
Lessons Learned Model
Checking an Industrial
Communications Library

James Ivers

September 2005

Predictable Assembly from Certifiable Components
Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2005-TN-039

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2005 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Contents

Acknowledgements ..vii

Abstract... ix

1 Introduction..1

2 A Model Checking Reasoning Framework ..3

3 Case Study ...6

4 Communications Library Verification ..8
4.1 Document the Design ...9
4.2 Formalize Claims..12
4.3 Generate S/R Model ...12
4.4 Apply Model Checker..13
4.5 Verification Tuning ..14

4.5.1 Applying Manual Abstractions...14
4.5.2 Tuning Model Generation ...15
4.5.3 Trying Different Algorithms ...15

4.6 Interpret Results ...16

5 Results ..17

6 Conclusion ...20

Appendix A Example Fragments ..23

References...27

CMU/SEI-2005-TN-039 i

ii CMU/SEI-2005-TN-039

List of Figures

Figure 1: Elements of a Reasoning Framework .. 3

Figure 2: Model Checking Reasoning Framework .. 4

Figure 3: Sequence Diagram Showing Synchronous Exchange............................. 6

Figure 4: Verification Process.. 8

Figure 5: Sample Objectbench State Machine .. 10

Figure 6: Original OCM.. 11

Figure 7: Sequence Diagram Summarizing a Counterexample 18

Figure 8: Original OIM ... 24

Figure 9: Final OIM.. 25

Figure 10: Final OCM .. 26

CMU/SEI-2005-TN-039 iii

iv CMU/SEI-2005-TN-039

List of Tables

Table 1: Problems and Possible Solutions... 21

CMU/SEI-2005-TN-039 v

vi CMU/SEI-2005-TN-039

Acknowledgements

This work would not have been possible without the contributions and support of a great
group of people. The model checking exercise described in this report was conducted jointly
with Natasha Sharygina, whose efforts and experience with the tools used were instrumental
in producing successful results. Professor James Browne connected us with HyPerformix,
which provided a copy of Objectbench for our research. Likewise, Fei Xie provided a copy of
the ObjectCheck toolset. Peter Eriksson and his organization provided us with the
communications library to be model checked and with an opportunity to discuss our findings
with the engineers responsible for maintaining the library and get their feedback. Sagar
Chaki, Linda Northrop, and Kurt Wallnau provided insightful reviews that helped improve
the quality of this report.

CMU/SEI-2005-TN-039 vii

viii CMU/SEI-2005-TN-039

Abstract

Model checking is a fully automated formal verification technology that can be used to
determine whether models of software satisfy behavioral requirements in such areas as safety,
reliability, and security. This report explores the packaging of model checking technology in
a reasoning framework. The goal of a reasoning framework is to simplify the analysis of
software designs by nonexperts. This report describes the application of such a reasoning
framework to the design of an industrial communications library and the problems that were
found. This report also notes the tasks that were unreasonably complex or time-consuming
and concludes with thoughts on techniques that could be used to develop a model checking
reasoning framework that better supports use by nonexperts.

CMU/SEI-2005-TN-039 ix

x CMU/SEI-2005-TN-039

1 Introduction

Model checking is a formal verification technique for checking whether a model satisfies
specific behavioral requirements [Clarke 99]. Model checking has been successfully applied
in numerous domains, such as chip design [Russinoff 98, O’Leary 99], telecommunications
[Chaves 92, Chandra 02], and device drivers [Ball 04]. In the software community, model
checking is applied both to design artifacts [Hatcliff 03, Holzmann 03] and source code [Ball
01, Henzinger 02] to determine whether software satisfies critical behavioral requirements in
such areas as safety, reliability, and security.

Model checkers use a collection of algorithms to verify whether a finite model satisfies user
specified claims in all possible executions. This exhaustive analysis is an effective means to
discover subtle problems, such as race conditions, not easily detected by conventional testing
techniques. Additionally, model checking provides diagnostic feedback in the form of
counterexamples, which are execution traces that lead to the violation of a claim. This
feedback identifies specific circumstances under which problems occur, which in turn helps
designers and developers to locate the cause of the failure.

The principle obstacle to successful adoption of model checking for software has been the
state space explosion problem. Because the cost of performing exhaustive verification grows
exponentially with the size of the models, verification can fail to complete with available
resources.1 However, model checking research has made tremendous progress in recent
years, and today’s model checking tools include a variety of sophisticated algorithms based
on fundamental techniques for coping with state space growth such as

• using more efficient, symbolic representations of models, such as binary decision
diagrams (BDDs) [Burch 92]

• pruning the search space based on the equivalence of different paths using partial-order
reduction [Godefroid 91, Katz 92, Valmari 91]

• using compositional reasoning techniques to verify portions of the model individually,
rather than verifying the explicit composition of all models [Clarke 89]

• using predicate abstraction to construct conservative abstractions that retain the
properties of the original models [Graf 97]

Despite such advances in model checking theory, the degree of expertise that is often required
to successfully complete verification remains an impediment to widespread adoption of
model checking technology by software developers. Ideally, developers should be able to
apply model checking to their designs and implementations without learning the intricacies of

1 Typically, available memory used to store the state space to be searched is the limiting factor,

though verification attempts that require tens of hours are also problematic.

