
Experience Using the
Web-Based Tool Wiki for
Architecture Documentation

Felix Bachmann
Paulo Merson

September 2005

Software Architecture Technology Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2005-TN-041

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2006 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Contents

Acknowledgements ..vii

Executive Summary ... ix

Abstract...xi

1 Introduction..1

2 Wiki ...4

3 Wiki for Architecture Documentation...6
3.1 What to Expect from a Documentation Tool ...6
3.2 Use of Wiki as an Architecture Documentation Tool6
3.3 Experiences Using Wiki ..8

3.3.1 R1: Support for Documents that Contain Text and Diagrams.....8
3.3.2 R2: Support for Multiple Views with Elements and Relations8
3.3.3 R3: Support for Version Control..9
3.3.4 R4: Support for Easy Access ..9
3.3.5 R5: Low Cost ..10
3.3.6 R6: Support for Change Requests..10

3.4 Other Issues that Need to be Considered ..10

4 Pros and Cons of Wiki for Architecture Documentation..........................12

5 Configuring Wiki For Architecture Documentation19

6 Conclusion and Future Work..22

Appendix Screen Shots from Siemens Project Wiki23

References...30

CMU/SEI-2005-TN-041 i

ii CMU/SEI-2005-TN-041

List of Figures

Figure 1: Transclusion of the Source “PO” into the Target Page “View
PetstoreWeb” ... 17

Figure 2: Wiki Page of the Java Pet Store SAD Showing Navigation Aids............ 18

Figure 3: Wiki Page Showing Architecture Document’s Table of Contents............ 21

Figure 4: Basic Layout of a Wiki Page... 24

Figure 5: A Wiki Page with Included Picture.. 25

Figure 6: Editing a Section of a Wiki Page .. 26

Figure 7: Displaying the Differences Between Two Versions of the Same Wiki
Page... 27

Figure 8: Uploading an Image File into Wiki.. 28

Figure 9: Training Materials Included .. 29

CMU/SEI-2005-TN-041 iii

iv CMU/SEI-2005-TN-041

List of Tables

Table 1: Comparing Wiki to Word and CVS for Architecture Documentation....... 13

CMU/SEI-2005-TN-041 v

vi CMU/SEI-2005-TN-041

Acknowledgements

We greatly appreciate the contribution of Team Sapphire in the Master of Software
Engineering (MSE) program at Carnegie Mellon® University, especially Min Chen, Bharat
Gorantla, Okeno Palmer, and Lutz Wrage. They put significant effort into creating the wiki
system and did not hesitate to provide the valuable information included in this report. We
also want to thank Siemens Corporate Research, Inc.—especially Matthew Bass, Zakaria El
Houda, and Neel Mullick—for providing the materials for this experience report and deep
insights into the issues encountered using wiki. We are also grateful to Luis Maya in the MSE
program, who used wiki for architecture documentation and provided us with important
reflections.

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon

University.

CMU/SEI-2005-TN-041 vii

viii CMU/SEI-2005-TN-041

Executive Summary

In an organization that uses an architecture-centric development approach, the purpose of the
software architecture, especially the produced documentation, is to guide all the stakeholders
that contribute in one way or another to the development of the product(s).

Unfortunately, in many organizations, this documentation ends up on the shelves, unused and
collecting dust. This happens in part because it is difficult

• to keep the architecture documentation current

• for nondevelopers to understand what the documents describe

• for nondevelopers to use the tools necessary to access the documentation

In this technical note, we describe two distinct experiences that students in the Carnegie
Mellon® University Master of Software Engineering (MSE) program had with a wiki1-based
collaborative environment for creating architecture documentation. Wiki enabled the team to
create and maintain architecture documentation collaboratively, because everyone with a Web
browser could read and change information.

Using wiki as a communication tool for software architecture documentation is a promising
but risky approach. One significant concern arises from the need to adjust the responsibilities
in an organization. Wiki still lacks flexible and robust access management functionality,
creating an acceptance barrier that might be difficult to overcome. Another limitation is that
many organizations and individuals prefer to work with printed documents, but wiki pages
are not suitable for printing.

Overall, the advantage of being able to create and maintain architecture documentation in a
dynamic and collaborative way seems to outweigh any disadvantages. The wiki approach is
an alternative to the most common solution for architecture documentation, which is the
pairing of an editing tool (e.g., Microsoft Word) with a configuration management tool (e.g.,
Concurrent Versions System). The key benefits of a wiki-based approach are: (1) the
documentation becomes more granular—the authors edit each wiki page separately, which
also reduces contention; (2) the documentation is accessible via a Web browser from any
machine connected to the network; and (3) wiki provides a mechanism called transclusion
that avoids repetition of information.

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon

University.
1 The name wiki is based on the Hawaiian term wiki wiki, meaning “quick” or “informal.”

CMU/SEI-2005-TN-041 ix

A software architecture document is a living document. It changes as more details are added
to the design over time. Therefore, the use of a tool that promotes changes in a collaborative
environment seems to be a good fit. Future work will show how scalable the wiki approach
is, how it may affect an evolving architecture documentation, and what it might offer for
managing distributed software development.

x CMU/SEI-2005-TN-041

Abstract

In an organization that uses an architecture-centric development approach, it is the purpose of
the software architecture, especially the product documentation, to guide all stakeholders who
contribute in one way or another to the development of the product(s). Unfortunately, in
many organizations, this documentation ends up on the shelves, unused and collecting dust.
This happens in part because it is difficult to keep the architecture documentation current,
hard for nondevelopers to understand what the documents describe, and challenging for
nondevelopers to use the tools necessary to access the documentation.

