
Software Vulnerabilities
in Java

Fred Long

October 2005

CERT

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2005-TN-044

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2005 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2005-TN-044 i

Contents

Abstract...iii

1 Introduction ..1

2 Areas of Potential Vulnerability...2
2.1 Type Safety ...2
2.2 Public Fields..2
2.3 Inner Classes ..3
2.4 Serialization...3
2.5 Reflection ..4
2.6 The JVM Tool Interface ...4
2.7 Debugging...5
2.8 Monitoring and Management ...6

3 Summary...7

References ...9

ii CMU/SEI-2005-TN-044

CMU/SEI-2005-TN-044 iii

Abstract

Java is essentially a safe language with good security features. However, there are several
Java features and facilities that can compromise safety if they are misused or improperly
implemented. This report briefly describes these potential software vulnerabilities in the
current version of Java, Java 5.

iv CMU/SEI-2005-TN-044

CMU/SEI-2005-TN-044 1

1 Introduction

This brief report is concerned with software vulnerabilities in the current version of Java, that
is, Java 5.

Java is essentially a safe language: there is no explicit pointer manipulation; array and string
bounds are automatically checked; attempts at referencing a null pointer are trapped; the
arithmetic operations are well defined and platform independent, as are the type conversions.
The built-in bytecode verifier ensures that these checks are always in place.

Moreover, there are comprehensive, fine-grained security mechanisms available in Java that
can control access to individual files, sockets, and other sensitive resources. To take
advantage of the security mechanisms, the Java Virtual Machine (JVM) must have a
security manager in place. This is an ordinary Java object of class
java.lang.SecurityManager (or a subclass) that can be put in place
programmatically but is more usually specified via a command line parameter.

There are, however, some ways in which Java program safety can be compromised. These are
described in Section 2.

2 CMU/SEI-2005-TN-044

2 Areas of Potential Vulnerability

2.1 Type Safety
Java is believed to be a type-safe language [LSOD 02, Sec. 5.1]. Hence, it should not be
possible to compromise a Java program by misusing the type system. To see why type safety
is so important, consider the following types:

public class TowerOfLondon {
 private Treasure
 theCrownJewels;
 ...
}

public class GarageSale {
 public Treasure
 fredsJunk;
 ...
}

If these two types could be confused, it would be possible to access the private field
theCrownJewels as if it were the public field fredsJunk. More generally, a “type
confusion attack” could allow Java security to be compromised by making the internals of the
security manager open to abuse. A team of researchers at Princeton University showed that
any type confusion in Java could be used to completely overcome Java’s security
mechanisms (see Securing Java Ch. 5, Sec. 7 [McGraw 99]).

Java’s type safety means that fields that are declared private or protected or that have
default (package) protection should not be globally accessible. However, there are a number
of vulnerabilities “built in” to Java that enable this protection to be overcome. These should
come as no surprise to the Java expert, as they are well documented, but they may trap the
unwary.1

2.2 Public Fields
A field that is declared public may be directly accessed by any part of a Java program and
may be modified from anywhere in a Java program (unless the field is declared final).
Clearly, sensitive information must not be stored in a public field, as it could be
compromised by anyone who could access the JVM running the program.

1 Vulnerabilities described in this technical note have only been evaluated for Java 5. The code used

in testing was executed using Java version 1.5.0_04 on a Windows XP system.

CMU/SEI-2005-TN-044 3

2.3 Inner Classes
Inner classes have access to all the fields of their surrounding class. There is no bytecode
support for inner classes, so they are compiled into ordinary classes with names like
OuterClass$InnerClass. So that the inner class can access the private fields of the
outer class, the private access is changed to package access in the bytecode. Hence, hand-
crafted bytecode can access these private fields (see “Security Aspects in Java Bytecode
Engineering” [Schönefeld 02] for an example).

2.4 Serialization
Serialization enables the state of a Java program to be captured and written out to a byte
stream [Sun 04b]. This allows for the state to be preserved so that it can be reinstated (by
deserialization). Serialization also allows for Java method calls to be transmitted over a
network for Remote Method Invocation (RMI). An object (called someObject below) can
be serialized as follows:

ObjectOutputStream oos = new ObjectOutputStream (
 new FileOutputStream (“SerialOutput”));

oos.writeObject (someObject);
oos.flush ();

The object can be deserialized as follows:

ObjectInputStream ois = new ObjectInputStream (
 new FileInputStream (“SerialOutput”));

someObject = (SomeClass)ois.readObject ();

Serialization captures all the fields of a class, provided the class implements the
Serializable interface, including the non-public fields that are not normally accessible
(unless the field is declared transient). If the byte stream to which the serialized values
are written is readable, then the values of the normally inaccessible fields may be read.
Moreover, it may be possible to modify or forge the preserved values so that when the class
is deserialized, the values become corrupted.