CMU/SEI-2005-TN-039 1

model checking theory, the nuances of particular algorithms, or the peculiar notations used by
specific tools.

This report explores the packaging of model checking technology in a reasoning framework
[Bass 05] that simplifies the analysis of software designs by nonexperts. Software model
checking, a term used to refer to the verification of source code, is another important use of
model checking technology. In this report, however, we restrict our attention to verifying
software designs. The key benefits of verifying design artifacts are that the models are
usually smaller and finding problems earlier in the development process results in less costly
fixes.

We describe a set of available tools that together effectively form a model checking reasoning
framework and their application to the design of an industrial communications library. In
addition to presenting the problems discovered by model checking, we note the tasks that
were unreasonably complex or time-consuming and conclude with thoughts on techniques
that could be used to develop a model checking reasoning framework that better supports use
by nonexperts.

2 CMU/SEI-2005-TN-039

2 A Model Checking Reasoning Framework

In addition to functional correctness, software systems typically have to satisfy a variety of
quality attribute requirements in such areas as performance, reliability, and security. While
conventional testing techniques are used with varying degrees of success to determine
whether systems satisfy such requirements, that feedback comes late in the development
process, and adequate coverage is difficult to achieve.

Alternatively, specialized theories developed to reason about specific qualities can be applied
to predict whether systems will satisfy these requirements prior to implementation or
integration. For example, rate monotonic analysis (RMA) is an effective theory for reasoning
about system performance given a task structure, execution times, and thread priorities [Klein
93]. Such theories, however, typically require some degree of expertise to apply effectively
and use specialized analytic models of the system.

A reasoning framework is a way of packaging an analytic theory and its accompanying
models so that nonexperts can reason about a quality attribute [Bass 05]. Figure 1 shows the
elements of a reasoning framework. When a user supplies a description of a software
architecture that is annotated to satisfy the information requirements of a reasoning
framework (e.g., the priority of each thread), the reasoning framework computes a prediction
of how the system will behave with respect to some quality attribute (e.g., task latency).

Reasoning Framework

Key:
Transformation

Dependency Data flow

Packageable
implementation

Data
representation

Architecture
description

Evaluation
procedure

Interpretation Model
representation

Predicted
quality

attribute
measures

satisfies

based on

Analytic
theory

Analytic
constraints

Figure 1: Elements of a Reasoning Framework

CMU/SEI-2005-TN-039 3

Internally, a reasoning framework generates the appropriate model representation for the
analytic theory based on the information found in the architecture description. This model is
subjected to some evaluation procedure grounded in the analytic theory that computes some
set of predicted quality attribute measures. The degree of complexity that is hidden from
users depends on the underlying analytic theory and the semantic gap between the analytic
models and the software description.

In this exercise, we explored the use of a reasoning framework to package model checking
for nonexperts. We chose an existing set of tools for model checking software designs
expressed in xUML [Mellor 02]. These tools, shown in Figure 2, closely match the design of
a reasoning framework. The principle tools are

• Objectbench: a CASE tool used to generate xUML descriptions. In addition to the class
diagrams that typically dominate object-oriented CASE tools, xUML descriptions contain
state machines annotated with sufficient behavioral information to generate complete
implementations. It is these behavioral descriptions that provide suitable information for
model checking [SES 96].

• COSPAN: a commercial model checker implementing a variety of state space reduction
techniques that is designed for hardware verification. COSPAN consumes models written
in the S/R language [Hardin 96].

• ObjectCheck: tools for generating S/R models from Objectbench descriptions and for
generating xUML counterexamples from S/R counterexamples [Xie 02].

Reasoning Framework

Key:
Tool

Dependency Data flow

Packageable
implementation

Data
representation

xUML
Description

COSPAN

ObjectCheck

S/R Model

True or
S/R

Counter-
example

satisfies

based on

Model
Checking

Analytic
constraints

Objectbench

True or
xUML

Counter-
example

ObjectCheck

.

Figure 2: Model Checking Reasoning Framework

4 CMU/SEI-2005-TN-039

While these tools have been used successfully on other problems (e.g., a robot controller
[Sharygina 01] and an online ticket sales system [Xie 02]), they were not an ideal match to
our goals for a reasoning framework for model checking software designs. At the outset, we
were aware of several mismatches:

• Objectbench and xUML are intended to describe object-oriented systems, but we wanted
to model check a communications library composed of a collection of C functions.
Functions had to be modeled as active objects. While sound, this approach introduced
inefficiencies. In particular, each active object has an associated event queue; interactions
via function calls, however, are more efficiently verified using event synchronization
rather than event queues.

• COSPAN uses a synchronous execution model2 that best supports hardware models,
whereas we would be looking at software, for which an asynchronous execution model is
usually more appropriate. ObjectCheck accommodates these differences by generating an
S/R model that includes an explicit scheduler process that simulates an asynchronous
execution model, though at the cost of increased complexity in the model. This, in turn,
translates into greater verification expense.

• The collection of tools was not as opaque to the user as we would envision a reasoning
framework to be. Most significantly, for nontrivial problems, users must be expert
enough to tweak the models (e.g., by constraining type ranges for variables) and choose
verification algorithms in order to coax the verification to completion.