This technical note discusses the benefits and challenges of using a wiki-based collaborative
environment to create software architecture documentation. The findings are based on two
experiences. The first was that of a team of Carnegie Mellon® University Master of Software
Engineering (MSE) program students that used the wiki tool in a real-world software project.
For its customer, the team had to produce and document the architecture of a system that will
be developed by many geographically distributed teams. The second experience was a study
conducted by another MSE student to reconstruct and document the architecture of a multitier
enterprise application using the wiki tool and UML 2.0.

CMU/SEI-2005-TN-041 xi

xii CMU/SEI-2005-TN-041

1 Introduction

Let us start with a little story—a real story from the past that represents a recurring theme in
many organizations that develop midsize to large software systems.

At one time, an organization that one of the authors of this technical note
worked for started a project to develop a system in the telecommunications
domain: a big software system with millions of lines of code. We and our
management clearly knew that we could be successful only if we had the
“right” architecture to control the development of the system and to
distribute the work to more than 150 developers in different geographical
locations. We got the job to create and describe the architecture that would
make the product successful. We also were given the time, money, and right
people for the job.

We used a modeling tool to create the architecture. Early on, we discovered
that we also had to create normal text documents for our own review and to
show progress to management. Therefore, we produced the textual
description using a text-editing tool and pasted the pictures from the
modeling tool into that document.

After about half a year of hard work, seemingly endless discussion, and
review, we finished the documentation. We happily distributed our four
volumes of materials to the next group of developers, so that they could start
implementing the system. We all were exhausted but believed we had done a
marvelous job. Everything was thought through and documented. The nights
and weekends belonged to us again!

What a surprise for us when the product managers showed up and asked for
information—such as a roadmap for delivering features, estimates of how
many people would be needed for the implementation, and so on. We
wondered, “Didn’t they read the documentation we gave them?” Everything
was described there, at least to the degree that a product manager should be
able to estimate the rest. They started complaining that it was too much to
read, and they didn’t understand those pictures anyway.

It looked like we had more documentation work to do. But at least the
developers had everything they needed—or so we thought. After a couple of
weeks, we checked on how the development work was going. And yes, all
the developers had our documentation available, nicely stacked on their
shelves. They began to ask questions about aspects of the software that

CMU/SEI-2005-TN-041 1

clearly had been documented. We responded to their questions with our own
questions like, “Haven’t you read Section 4 in Volume II?” We discovered
that no one really had looked at the documentation; it was put on a shelf the
first day it was received and remained there.

Does that story sound familiar to you? If so, you should continue reading.

In an organization that uses an architecture-centric development approach, the architecture
becomes a major communication tool for explaining to stakeholders the design decisions
made and the consequences of those decisions. In particular, the architecture is the blueprint
for implementation and has to be effectively communicated to the developers.

Architecture-centric development involves iteratively

• creating the business case for the system

• understanding the requirements

• creating or selecting the software architecture

• documenting and communicating the software architecture

• analyzing or evaluating the software architecture

• implementing the system based on the software architecture

• ensuring that the implementation conforms to the software architecture [Kazman 04]

Architecture documentation is created to facilitate this communication between stakeholders
and used to plan the iterations. Documentation becomes especially important when more than
a few people are involved in the software system development, when the person
implementing the system is not the one who created the architecture, or when the
development teams are geographically distributed.

It is still a common approach to produce documentation using an editing tool for text and a
modeling or drawing tool for diagrams. Unfortunately, this documentation typically ends up
on the shelves, collecting dust, after being used for an initial period to provide some insights
into the architecture. Here are four good reasons why this happens:

1. It is very difficult to keep the architecture documentation current in a world of ever-
changing requirements, especially for a large system. The architect(s) may not even get
all the information about changes and new requirements. If stakeholders (e.g.,
developers) find just one thing out of date in the documentation, they’ll consider all of
the documentation unreliable.

2. The available tool support may help architects design and evolve an architecture, but
those tools are not widely accepted (and usable) by stakeholders other than developers.
Even for developers, those tools might be cumbersome to use because they are not
integrated into the implementation environment.

3. The process for changing the architecture (change control boards) might be too slow for
developers. Once the implementation is in place, it is just easier to change the code;

2 CMU/SEI-2005-TN-041

changing the architecture is seen as overhead. Very often, code changes due to bug fixes,
improvements, and refactorings are not reflected back into the architecture
documentation.

4. The documentation is not effective because

• The writers made too many assumptions about what the readers know.

• The diagrams can’t be understood because the notation is ambiguous.

• The text is too verbose and repetitive.

• The document is poorly structured and difficult to navigate through.

In this technical note, we describe two distinct experiences that students in the Carnegie
Mellon® University Master of Software Engineering (MSE) program had using the Web-
based documentation tool wiki to create architecture documentation. In the first experience, a
team of four students got the job from its customer, Siemens Corporate Research, Inc., to
develop an architecture for a system that will be implemented by teams at geographically
dispersed locations. Wiki enabled the team to work collaboratively on the architecture
documents and provide its customer with user-friendly access to the documentation. Wiki
helped the team react to changing requirements and develop documentation that was useful to
the customer—the top two problems mentioned above.