Introducing a security manager does not prevent the normally inaccessible fields from being
serialized and deserialized (although permission must be granted to write to and read from
the file or network if the byte stream is being stored or transmitted). Network traffic
(including RMI) can be protected, however, by using SSL.

4 CMU/SEI-2005-TN-044

2.5 Reflection
Reflection enables a Java program to analyze and modify itself. In particular, a program can
find out the values of field variables and change them [Forman 05, Sun 02]. The Java
reflection API includes a method call that enables fields that are not normally accessible to be
accessed under reflection. The following code prints out the names and values of all fields of
an object someObject of class SomeClass:

Field [] fields = SomeClass.getDeclaredFields ();

for (Field fieldsI : fields) {

 if (!Modifier.isPublic (fieldsI.getModifiers ()))
 {
 fieldsI.setAccessible (true);
 }

 System.out.print (“Field: “ + fieldsI.getName ());
 System.out.println (“, value: “ +
 fieldsI.get (someObject));

}

A field could be set to a new value as follows:

String newValue = reader.readLine ();
fieldsI.set (someObject,
 returnValue (newValue, fieldsI.getType ()));

Introducing the default security manager does prevent the fields that would not normally be
accessible from being accessed under reflection. The default security manager throws
java.security.AccessControlException in these circumstances. However, it is
possible to grant a permission to override this default behavior:
java.lang.reflect.ReflectPermission can be granted with action
suppressAccessChecks.

2.6 The JVM Tool Interface
Java 5 introduced the JVM Tool Interface (JVMTI) [Sun 04d], replacing both the JVM
Profiler Interface (JVMPI) and the JVM Debug Interface (JVMDI), which are now
deprecated.

The JVMTI contains extensive facilities to find out about the internals of a running JVM,
including facilities to monitor and modify a running Java program. These facilities are rather
low level and require the use of the Java Native Interface (JNI) and C Language
programming. However, they provide the opportunity to access fields that would not

CMU/SEI-2005-TN-044 5

normally be accessible. Also, there are facilities that can change the behavior of a running
Java program (for example, threads can be suspended or stopped).

The JVMTI works by using agents that communicate with the running JVM. These agents
must be loaded at JVM startup and are usually specified via one of the command line options
–agentlib: or –agentpath:. However, agents can be specified in environment
variables, although this feature can be disabled where security is a concern. The JVMTI is
always enabled, and JVMTI agents may run under the default security manager without
requiring any permissions to be granted. More work needs to be done to determine under
exactly what circumstances the JVMTI can be misused.

2.7 Debugging
The Java Platform Debugger Architecture (JPDA) builds on the JVMTI and provides high-
level facilities for debugging running Java systems [Sun 04c]. These include facilities similar
to the reflection facilities described above for inspecting and modifying field values. In
particular, there are methods to get and set field and array values. Access control is not
enforced so, for example, even the values of private fields can be set.

Introducing the default security manager means that various permissions must be granted in
order for debugging to take place. The following policy file was used to run the JPDS Trace
demonstration under the default security manager:

grant {
 permission java.io.FilePermission "traceoutput.txt",
 "read,write";
 permission java.io.FilePermission
 "C:/Program Files/Java/jdk1.5.0_04/lib/tools.jar",
 "read";
 permission java.io.FilePermission "C:/Program",
 "read,execute";
 permission java.lang.RuntimePermission "modifyThread";
 permission java.lang.RuntimePermission
 "modifyThreadGroup";
 permission java.lang.RuntimePermission
 "accessClassInPackage.sun.misc";
 permission java.lang.RuntimePermission
 "loadLibrary.dt_shmem";
 permission java.util.PropertyPermission "java.home",
 "read";
 permission java.net.SocketPermission "<localhost>",
 "resolve";
 permission com.sun.jdi.JDIPermission
 "virtualMachineManager";

};

6 CMU/SEI-2005-TN-044

2.8 Monitoring and Management
Java contains extensive facilities for monitoring and managing a JVM [Sun 04e]. In
particular, the Java Management Extension (JMX) API enables the monitoring and control of
class loading, thread state and stack traces, deadlock detection, memory usage, garbage
collection, operating system information, and other operations [Sun 04a]. There are also
facilities for logging monitoring and management. A running JVM may be monitored and
managed remotely.