On the whole, this collection of tools proved to be effective and helped us to gain valuable
insight into the effectiveness of and difficulties in packaging model checking as a reasoning
framework.

2 In a synchronous execution model, each concurrent process makes progress during each execution

step. In an asynchronous execution model, only one process makes progress during each execution
step and the behavior of different processes is interleaved over multiple execution steps.

CMU/SEI-2005-TN-039 5

3 Case Study

We applied the collection of tools identified in Section 2 to the design of a communications
library that is widely deployed in industrial automation systems. A commercial partner
provided us with the source code for this library, which is complex enough to be realistic but
readily understandable without significant domain expertise.

The library provides operations for message-based communication among threads. It
supports a variety of synchronous and asynchronous forms of communication and includes
such realistic but complicating features as

• timeouts on both sender and receiver operations

• shared memory-based message queues implementing a message-based communication
style

• three different types of synchronization primitives to coordinate operations invoked by
different threads

In particular, we focused on the most complicated portion of the library—those operations
used to perform a synchronous message exchange. The sequence diagram in Figure 3
summarizes typical use of the communication library for this case. A sending thread initiates
the interaction by sending a message and waiting for the answer (by calling ipc_sendwait). A
receiving thread requests its next message (ipc_receive) and eventually sends a response back
to the sending thread (ipc_answer).

Sender
Communication

Library Receiver
ipc_sendwait(msg)

ipc_receive()
return(msg)

return(answer)

ipc_answer(answer)
return()

Sender
Communication

Library Receiver
ipc_sendwait(msg)

ipc_receive()
return(msg)

return(answer)

ipc_answer(answer)
return()

Figure 3: Sequence Diagram Showing Synchronous Exchange

During a quick brainstorming session, we identified 14 claims that (a) this portion of the
communications library should satisfy when correctly implemented and (b) are representative
of the types of properties that are typically verified using model checking. Some examples
include

6 CMU/SEI-2005-TN-039

• If no operations time out, the intended recipient always receives the message sent.

• A sent message is only received by the intended recipient.

• When a sender receives an answer, it is an answer to the sender’s most recently sent
message.

• A sender (receiver) only blocks when writing to a full message queue (reading from an
empty message queue).

In most cases, as demonstrated by extensive testing and field use, the protocol and its
implementation behaved as expected. Model checking, however, excels at uncovering
unusual or seldom executed paths over which interactions do not behave as expected. In
particular, we were interested in whether the combinations of synchronization primitives
were used correctly for all possible executions, including possible combinations of failures
such as timeouts. Any problems discovered might expose a flaw that could cause systems
built on top of the communications library to misbehave in seemingly untraceable or
irreproducible ways.

CMU/SEI-2005-TN-039 7

4 Communications Library Verification

The nominal process for applying this reasoning framework is relatively simple:

1. Describe the design in Objectbench.

2. Formalize the claims to be verified by model checking.

3. Use ObjectCheck to generate an S/R model.

4. Use COSPAN to verify the S/R model.

5. Interpret the results, generating an xUML counterexample from the S/R counterexample
for any claims that do not hold.

The actual experience, however, became somewhat more complicated due to our need to
compensate for state space explosion. Figure 4 depicts the resulting process, which shows the
additional activities and iterations needed to tune the verification process to a point where
model checking became tractable. These steps are elaborated in the following sections (as
indicated in parentheses in Figure 4).

Figure 4: Verification Process

8 CMU/SEI-2005-TN-039

4.1 Document the Design
While design documents were not available to us, we did have access to the source code for
the Windows version of the communications library. Creating design models from the source
code was a straightforward task once we settled on modeling conventions such as the
following:

• Functions are modeled as classes in Objectbench, each of which has its own state
machine.

• Function calls are modeled as pairs of events between objects, one representing the call
and the other representing the return.

• The shared memory segment used to implement message queues was also represented as
a class, and reads and writes were represented using event exchanges.

• Occurrences of timeouts were modeled using nondeterminism; that is, a state machine
would nondeterministically decide whether to respond in time or with a timeout event.

For the majority of the state machines, we closely mirrored the control flow found in the
corresponding source code (approximately one thousand lines of C code were modeled). For
the system calls implementing the various synchronization primitives (critical sections,
semaphores, and event objects), we instead relied on documentation from Microsoft. In both
cases, various low level details—such as data marshalling, logging, and routine error
checking—were omitted to simulate a level of information more indicative of design models.

An example of the type of state machines that were created is shown in Figure 5. The states
and transitions reflect the control flow of the corresponding function, and states are annotated
with action statements that combine C code with Generate statements for sending an event
to another state machine.

CMU/SEI-2005-TN-039 9

Figure 5: Sample Objectbench State Machine

In fact, the syntax used in Objectbench to denote sending events from one state machine to
another became problematic. It introduced a tight binding between state machines,
particularly with regard to our convention of representing function returns by events sent
back to the caller, which made the state machines less reusable. Moreover, it forced us to use
awkward modeling conventions in cases in which multiple functions could call the same
function. In these cases, we use a parameter of the call event to determine which event to
generate to represent the function return.