In the second experience, a student used wiki to record and organize multiple views of an
architecture reconstructed from a multitier application—the Java Pet Store application
[Singh 02].

In Section 2, we give an overview of the most important features of wiki as a tool to record
technical documentation in a collaborative setting. We then describe in Section 3 how wiki
can be used for producing and communicating architecture documentation and discuss the
experiences of the students. Section 4 provides a point-by-point comparison of wiki and a
Microsoft Word/Concurrent Versions System (CVS) combination. Section 5 has some
recommendations for configuring wiki for software architecture documentation. In Section 6,
we conclude this technical note by discussing further work needed to make a wiki-based
architecture documentation approach more successful.

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon

University.

CMU/SEI-2005-TN-041 3

2 Wiki

What is wiki? Wiki is in Cunningham’s original description, the simplest online database that
could possibly work [Leuf 01]. Wiki allows users to freely create and edit Web page content
using any Web browser. According to Wikipedia, the first wiki Web site (March 25, 1995)
was the WikiWikiWeb, part of the Portland Pattern Repository [Wikipedia 06a].

The power of wiki comes from its simplicity. Everyone who can use a Web browser and fill
out Web-based forms can view and edit the content of a wiki page. Wiki supports hyperlinks
and has a simple text syntax for creating new pages and links between pages “on the fly.” If
you can suppress your desire for fancy formatting,2 Wiki is a fast-to-learn, easy-to-use, and
intuitive editing environment. It allows novice users to produce fairly nice-looking Web
pages that are immediately available to all other users.

Wiki also allows the reorganizing of content. Pages can be reordered, and new pages can be
created to show the existing content in a different order.

So far, we’ve only described a pretty unsophisticated text-editing tool. So, what is the big
deal with wiki?

While it’s a simple concept, “open editing” has some subtle yet profound effects on wiki
usage. By allowing everyday users to create and edit any page in a Web site, wiki encourages
democratic use of the site and promotes content composition by nontechnical users. Together,
those two factors lead to a paradigm shift in creating and maintaining documents. Because
every user can (and is encouraged to) contribute, the workload is distributed—an effect that is
typically seen as very positive. Also, because wiki encourages democratic use, every user is
treated equally. The concepts of author (one who creates and maintains the document) and
reader (one who only reads the document) don’t really exist with wiki. Any reader can
change the content of any document. Many organizations do not see this as a benefit, because
it runs counter to the established view of document ownership.

To support discussion when two or more people make changes to the same page, wiki tracks
changes at the page level. For every page, it is easy to look up earlier versions, display the
differences between two versions, and revert to an older version. When anyone makes
changes to a page, everyone can see what was changed.

A by-product of wiki is that all content is kept in a relational database, which is required for
wiki to generate edited pages dynamically. Standard SQL-based database tools can be

2 Wiki supports many kinds of formatting, such as creating tables, using special fonts, and using a rich
set of HTML tags. But the more such features are used, the more complicated it becomes for a novice
user to change anything.

4 CMU/SEI-2005-TN-041

employed to create all kind of queries, such as listing all changes performed by a given user
in a period of time or extracting some information to be used at different sites or in other
tools.

CMU/SEI-2005-TN-041 5

3 Wiki for Architecture Documentation

In this section, we discuss the experiences of the MSE student team with wiki. The
screenshots mentioned throughout this chapter are shown in the appendix.

3.1 What to Expect from a Documentation Tool
To understand if any tool, not just wiki, is appropriate for creating and maintaining software
architecture documentation, we need first to understand some important requirements for
such a tool:

R1 Architecture documentation typically contains lots of text and diagrams to give an
overview of the topic presented. A tool, therefore, has to support text editing and drawing
functionalities.

R2 Architecture documentation is structured into views, and every view contains elements
and relations. An architecture documentation tool should understand and support those
concepts and therefore support managing views with elements and their relations.

R3 Typically the architecture documentation has more than one author; therefore, version
control and merging capabilities would be helpful.

R4 The document(s) will be read by a diverse group of stakeholders, requiring the
documentation artifacts to be easy to access and navigate.

R5 Because many stakeholders are potentially interested in the documentation, the costs for
the tool environment and system administration should be kept to a minimum.

R6 Architecture documentation will evolve over time, and requests for changes will come
from all possible sources. A quick turnaround of those change requests ensures that
documentation will be kept current.

Today, it is very difficult to find a tool that fully supports all of those requirements for
creating architecture documentation. In many development organizations, the architect has to
use multiple tools, often a standard text-editing tool combined with a modeling or drawing
tool.

3.2 Use of Wiki as an Architecture Documentation Tool
Prepared using a Web-based documentation tool, a document can typically be structured as
linked pages—Web pages to be precise. Compared with documents written with a text-
editing tool, Web-oriented documents typically consist of short pages (created to fit on one
screen) with a deeper structure. One page usually provides some overview information and
has links to more detailed information. When done well, a Web-based document is easier to

6 CMU/SEI-2005-TN-041

use for people who just need to have some overview information. On the other hand, it can
become more difficult for people who need detail. Finding information can be more difficult
in multi-page, Web-based documents than in a single-file, text-based document, unless a
search engine is available.