For a JVM to be monitored and managed remotely, it must be started with various system
properties set (either on the command line or in a configuration file). Also, there are
provisions for the monitoring and management to be done securely (by passing the
information using SSL, for example) and to require proper authentication of the remote
server. However, users may start a JVM with remote monitoring and management enabled
with no security for their own purposes, and this would leave the JVM open to compromise
from outsiders. Although a user could not easily turn on remote monitoring and management
by accident, they might not realize that starting a JVM so enabled, without any security also
switched on, could leave their JVM exposed to outside abuse.

CMU/SEI-2005-TN-044 7

3 Summary

Java is essentially a safe language with good security features. A review of the US-CERT
vulnerability database found no vulnerabilities that were not the result of implementation
bugs [US-CERT 05]. Java and Java Virtual Machine Security [LSOD 02] and Securing Java
[McGraw 99] also describe some Java vulnerabilities that have resulted from implementation
bugs. However, there are a number of Java features and facilities that an unwary user might
not realize could compromise safety.

8 CMU/SEI-2005-TN-044

CMU/SEI-2005-TN-044 9

References

URLs are valid as of the publication date of this document.

[Forman 05] Forman, Ira R. & Forman, Nate. Java Reflection in Action.
Greenwich, CT: Manning Publications Co., 2005.

[LSOD 02] Last Stage of Delirium Research Group. Java and Java Virtual
Machine Security. Poland: Last Stage of Delirium Research Group,
2002. http://www.lsd-pl.net/documents/javasecurity-1.0.0.pdf.

[McGraw 99] McGraw, Gary & Felten, Edward W. Securing Java: Getting Down
to Business with Mobile Code, 2nd ed. New York, NY: John Wiley
& Sons, 1999.

[Schönefeld 02] Schönefeld, Marc. “Security Aspects in Java Bytecode
Engineering.” Blackhat Briefings 2002, Las Vegas, August 2002.
http://www.blackhat.com/presentations/bh-usa-02
/bh-us-02-schonefeld-java.ppt.

[Sun 02] Sun Microsystems, Inc. Reflection.
http://java.sun.com/j2se/1.5.0/docs/guide/reflection/index.html
(2002).

[Sun 04a] Sun Microsystems, Inc. Java Management Extensions (JMX).
http://java.sun.com/j2se/1.5.0/docs/guide/jmx/index.html (2004).

[Sun 04b] Sun Microsystems, Inc. Java Object Serialization Specification,
Version 1.5.0.
http://java.sun.com/j2se/1.5.0/docs/guide/serialization/spec
/serialTOC.html (2004).

[Sun 04c] Sun Microsystems, Inc. Java Platform Debugger Architecture.
http://java.sun.com/j2se/1.5.0/docs/guide/jpda/index.html (2004).

[Sun 04d] Sun Microsystems, Inc. JVM Tool Interface.
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html (2004).

[Sun 04e] Sun Microsystems, Inc. Monitoring and Management for the Java
Platform. http://java.sun.com/j2se/1.5.0/docs/guide/management
/index.html (2004).

10 CMU/SEI-2005-TN-044

[US-CERT 05] US-CERT. The US-CERT Vulnerability Notes Database.
http://www.kb.cert.org/vuls/ (2005).

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

October 2005

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Software Vulnerabilities in Java

5. FUNDING NUMBERS

FA8721-05-C-0003
6. AUTHOR(S)

Fred Long
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2005-TN-044

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Java is essentially a safe language with good security features. However, there are several Java features and
facilities that can compromise safety if they are misused or improperly implemented. This report briefly
describes these potential software vulnerabilities in the current version of Java, Java 5.

14. SUBJECT TERMS

vulnerability, computer security, Java, secure programming

15. NUMBER OF PAGES

16
16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Contents
	Abstract
	1 Introduction
	2 Areas of Potential Vulnerability
	3 Summary
	References