In addition to modeling the functions from the communication library and certain system
calls, we had to create models for senders and receivers to simulate use of the library. The
sender’s behavior was to complete initialization and enter a loop in which it would
nondeterministically pick a receiver, send the receiver a message, and wait for the answer.
The receiver’s behavior was even simpler; after completing initialization, it entered a loop in
which it would attempt to receive its next message and then send an answer. We used integers
to simulate messages and answers; further, receivers were designed to answer with the same
integer message they received, allowing us to easily match messages and answers.

We also had to decide how many senders and receivers to include in our verification scenario.
We created general-purpose senders and receivers so that we could instantiate various
numbers of each and ultimately move to a peer-based model in which any process could send
or receive. For each sender and receiver instantiated, corresponding instances had to be
created of the models of all functions called by those processes. For example, senders call
IPCSendWait, so one instance of IPCSendWait must be created for each instance of Sender.
We began with one sender and two receivers, and the complete original Objectbench model
contained a total of 46 instances.

10 CMU/SEI-2005-TN-039

Figure 6 shows a screen shot of the original Object Communication Model (OCM) for the
design of the communication library. Each bubble in the OCM represents a class, and each
labeled line represents an event that can be sent from one class to another. While the model
does not indicate the number of instances of each class, the degree of connectedness should
give the reader an impression of the number of interactions among elements of the library.

Figure 6: Original OCM

CMU/SEI-2005-TN-039 11

4.2 Formalize Claims
When brainstorming claims, we simply recorded each claim in prose. To model check a
claim, though, it must be formalized in a language understood by the model checker. In the
case of COSPAN, we recorded each claim as a linear temporal logic (LTL) formula [Manna
92] that referred to variables from the Objectbench models. ObjectCheck then translated
these claims to refer to the corresponding variables in the generated S/R models.

For example, consider this prose claim: a sender only blocks when attempting to write to a
full message queue. The natural expression of this claim refers to both events (invoking the
system call WaitForSingleObject to block) and state information (the current size and
capacity of the destination message queue). However, most variants of LTL and the specific
variant that ObjectCheck translates to S/R only permit references to state. Consequently, we
had to annotate the Objectbench model with additional flag variables used to denote
interesting points in the execution—like calling WaitForSingleObject. Formalized in
LTL, we express this claim as

G (WRITEMSGQUEUE(1).FLAG==1 && WRITEMSGQUEUE(1).QUEUE_ID==1

 --> IPC_QUEUE(2).NUMMESSAGES == 3)

A prose translation of this “it is always true that when FLAG == 1 and QUEUE_ID == 1,
NUMMESSAGES must be 3.” That is, for the first sender instance, whenever it blocks (FLAG
== 1), the destination queue must be full (the current value of NUMMESSAGES equals the
size of the queue—3 in this case). FLAG is one of the variables we had to introduce into the
Objectbench model for the sole purpose of writing claims to be model checked; blocking is
actually represented by generating a WaitForSingleObject event, which corresponds to
invoking a system call to wait on a synchronization condition.

The inability to cleanly refer to the occurrence of events caused us to add such additional
variables, which further exacerbated the state space explosion problem, reduced clarity, and
limited the ability to review that each formalized claim correctly matched the intent.

4.3 Generate S/R Model
This was by far the simplest step in our process. As long as our Objectbench models
conformed to the constraints imposed by ObjectCheck, this was a completely automated step.
One notable restriction, however, was the set of allowable datatypes—only integers could be
used in the Objectbench models. This meant modeling Booleans, for example, as a more
expensive datatype.

As part of generating an S/R model, ObjectCheck sets a bound on the range of values each
integer variable could have (a necessary step to define a finite-state machine). The default
range was -1024..1023. This range was much larger than necessary for all variables in
our model of the communications library (even for the integer representing messages and

12 CMU/SEI-2005-TN-039

answers, because we designed the sender to reset this value to zero after N iterations) and was
something we adjusted during verification tuning (see Section 4.5 for more information).

Automation was invaluable for this step. The size and complexity of the generated S/R
models were well beyond what we could have reasonably produced manually, and the
semantic gap between the models and designs would have significantly complicated any peer
review process. As an example, the textual representation of the final version of our
Objectbench models is a 1,698-line file; the corresponding S/R model is a 7,710-line file.

4.4 Apply Model Checker
Naïve application of the model checker consists of simply executing COSPAN over the
generated S/R model. On applying COSPAN to our initial model of the communications
library, it reported an estimated state space of 2.35 × 101932 states—well beyond what was
tractable. While COSPAN can be applied in a more sophisticated manner by using command
line options to apply various state space reduction algorithms—such as using a symbolic
representation (BDDs), partial order reduction, and bounded model checking—it was obvious
that we first needed to reduce the size of the problem before these optimizations would be
enough to complete verification.

After examining how ObjectCheck generates S/R models, we noted a number of factors
contributing to the large state space:

• As already noted, the default range for integer values was much larger than necessary for
the variables in the model, usually by three orders of magnitude.

• As noted in Section 2, the models ObjectCheck generates are not ideal for the kind of
software we were analyzing. For example, given that we were modeling function calls
without their own threads of control, most state machines did not need the accompanying
event queue generated by ObjectCheck. Each such event queue constituted an additional
process, and state space growth is exponential in the number of processes.