Using wiki as a Web-based documentation tool, we can see some solutions for the given
requirements:

R1 Support for documents that contain text and diagrams. Web pages can contain text
and multimedia; this capability should be sufficient for displaying architecture
documentation. Wiki, though, does not offer drawing functionality such as creating UML
or other diagrams. In addition, the fact that the documentation is structured as linked
pages is adequate for browsing but not for producing a printed version.

R2 Support for multiple views with elements and relations. Views in wiki can be created
as a set of pages that are linked to one another. It is also easy to create an overview page
to help stakeholders select views. It would even be possible for users to create something
like their own “bookshelf” with links to their favorite pages. Because wiki is a generic
Web-editing tool, however, there is no support for creating specific types of views that
contain specialized elements (e.g., classes, servers, tiers, queues) and relations (e.g., uses,
is a, part whole).

R3 Support for version control. Wiki has version control for every page and provides the
capability to show the differences between versions. Further, a page can be structured
into sections, and any section can be edited. This capability to segment pages should
minimize possible concurrent changes to the same document, supporting different team
members editing the same document or even the same page. Although wiki supports
collaboration, it has limited support for merging changes, baselining pages, or managing
sets of pages.

R4 Support for easy access. The Web-based pages created with wiki should be easy for
most stakeholders to read. For developers who are interested in seeing all the details in a
single place, a wiki might be more difficult to use.

R5 Low cost. Wiki requires a server connected to an intranet or the Internet. In addition to
network connectivity and the wiki software itself, these elements are required: a Web
server (e.g., Apache HTTP Server), a relational database server (e.g., MySQL), and PHP.
It is possible to install a complete solution using solely free and open source software. On
the server side, the cost of installing and maintaining wiki is related to the administration
of the server. Administration involves executing backups, installing version upgrades,
setting user rights, customizing functionality, and configuring localization. In practice,
little maintenance is required after installation. On the client side, there is no additional
cost for the users of wiki, since the only tool they need is a Web browser. Therefore, the
relative cost of wiki is inversely proportional to the number of users.

CMU/SEI-2005-TN-041 7

R6 Support for change requests. Wiki allows everyone to change the content. When
developers discover a problem in the document, they can correct it immediately. Anyone
interested in changes to a particular part of the documentation can display what was
changed, when, and by whom.

When we rate wiki against the list of architecture documentation requirements, we conclude
that wiki offers a pretty good solution.

3.3 Experiences Using Wiki
How did the team of students that used wiki determine whether it met their requirements and
expectations? What pitfalls did they discover? What lessons from their experience can be
applied to avoid problems in the future? To examine questions like those, we’ll discuss the
team’s experiences with wiki in each of the six requirements.

3.3.1 R1: Support for Documents that Contain Text and Diagrams

As would be expected, the team had no problem creating text-based pages. Those pages were
easy to create and, in most places, did not use fancy formatting. The editing interface is easy
to use and the syntax for basic text formatting is very intuitive (see Figure 6 on page 26).

However, dealing with the architecture diagrams turned out to be very cumbersome. Wiki
allows the uploading and inclusion of images in formats such as JPEG and GIF (see Figure 8
on page 28). Consequently, the students had to use a drawing tool to create diagrams, convert
diagrams into images, and upload the images—in order to add diagrams to the text. Since this
process had to be repeated for every new version of a diagram, it created a maintenance
problem, especially early on when architecture diagrams changed very frequently.

As a result, too, the original diagram remained in the drawing tool where only the student
team members could access it. This had a negative side effect on the capability for any
stakeholder to respond quickly to change requests (Requirement 6). No one other than a
student team member was able to make any text change that would also involve modifying a
diagram—a situation which happened frequently. This inability of the wiki tool to deal with
drawing is most likely its biggest drawback.

3.3.2 R2: Support for Multiple Views with Elements and Relations

To create views, the team structured the document so that the different views were on
different pages (see chapters 4.1 to 4.3 in the Table of Contents shown in Figure 4 on page
24). This was an easy task that did not cause problems. The student team members did not
create their own “bookshelf” or see the inability of wiki to understand architecture elements
as a drawback. Their assessment was based on their recognition that text-editing and drawing
tools—alternatives to wiki for describing the architecture—do not have any knowledge about
software architectures.

8 CMU/SEI-2005-TN-041

3.3.3 R3: Support for Version Control

The wiki feature for version control and display of differences (see Figure 7 on page 27) was
welcomed by the team at the beginning. After a while, though, the team encountered
problems based on the dynamicity of wiki. It is just too easy to change a page. Whenever a
team member responsible for a page checked for changes since the previous version, that
team member had to check multiple previous versions, which made it very difficult to check
for consistency.

To overcome this difficulty, the team started using another wiki feature—the discussion page.
Every page in wiki also has a discussion page where team members can provide feedback
without changing the page. In the beginning, this seemed to be a nice feature. But its use
uncovered a further problem. A discussion page is not coupled with a page version. When
reviewing comments, a team member could tell neither which version of the page was being
discussed nor whether the comment was current or old. The team overcame this weakness by
mentioning the page version number in their comments as a standard practice.

The lesson learned here is this: while page content is immature, letting everyone make
changes to pages is not a good idea. At that stage, instead of allowing anyone to change pages
directly, use the discussion page to describe the changes to be made. Later in the process,
when fewer changes are expected, anyone can change the page directly without using the
discussion page.

