (by over two to three orders of magnitude) than the actual
SAT formulas. Upon closer inspection, we discovered that this is due to the simplicity of the
verification conditions. For instance, the device drivers satisfy the locking conventions
because of local coding conventions (every procedure with a lock has a matching unlock). In
practice, this results in very simple verification conditions. Proofs generated by cvc and
vampyre suffer from redundancies and inefficient encodings and therefore turn out to be
large even for such simple formulas. In contrast, SAT formulas generated from these simple
verification conditions are characterized by small unsatisfiable cores.

We note that the total size of the certificate is usually dominated by the size of the witness.
Finally, we find that certificates for liveness policies tend to be larger than those for the
corresponding safety policies. This is due to the additional information required to encode
the ranking function, which is considerably more complex for liveness specifications.
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8 Conclusion

We have formalized a notion of witnesses for satisfaction of linear temporal logic specifications
by infinite state programs and of simulation conformance between infinite state programs and
finite state machine specifications. We have described how such witnesses may be constructed
via predicate abstraction and validated by generating and proving verification conditions.

We have proposed the use of SAT-based theorem provers and resolution proofs in proving
these verification conditions. Our experimental results on nontrivial benchmarks suggest that
a SAT-based approach can yield extremely compact proofs. Our SAT-based approach also
overcomes several limitations of conventional theorem provers when applied to the
verification of real-life programs.

There is an evident need for techniques to obtain compact proofs in a wide variety of
disciplines. Algorithms to compress and compact proof representations are currently a topic
of active research. In this context, the use of powerful SAT technology appears to be a very
promising idea and warrants further investigation. Extending the set of properties that can
be certified effectively would also enhance the scope of the work presented in this report.
Finally, the usefulness of SAT for constructing compact proofs for the purpose of generating
proof-carrying binary code remains an important yet open question.

We are grateful to Stephen Magill, Aleksandar Nanevski, Peter Lee, and Edmund Clarke for
their insight on Proof-Carrying Code and model checking. We also thank Rupak Majumdar
and Ranjit Jhala for providing us with the Windows driver benchmarks and Anubhav Gupta
for his advice on using zchaff.
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