• The Objectbench model and corresponding S/R model contained many unnecessary
variables, particularly the referential attributes used to identify instances to which a state
machine could send events. When creating the Objectbench models, we adopted a
convention for assigning instances such that there would be one instance of each state
machine representing a function that could be called by a thread of control (specifically,
the senders and receivers) and the ID attribute of each such instance would have the same
value as the ID of the thread of control. Consequently, all referential attributes in most
instances would always have the same value, and only one copy really needed to be
included.

• The models we created were more general than necessary for a verification scenario
involving strict senders and receivers. We created the models with the hope of
generalizing the verification scenario by modeling a collection of peers that could send

CMU/SEI-2005-TN-039 13

and receive. A consequence of this generalization was that more instances were present in
the model than were necessary.

With these observations in mind, we began tuning the models to ameliorate state space
growth, as discussed in the next section.

4.5 Verification Tuning
As shown in Figure 4, the various modifications we applied fell into three categories:

1. applying manual abstractions

2. tuning model generation

3. trying different algorithms

The following sections describe some of the modifications we performed in each category.
We used an incremental approach, going for big reductions first and iterating until we
produced a state space small enough to complete verification. The result of this tuning was to
reduce the state space estimates from 2.35 × 101932 states to 6.07 × 10233 states, only a small
fraction of which were searched in locating the problems we found (details on problems
found are reported in Section 5).

4.5.1 Applying Manual Abstractions

When applying manual abstractions, the goal is to make the model smaller without losing any
information relevant to the claims of interest. The biggest difference can be made by
eliminating unnecessary state machines (recall that the size of the state space is exponential
in the number of processes and that each state machine results in two processes due to the
addition of the implicit event queue). Over a series of changes, we were able to eliminate 26
of the 46 object instances in our original Objectbench model by

• reducing the number of receivers from two to one, which eliminated all 15 object
instances in that receiver’s thread of control

• removing the flexibility for each sender or receiver to become a peer and engage in both
sending and receiving behavior

• removing a critical section that was only used to coordinate writes among senders, which
was unnecessary with only one sender included

• removing a pair of classes used to model delegations that existed in the code (i.e., one
function that only calls another using specific parameters) by inlining the delegation in
the state machine modeling the original calling function

Eliminating more than half of the object instances was one of the two largest sources of
improvement in our manual state space reduction efforts.

We also eliminated a number of variables from the Objectbench models. The largest gain here
was in the removal of the many unnecessary referential attributes mentioned in Section 4.4.

14 CMU/SEI-2005-TN-039

Additionally, we were able to eliminate about 20 variables by reducing the size of the
message queues used in the communications library (not to be confused with the implicit
event queues generated by ObjectCheck) and synchronization functions. Many of these
reductions were only safe given knowledge of the usage scenario (the number of senders and
receivers and the maximum queue utilization) for which we would be verifying the behavior
of the communications library.

4.5.2 Tuning Model Generation

While we could not disable the generation of the implicit event queues by ObjectCheck in
S/R models, we were able to tune the range of values of each variable. Bounding variables is
a commonly used technique for managing state space growth but must be performed
carefully. Bounding an integer variable to a small, finite range such as 0..5 may
dramatically reduce the state space size, but it can also introduce problems in the model.
First, should the range be too small to permit problematic behavior to arise, model checking
will produce a false sense of confidence. Second, the ranges of variables must be coordinated.
If x has a range of 0..5 and y has a range of 0..5, then z should usually have a range of
0..10 if the statement z = x + y; appears in the model. Determining a consistent set of
ranges can be, therefore, a tedious task.

For the communications library, the basic process was to trace each variable to the source of
its values (often by tracing back through several function calls or events exchanged among
state machines) and determining or constraining the maximum set of possible values given
the number of object instances being created in our scenario. The default range for all
variables was -1024..1023. In the final version, this range was three orders of magnitude
smaller for all variables, with some having ranges as small as 0..1. This form of tuning was
one of the two largest sources of improvement in our manual state space reduction efforts.

4.5.3 Trying Different Algorithms

At various points in the process of manually reducing the size of the state space by using the
techniques described in Sections 4.5.1 and 4.5.2, we would attempt to model check the
resulting S/R models. Until we were able to get the state space estimate down to the 10300
range, however, we were unable to get any results within a reasonable period of time3 or
without exhausting available memory.

COSPAN provides a variety of state space reduction algorithms that can be applied by
supplying the appropriate command line arguments. Over the course of various experiments
and iterations, we used a variety of these algorithms to attempt to complete verification,
including

3 Our subjective measure of reasonable was an overnight job on cluster machines. Sole access to

these machines was atypical, however, and better results or more timely feedback should be
expected given better computing resources.

CMU/SEI-2005-TN-039 15

• symbolic representation with BDDs to represent models very efficiently in memory

• bounded model checking for limiting the search depth of any particular path4

• partial-order reduction, which avoids searching interleavings that are equivalent with
respect to claims of interest

Of the model checking attempts we were able to complete with available resources and
patience, all used an explicit (not symbolic) state space search using partial-order reduction.
That’s not to say that other techniques aren’t helpful or that others couldn’t have been tried;
but with our general goal of minimal manual intervention, this approach turned out to be
what worked.