3.3.4 R4: Support for Easy Access

The team’s architecture documentation has a fairly flat structure. Most views are represented
in a few pages that typically do not feature links to other pages. Therefore, the team members
and the customer, Siemens Corporate Research, Inc., can easily navigate through the
document. It is realistic, of course, that the structure will become more complex as the
amount of information grows. To date, we have no insights regarding which navigational
features to use or how to use them in substantive architecture documentation. It is possible to
create a sidebar with a partial or complete map of the wiki that looks like a table of contents
with links. This sidebar can be displayed on the right-hand side of the screen for every page
(see Figure 2 on page 18). Although it helps navigation tremendously, this feature is not
added automatically when a wiki page is created, and the team did not implement a sidebar
table of contents for its documentation.

A bigger problem was caused by the dynamic nature of wiki. The expectation is that
everyone actually reads the information online to get the latest information. Wiki is an online
tool, after all. There are some cases where this advantage is also a limitation. For example,
the team held many teleconferences with its customer. In the team’s conference room,
however, there was no network connection. As a result, some participants were not able to
discuss the online information. Instead, those participants printed information some days
prior to a teleconference. By the time of the meeting, the information in the wiki pages had
been changed, causing confusion as participants referenced different versions.

CMU/SEI-2005-TN-041 9

To avoid this problem, the definition of a baseline is required—an option which is not
supported by wiki version-control functionality.

3.3.5 R5: Low Cost

The student team and customer were able to use the infrastructure with no problems and at
very little cost. The tool is robust and did not crash. One incident, though, showed the strong
dependency on a working infrastructure. For a couple of days, the team lost its server access
and, with it, the ability to work on the documents. This problem is not specific to wiki; it
applies to all server-based infrastructures (such as Web or mail servers) and can be solved
with the usual measures, such as providing redundancy. But it shows that a working
infrastructure is critical.

3.3.6 R6: Support for Change Requests

The student team did set up a feedback capability with its customer, allowing reviewers to
comment on or change pages directly. Interestingly, the wiki-based feedback never happened.
The customer provided feedback in emails and phone conferences. A feature that was
intended to improve the communication between stakeholders was not used.

After interviewing the customer, it became obvious that the customer and student team had
different expectations for use of the feedback mechanism. Although the student team allowed
the changes, the customer’s understanding was that feedback would be provided as
comments, not necessarily as direct changes. Wiki changes this traditional feedback
paradigm, and, therefore, the users have to be reeducated.

Learning from the documentation development experience, the customer created video-based
training materials when it took over the wiki infrastructure (see Figure 9 on page 29). These
materials were designed to help new users understand and fully use the power of wiki.

3.4 Other Issues that Need to be Considered
Many different implementations of wiki are available. Some support smaller projects;
others are well suited for large documentation projects. Some have very fancy formatting
capabilities; others only offer basic ones. Some offer the ability to add functionality; others
don’t. An organization has to understand its needs to be able to select the appropriate version.

Wiki provides an open environment, in which everyone who can access the site can read
and change anything. In many cases, such an environment is not desirable. Organizations
typically make a clear distinction on permissions, especially when it comes to subcontractors.
Subcontractors should see and change only those parts assigned to them, along with some
context information. The remainder of the information should be hidden from them. Wiki
does not have a flexible permission system. As a result, it is not possible to show partial

10 CMU/SEI-2005-TN-041

content. If permission-based access is really a must, a second wiki would have to be set up
with scripts synchronizing the two sites.

It also can be very cumbersome to produce printouts for those who need to see the
information but do not or cannot use wiki. Some wiki versions may offer limited scripting
abilities that can be used to produce printouts. That scripting requires the user to identify a set
of pages to be included and then to print that set. Be warned, though: if the structure of the
documentation changes, the scripting has to be changed, too.

CMU/SEI-2005-TN-041 11

4 Pros and Cons of Wiki for Architecture Documentation

A software architecture document (SAD) consists of sections of prose intermingled with
tables and figures. The figures are typically diagrams that follow a standard design notation
(e.g., UML) or some informal notation with boxes and lines. The diagrams illustrate the
different perspectives of the architecture, including the structure of implementation units, the
hardware infrastructure, and the structure of runtime elements and their interactions. The
prose and tables complement the diagrams to provide a description of the elements and
relations depicted graphically—as well as other information, such as a system overview,
architecture background, design rationale, mapping to requirements, and glossary.

Most SADs today are created using Microsoft Word. Typically, the diagrams are created
externally and embedded in the Word document. Design diagrams are often created with a
modeling tool, such as IBM Rational Software Architect or Omondo EclipseUML, but many
times the architect simply uses a drawing tool such as Microsoft Visio or PowerPoint. An
alternative to using a modeling or drawing tool that is now common in agile projects is
creating and discussing diagrams on a whiteboard and then taking a digital picture of the
board. In any case, diagrams are converted to an image format that is then inserted into the
Word document. That document itself is usually stored in a configuration management tool
(e.g., CVS), so that many people can access it and a revision and version-control process can
be enforced.

Wiki offers an alternative to using an editing tool paired with a configuration management
tool. Wiki, however, is not an alternative to modeling or drawing tools. Table 1 delineates the
positive and negative aspects of using wiki versus Word and CVS for software architecture
documentation. In the table, we’ve added graphic representations of the prose comments by
inserting stylized icons:

• A smiling face icon (☺) symbolizes that the tool meets the need well.