4.6 Interpret Results
Interpreting model checking results involves two steps with this reasoning framework. First,
all counterexamples generated by COSPAN are execution traces of the S/R model, something
not suitable for user consumption. ObjectCheck automates the production of a usable version
by generating corresponding execution traces of the Objectbench models from the S/R
counterexamples. This form allows a user to relate the trace leading to a problem to the
models he or she created in the first place.

The more difficult step is examining the Objectbench counterexamples and understanding the
cause(s) of the indicated problems. Counterexamples can be quite long, particularly when
problems only manifest after a significant period of execution necessary to put the system
into particular states, such as error recovery modes. One particular counterexample we
examined uses 183 steps to demonstrate a problem.5

In such circumstances, we found it helpful to sketch a sequence diagram abstracting the
counterexample as we read. By manually producing a version in which perhaps dozens of
low-level execution steps are replaced by abstractions like “read message and send answer,”
we created a more manageable set of sequenced steps separated by interleavings (context
switches). See Figure 7 in the following section for an example.

4 The effectiveness of bounded model checking often seems counterintuitive. However, when model

checking finds problems, it is usually after searching a fraction of the state space; only when claims
hold must the full state space be searched.

5 For reference, the S/R version of this counterexample is a 376-line file.

16 CMU/SEI-2005-TN-039

5 Results

Despite various inconveniences encountered during our application of the model checking
reasoning framework to the design of the communications library, it was a valuable exercise.
In addition to identifying problems and areas for improvement for future model checking
reasoning frameworks, we discovered several problems with the design of the
communications library.

Specifically, the following claims did not hold:

1. When a sender receives an answer, it is an answer to the sender’s most recently sent
message.

2. A sender only blocks when writing to a full message queue.

3. Answers are not delivered to an inactive slot.

These problems varied in importance, with the first being most significant in that a system
could take inappropriate action based on incorrect responses, the second potentially
degrading system performance, and the third resulting in generation of the wrong error
message.

Regarding the first problem, Figure 7 illustrates a summary of an execution of the
communications library, focusing on the use of a semaphore that leads to the problem. This
result was a product of the final Objectbench model, whose corresponding S/R model
contained an estimated 6.07 × 10233 states. The problem, consisting of 183 steps though the
20 object instances from the Objectbench model, was found after searching only 19,759
states. Total verification time, however, was approximately 2.5 hours, the majority of which
was needed to construct the state space prior to starting the search.

To summarize the problem, it is possible for a sender and receiver communicating
synchronously to get “out-of-sync” if the proper sequence of timeouts and context switches
occurs. The problem arises when the sender sends a message and times out before an answer
is received. When the sender sends its next message, the receiver might finally answer the
first message at a point when the sender is expecting an answer to the second message.

CMU/SEI-2005-TN-039 17

Sender ReceiverSemaphore
21: ipc_sendwait(m == 1)
23: wait(t == 0)

26: wait times out

36: put m == 1 in msgq
47: wait(t == 1)

49: wait times out

51: ipc_sendwait times out
53: ipc_receive()
65: read m == 1 from msgq
76: ipc_receive returns m == 1
77: ipc_answer(a == 1)
78: a == 1 written to slot
79: release semaphore

85: ipc_sendwait(m == 2)
87: wait(t == 0)

89: acquires semaphore

100: put m == 2 in msgq
112: wait(t == 1)

113: wait times out
115: ipc_sendwait times out

117: ipc_receive()
128: read m == 2 from msgq
140: ipc_receive returns m == 2
141: ipc_answer(a == 2)
141: a == 2 written to slot

145: ipc_sendwait(m == 3)
146: wait(t == 0)

149: wait times out
150: release semaphore

163: put m == 3 in msgq
175: wait(t == 1) on semaphore

177: acquires semaphore

179: reads a == 2

Sender ReceiverSemaphoreSender ReceiverSemaphore
21: ipc_sendwait(m == 1)
23: wait(t == 0)

26: wait times out

36: put m == 1 in msgq
47: wait(t == 1)

49: wait times out

51: ipc_sendwait times out
53: ipc_receive()
65: read m == 1 from msgq
76: ipc_receive returns m == 1
77: ipc_answer(a == 1)
78: a == 1 written to slot
79: release semaphore

85: ipc_sendwait(m == 2)
87: wait(t == 0)

89: acquires semaphore

100: put m == 2 in msgq
112: wait(t == 1)

113: wait times out
115: ipc_sendwait times out

117: ipc_receive()
128: read m == 2 from msgq
140: ipc_receive returns m == 2
141: ipc_answer(a == 2)
141: a == 2 written to slot

145: ipc_sendwait(m == 3)
146: wait(t == 0)

149: wait times out
150: release semaphore

163: put m == 3 in msgq
175: wait(t == 1) on semaphore

177: acquires semaphore

179: reads a == 2

Figure 7: Sequence Diagram Summarizing a Counterexample

Figure 7 shows one way in which we used the xUML counterexample—to produce a
summary for communicating with the engineers responsible for maintaining the
communications library. The information found in the counterexample was also sufficient to
find the relevant bits of source code, confirm the existence of the problem by code inspection,
and to help us to write a test program demonstrating the problem.