• A frowning face icon (") means that the tool falls short of meeting the need.

• A plain face icon (#) signifies that the tool might meet the needs of some users.

12 CMU/SEI-2005-TN-041

Table 1: Comparing Wiki to Word and CVS for Architecture Documentation

Feature Word and CVS Wiki

Granularity
and concurrent
changes

" Typically, the SAD would be
contained in one document or a few
documents. If multiple authors need
to edit the SAD, there will be some
contention. CVS allows different
users to check out and commit
changes to a Word document.
However, Word documents are
treated as binary files and cannot be
compared or merged using CVS/diff
tools. A user should lock the
document when editing it.

☺ A wiki-based SAD3 is typically
much more granular and hence more
suitable for documentation created
collaboratively. When two or more
authors edit the same page at the
same time, the wiki server will try to
merge the changes. In any case, a
user may manually lock a page prior
to editing it.

Repeating
information in
multiple
places4

" If repetition is avoided by adding a
cross-reference (e.g., “See Section
X”) or hyperlink, the document is
less readable because the user has to
flip pages or follow links too often.

" If the information is copied to
multiple places, the reader doesn’t
have to flip pages, but the document
becomes harder to maintain.

☺ Wiki provides a mechanism called
transclusion that solves the problem
caused by the repetition of
information (see Figure 1 on page
17). Transclusion allows the
embedding of a piece of text in
different pages. When the text is
modified in the source page, all
target pages are updated. This is a
major benefit of wiki over Word and
other editing tools.

Working
offline

☺ The user can edit documents
regardless of network connectivity.
However, to get the latest version or
commit a new version to the
repository, the user must establish a
connection to the CVS server.

" Without a connection to the wiki
server, it is not possible to read or
change a wiki page.

User
deployment

In addition to Word, the user has to
install a CVS client and configure
access to the CVS server on the
machine to be used to access the
documentation.

☺ Nothing besides a Web browser is
required on the user’s machine.
Therefore the user can access the
wiki from any computer that has
network connectivity.

3 For this comparison, a wiki was created using MediaWiki. For more on MediaWiki, see

http://en.wikipedia.org/wiki/MediaWiki [Wikipedia 06b].
4 Repeating content in a document should be avoided because it makes effecting changes more

difficult. However, many times a piece of information—for example, the description of a key
component of the architecture—is useful to the reader in many places and ideally should be visible
in all these places.

CMU/SEI-2005-TN-041 13

http://en.wikipedia.org/wiki/MediaWiki

Table 1: Comparing Wiki to Word and CVS for Architecture Documentation (cont.)

Feature Word and CVS Wiki

Document
template5

☺ In Word, a user can create a
document template (that has the
extension “.dot”) for the SAD; the
template can be instantiated easily.

" There is no mechanism similar to
the template for wiki. It is not
possible to instantiate one wiki page
based on the structure of another.

Search # A user can press Ctrl+F to locate
words or phrases in the document,
but this Find feature doesn’t work if
the SAD spans several documents.

☺ A user can press Ctrl+F (Web
browser option) to locate words or
phrases in the current page. In
addition, a search box is available
on every page that allows searching
the entire wiki.

Navigation ☺ If the SAD is a single document,
Word can create a table of contents
(TOC) based on the section and
subsection headings. In addition,
links to sections, tables, and figures
can be added easily to the text.

☺ The user can select “View |
Document Map” to see a TOC, from
which the user can go to any section
of the document. The vertical scroll
bar also shows section headers and
page numbers as the user slides the
marker.

If the SAD spans several
documents, the user can create a
master document and
subdocuments. Even so, the only
navigation aids are a centralized
TOC and links from the master to
the subdocuments.

☺ A TOC of the current page is
created automatically for each page
(see Figure 2 on page 18). Also, it’s
possible to configure a TOC of the
entire SAD and manually add it to
every page using transclusion (see
Figure 1 on page 17 and Figure 2).

☺ In addition, wiki automatically
creates a navigation menu (left-hand
side of Figure 2), and it is very easy
to create links from page to page.
For instance, in the related views
section of an architecture view, the
user can create a link to page View
Xyz by simply typing [[View
Xyz]].

☺ The user can also type the name of a
page in the search box and click the
Go button to go directly to that
page.

Review ☺ " The Track Changes option in Word
allows visualization of edits in line
with the document’s text. It also
indicates the author, date, and time
of each change.

 There is no mechanism similar to
Track Changes. The user can only
add comments in the discussion
page, which is available for each
wiki page.

5 SADs should follow a standard organization (i.e., a template). It’s easier for the reader to navigate a

familiar structure. Also, a template allows the writer to record information as soon as it is known and
measure the work left to be done [Clements 02].

14 CMU/SEI-2005-TN-041

Table 1: Comparing Wiki to Word and CVS for Architecture Documentation (cont.)

Feature Word and CVS Wiki

History of
changes

" CVS can display a history of all
versions of the file, showing the
author, date, and time of each
version and comment. However,
because Word is treated as a binary
file, it is not possible to see what
changed from one version to the
next.

☺ On every page there is a tab named
history that leads to a page where
the user can see the author, date, and
time of each change. The user can
also compare any two versions in
the history to see what has changed
(see Figure 7 on page 27).

" Every time a page is saved, a history
entry is created. As a consequence,
there are usually many versions of a
page that do not constitute major
changes. A user can classify a
change as minor or major when
saving the page and minor changes
can be omitted from the history by a
manual process.

Notification of
changes

☺ CVS provides a means to notify the
users via email when artifacts are
created, removed, or modified in the
repository.

☺ On every wiki page there is a tab
named watch that adds that page to
the user’s watchlist. At any time, the
user can go to his or her watchlist
page to see changes made to
watched pages. The user can also
opt to receive email notifications
when a watched page is modified by
someone else and when a new page
is created.

Text
formatting

☺ Very rich # Limited to basic HTML formatting

WYSIWYG
(what you see
is what you
get) editing

☺ Microsoft Word is a full-fledged
WYSIWYG editor.

" Pages are edited in a regular text
box. The author has to use wiki or
HTML markup to format the text,
create links, embed images, create
tables, and so on. To see the result,
the user has to click the Preview
button.

☺ The user can add HTML
WYSIWYG editors to MediaWiki
manually [Wikipedia 06b].

CMU/SEI-2005-TN-041 15

Table 1: Comparing Wiki to Word and CVS for Architecture Documentation (cont.)

Feature Word and CVS Wiki

Printing ☺

g,
cteristics of the

printed pages.

" en
 Web

s
reated and maintained

manually.

The document is suitable for
printing. The author can configure
headers, footers, page numberin
and other chara

Not much can be configured wh
printing a Web page in a
browser. Moreover, the
documentation consists of several
wiki pages. Scripts to print all page
need to be c

Access control "

ere the repository files

reside.

"

whether these users can edit pages.

Access control in CVS is
rudimentary. It requires user
authentication, but authorization
relies on permissions set in the file
system wh

Access control for MediaWiki is
also very basic. User self-
registration and authentication are
available, but there are no means to
set different permissions on separate
pages to users or groups of users.
The administrator can create a user
group and assign permissions to that
group, but the permissions apply to
all pages. The administrator can also
indicate what pages can be seen by
users who are not logged in and

Documen-
tation
delivery

☺

tion, either in soft or printed
format.

"

re

s to be exported and
imported.

In projects where the architecture
documentation is a deliverable, the
Word document is a simple artifact
to be transferred to the contracting
organiza

When a subcontracted organization
hosts the wiki, the transfer of the
architecture documentation is mo
complicated. The contracting
organization has to set up a wiki
infrastructure, and then the wiki
database ha

16 CMU/SEI-2005-TN-041

Figure 1: Transclusion of the Source “PO” into the Target Page
 “View PetstoreWeb”

CMU/SEI-2005-TN-041 17

Figure 2: Wiki Page of the Java Pet Store SAD Showing Navigation Aids

18 CMU/SEI-2005-TN-041

5 Configuring Wiki For Architecture Documentation

If you are going to use a wiki as the repository of your software architecture, there are some
practical considerations and guidelines that may help. Below is a list of recommendations for
the configuration and day-by-day use of your wiki-based SAD.

• The first step obviously is to create a new wiki or define a page for the SAD in an
existing wiki. Although it is not possible to automatically enforce a specific structure for
the new wiki, it is highly advisable to follow a standard organization—that is, a template.

• Create the initial page of the architecture documentation as a list of links to the main
topics (see Figure 3). To facilitate navigation, you can manually add the main table of
contents to every page of the documentation (see the right-hand panel in Figure 2). That
is done using transclusion: insert the transcluded text into a table that occupies only a
portion of the screen width (see Figure 1).

• Create one wiki page for each architecture view. Follow a convention to name the views,
so that it is easy to remember the names when creating links (the view and its wiki page
should share the same name).

• Create one wiki page for each mapping between views, so that each mapping can be
edited independently.

• If you are using a drawing tool, such as Visio or PowerPoint, create one file for each
diagram or one file for each architecture view. Give the file the same name as the view,
replacing spaces with a standard character. For example, the diagrams used in the
Package petstore view would be stored in Package_petstore.vsd. If you are not using a
configuration management tool, such as CVS, to store the drawing tool file, here is an
alternative: upload the file to the wiki and create a link to it in the wiki page that contains
the corresponding architecture view.

• Diagrams need to be converted to an image format (e.g., JPEG) before they can be added
to wiki pages. Give the image file the same name as the drawing tool file (use different
suffixes in the name if the drawing tool file contains more than one diagram). For
example, the diagrams in Package_petstore.vsd could be exported to

- Package_petstore.jpg: structural view (primary presentation)
- Package_petstoreSD1.jpg: first sequence diagram
- Package_petstoreSD2.jpg: another sequence diagram

• Wiki does not provide an editorial feature similar to the Track Changes option in Word.
The wiki option is to add comments to the discussion page. An alternative that has
proven to be effective when reviewing a wiki page is this process:

1. Copy the wiki page to a blank Word document.

CMU/SEI-2005-TN-041 19

2. Activate the Track Changes option.

3. Edit the Word document and add comments as needed.

4. Send the Word document to the author of the wiki page, who then can change the
wiki page based on the edits and comments in the review.

• It is very common for an element in the architecture to appear in more than one view.
Create the description of that element in a separate page and use transclusion in the
element catalog of all pages that contain that element.

• If you already have documentation created in Word and want to migrate it to a wiki, there
are macros/scripts that can help. To find them, go to http://www.google.com and type in
“Word2Wiki” or “WordToWiki.”