While model checking was successfully used to discover the three cited problems, we had
considerably more difficulty using model checking to show the absence of problems.
Verification attempts on other claims typically exhausted available memory or were aborted
after lengthy executions (some after more than 12 hours). This does not diminish the
importance of the findings, however. According to one engineer, the problem of a sender
receiving the wrong answer had existed in the communications library for more than seven

18 CMU/SEI-2005-TN-039

years before it was identified.6 It is an exemplar of the kinds of subtle problems caused by
race conditions that are notoriously difficult to locate or reproduce via testing but routinely
uncovered by the exhaustive searches used in model checking.

6 The engineers had, in fact, found the problem independently of our model checking effort. We were

analyzing an older version of the library in which the problem still existed.

CMU/SEI-2005-TN-039 19

6 Conclusion

Model checking the communications library was a success in two respects. First, as is typical
of model checking exercises, we were able to find and verify the existence of design and
implementation problems, one of which was quite serious (though seldom encountered). This
process provided valuable feedback to the engineers maintaining the communications library
and helped them understand the effectiveness of model checking in discovering these kinds
of subtle problems.

Second, and more important from a research perspective, we compared the application of the
collection of tools to our ideal expectations of a model checking reasoning framework and
identified tasks that are unreasonably complex or time consuming for application by
nonexperts or when dealing with a larger code base. This comparison helped fuel our
development of the ComFoRT model checking reasoning framework [Ivers 04].

Our goals for ComFoRT are twofold:

1. Support the verification of industrial-scale problems by incorporating state-of-the-art
model checking algorithms and associated techniques for generating efficient models
from software designs.

2. Support verification by nonexperts by eliminating the need for the types of manual
intervention described in Sections 4.2 and 4.5 of this report.

Table 1 summarizes the most significant problems we encountered while model checking the
communications library and techniques we are investigating to address them in ComFoRT.

20 CMU/SEI-2005-TN-039

Problem Possible Solution
Objectbench models are tightly coupled due
to a need to identify the destination of each
event; this characteristic complicates the
model logic dealing with generating
responses and limits model reuse.

Architecture description languages and
composition languages provide a better
model for isolating the behavior of one
component from that of another. Binding
decisions can be deferred until components
are instantiated and wired together, at which
point the model of each instance can be
tailored as needed.

The language used to formalize claims does
not permit references to events, forcing the
user to instrument Objectbench models with
additional information that has nothing to do
with the design or implementation of the
software.

A state/event temporal logic [Chaki 04] can
be used that allows claims to reference both
states and events, as was needed for many of
the claims we identified for the
communications library.

The mismatches between the toolset and the
design of the communications library
resulted in the generation of an overly
complex (large) model.

Model generation should use conventions
that more closely match the semantics of the
designs being modeled. A suitable set of
conventions should be easily identifiable for
a constrained domain, such as systems built
using a specific component technology.

The size of the generated model was too
large for the model checking tool to manage
automatically; forcing the user to try various
manual state space reduction techniques,
some of which are tedious or error-prone.

Many of the manual techniques we used
(e.g., limiting the number of receivers) were
point solutions and have no systematic
solution beyond generic state space reduction
algorithms.

The problem of variable ranges, however,
can be addressed by using techniques based
on predicate abstraction. These techniques
use predicates over variable values rather
then enumerating them over a finite range,
which dramatically reduces verification
complexity in addition to eliminating the
need for user calculations.

Table 1: Problems and Possible Solutions

CMU/SEI-2005-TN-039 21

The current version of ComFoRT implements, to differing degrees of completeness, each of
the solutions identified in Table 1 and has been successfully applied to a subset of the
communications library with substantially less effort than reported in Section 4. We are
currently refining these solutions and researching other alternatives to improve the scalability
and applicability to industrial problems of ComFoRT while retaining its usability by
nonexperts.

22 CMU/SEI-2005-TN-039

Appendix A Example Fragments

The diagrams in this appendix are shown to give the reader an impression of the degree to
which the structure of the Objectbench models changed during the process of verification
tuning (see Section 4.5 for more information about specific changes).

Figure 8 shows the original (pre-tuning) Object Information Model (OIM). This diagram
shows a box for each class in the model along with their attributes. Each line represents a
relationship between two classes, indicating that one can identify the other. Each line is
further represented by a reference attribute (e.g., REQ_ID in PulseEvent) in which the run-
time value of an association is stored.

Figure 9 shows the final (post-tuning) version of the OIM. The final version is much smaller
due to the elimination of two classes, of many associations that are redundant given modeling
conventions, and of many attributes.

Figure 10 shows the final version of the OCM. Again, the final version is simplified in part
due to the elimination of two classes. It is also simplified by the elimination of some
functionality (e.g., the critical section used to coordinate write attempts), which eliminated
some paths of communication. For comparison, see the original OCM shown in Figure 6.

CMU/SEI-2005-TN-039 23

Figure 8: Original OIM

24 CMU/SEI-2005-TN-039

Figure 9: Final OIM

CMU/SEI-2005-TN-039 25

Figure 10: Final OCM

26 CMU/SEI-2005-TN-039

References

URLs are valid as of the publication date of this document.

[Ball 01] Ball, T. & Rajamani, S. “Automatically Validating Temporal Safety
Properties of Interfaces,” 103-122. Proceedings of the 8th
International SPIN Workshop on Model Checking of Software
(SPIN ‘01) (Lecture Notes in Computer Science [LNCS], volume
2057). Toronto, Canada, May 19-20, 2001. Berlin, Germany:
Springer-Verlag, 2001.