20 CMU/SEI-2005-TN-041

http://www.google.com

Figure 3: Wiki Page Showing Architecture Document’s Table of Contents

CMU/SEI-2005-TN-041 21

6 Conclusion and Future Work

Using a collaborative tool such as wiki as a communication tool for software architecture
documentation is promising. But this use of wiki still requires many workarounds—a
circumstance that may prevent organizations from adopting a wiki-based approach. In
addition, the need to adjust responsibilities in an organization and the lack of a permission
system create acceptance barriers that also might be difficult to overcome.

However, the advantage gained by working collaboratively (at least in a small team) to create
architecture documentation seems to outweigh those disadvantages. When asked whether
they would use wiki again—knowing all its disadvantages—the student team members
answered without hesitance, “Yes.”

Siemens Corporate Research, Inc. also is convinced that it is at least worth testing the
approach on a larger scale. The company took over the installation of the wiki infrastructure
and plans to drive the implementation of the system by many geographically distributed
teams.

We will follow this effort to identify benefits for the users (not just the producers) of the
architecture documentation. In particular, we are interested to see whether wiki will support
the unavoidable evolution of the architecture and whether the organization will be able to
keep the architecture documentation current.

Another aspect we will observe is the support for distribution. The customer’s
implementation of the system will be done by multiple teams distributed around the globe.
We want to answer this question: “Would a tool like wiki reduce the risk for distributed
software development?”

22 CMU/SEI-2005-TN-041

CMU/SEI-2005-TN-041 23

Appendix Screen Shots from Siemens Project Wiki

In this appendix, Siemens Corporate Research, Inc. provided some screen shots taken from
the existing wiki.

Figure 4: Basic Layout of a Wiki Page

24 CMU/SEI-2005-TN-041

Figure 5: A Wiki Page with Included Picture

CMU/SEI-2005-TN-041 25

Figure 6: Editing a Section of a Wiki Page

26 CMU/SEI-2005-TN-041

Figure 7: Displaying the Differences Between Two Versions of the
Same Wiki Page

CMU/SEI-2005-TN-041 27

Figure 8: Uploading an Image File into Wiki

28 CMU/SEI-2005-TN-041

5-TN-041 29

Figure 9: Training Materials Included

CMU/SEI-200

References

URLs are valid as of the publication date of this document.

[Clements 02] Clements, P., et al. Documenting Software Architectures: Views and
Beyond. Boston, MA: Addison-Wesley, 2002.

[Kazman 04] Kazman, R. & Nord, R. L. “Integrating Architecture Methods: The
Case of the ATAM and the CBAM.”
http://www.sei.cmu.edu/news-at-sei/columns/the_architect
/2004/1/architect-2004-1.htm (2004).

[Leuf 01] Leuf, B. & Cunningham, W. The Wiki Way: Collaboration and
Sharing on the Internet. Boston, MA: Addison-Wesley, 2001.

[Singh 02] Singh, I., et al. Designing Enterprise Applications with the J2EE
Platform, Second Edition. Boston, MA: Addison-Wesley, 2002.

[Wikipedia 06a] Wikimedia Foundation, Inc. Portland Pattern Repository.
http://en.wikipedia.org/wiki/Portland_Pattern_Repository (2006).

[Wikipedia 06b] Wikimedia Foundation, Inc. MediaWiki.
http://en.wikipedia.org/wiki/MediaWiki (2006).

30 CMU/SEI-2005-TN-041

http://www.sei.cmu.edu/news-at-sei/columns/the_architect
http://en.wikipedia.org/wiki/Portland_Pattern_Repository
http://en.wikipedia.org/wiki/MediaWiki

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

September 2005
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Experience Using the Web-Based Tool Wiki for Architecture
Documentation

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Felix Bachmann, Paulo Merson
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2005-TN-041

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

In an organization that uses an architecture-centric development approach, it is the purpose of the software
architecture, especially the product documentation, to guide all stakeholders who contribute in one way or
another to the development of the product(s). Unfortunately, in many organizations, this documentation ends
up on the shelves, unused and collecting dust. This happens in part because it is difficult to keep the
architecture documentation current, hard for nondevelopers to understand what the documents describe, and
challenging for nondevelopers to use the tools necessary to access the documentation.

This technical note discusses the benefits and challenges of using a wiki-based collaborative environment to
create software architecture documentation. The findings are based on two experiences. The first was that of
a team of Carnegie Mellon® University Master of Software Engineering (MSE) program students that used
the wiki tool in a real-world software project. For its customer, the team had to produce and document the
architecture of a system that will be developed by many geographically distributed teams. The second
experience was a study conducted by another MSE student to reconstruct and document the architecture of a
multitier enterprise application using the wiki tool and UML 2.0.

14. SUBJECT TERMS

wiki, software architecture, architecture documentation, distributed
development

15. NUMBER OF PAGES

44

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Experience Using the Web-Based Tool Wiki for Architecture Documentation
	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Executive Summary
	Abstract
	1 Introduction
	2 Wiki
	3 Wiki for Architecture Documentation
	4 Pros and Cons of Wiki for Architecture Documentation
	5 Configuring Wiki For Architecture Documentation
	6 Conclusion and Future Work
	Appendix Screen Shots from Siemens Project Wiki
	References