[Ball 04] Ball, T.; Cook, B.; Levin, V.; & Rajamani, S. “SLAM and Static
Driver Verifier: Technology Transfer of Formal Methods Inside
Microsoft,” 1-20. Integrated Formal Methods: 4th International
Conference (IFM 2004). Canterbury, Kent, UK, April 4-7, 2004.
New York, NY: Springer-Verlag, 2004.

[Bass 05] Bass, L.; Ivers, J.; Klein, M.; & Merson, P. Reasoning Frameworks
(CMU/SEI-2005-TR-007). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/05.reports/05tr007
/05tr007.html

[Burch 92] Burch, J. R.; Clarke, E. M.; McMillan, K. L.; Dill, D. L.; & Hwang,
L. J. “Symbolic Model Checking: 1020 States and Beyond.”
Information and Computation 98, 2 (June 1992): 142-170.

[Chaki 04] Chaki, S.; Clarke, E.; Ouaknine, J.; Sharygina, N.; & Sinha, N.
“State/Event-Based Software Model Checking,” 128-147.
Integrated Formal Methods: The 4th International Conference
(IFM 2004) (Lecture Notes in Computer Science [LNCS], volume
2999). Canterbury, Kent, UK, April 4-7, 2004. Berlin, Germany:
Springer-Verlag, 2004.

[Chandra 02] Chandra, S.; Godefroid, P.; & Palm, C. “Software Model Checking
in Practice: An Industrial Case Study,” 431-441. Proceedings of the
24th International Conference on Software Engineering (ICSE
2002). Orlando, FL, May 19-25, 2002. New York, NY: Association
for Computing Machinery (ACM), 2002.

CMU/SEI-2005-TN-039 27

http://www.sei.cmu.edu/publications/documents/05.reports/05tr007

[Chaves 92] Chaves, J. “Formal Methods at AT&T: An Industrial Usage
Report,” 83-90. Proceedings of Formal Description Techniques IV.
Sydney, Australia, November 19-22, 1991. Amsterdam,
Netherlands: North-Holland, 1992 (ISBN 0-444-89402-0).

[Clarke 89] Clarke, E.; Long, D.; & McMillan, K. “Compositional Model
Checking,” 353-362. Proceedings of the 4th Annual IEEE
Symposium on Logic in Computer Science (LICS ‘89). Asilomar,
CA, June 5-8, 1989. Piscataway, NJ: IEEE Computer Society Press,
1989 (ISBN 0-8186-1954-6).

[Clarke 99] Clarke, E.; Grumberg, O.; & Peled, D. Model Checking.
Cambridge, MA: MIT Press, 1999.

[Godefroid 91] Godefroid, P. “Using Partial Orders to Improve Automatic
Verification Methods,” 321-339. Proceedings of the 2nd
International Workshop on Computer Aided Verification (CAV
1990). (Lecture Notes in Computer Science [LNCS], volume 531).
New Brunswick, NJ, June 18-21, 1990. Berlin, Germany: Springer-
Verlag, 1991.

[Graf 97] Graf, S. & Saïdi, H. “Construction of Abstract State Graphs with
PVS,” 72-83. Proceedings of the Computer Aided Verification 9th
International Conference (CAV ‘97) (Lecture Notes in Computer
Science [LNCS], volume 1254). Haifa, Israel, June 22-25, 1997.
Berlin, Germany: Springer-Verlag, 1997.

[Hardin 96] Hardin, R.; Har’El, Z.; & Kurshan, R. P. “COSPAN,” 423-427.
Proceedings of Computer Aided Verification 8th International
Conference (CAV 1996) (Lecture Notes in Computer Science
[LNCS], volume 1102). New Brunswick, NJ, July 31-August 3,
1996. Berlin, Germany: Springer-Verlag, 1996.

[Hatcliff 03] Hatcliff, J.; Deng, X.; Dwyer, M. B.; Jung, G.; & Ranganath, V. P.
“Cadena: An Integrated Development, Analysis, and Verification
Environment for Component-Based Systems,” 160-173.
Proceedings of 25th International Conference on Software
Engineering (ICSE 2003). Portland, OR, May 3-10, 2003.
Piscataway, NJ: IEEE Computer Society Press, 2003.

[Henzinger 02] Henzinger, T. A.; Jhala, R.; Majumdar, R.; & Sutre, G. “Lazy
Abstraction,” 58-70. Proceedings of 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’02)
(SIGPLAN Notices, volume 37[1]). New York, NY: Association for

28 CMU/SEI-2005-TN-039

Computing Machinery (ACM), 2002.

[Holzmann 03] Holzmann, G. J. The SPIN Model Checker: Primer and Reference
Manual. Boston, MA: Addison-Wesley, 2003.

[Ivers 04] Ivers, J. & Sharygina, N. Overview of ComFoRT: A Model
Checking Reasoning Framework (CMU/SEI-2004-TN-018).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2004.
http://www.sei.cmu.edu/publications/documents/04.reports
/04tn018.html

[Katz 92] Katz, S. & Peled, D. “Verification of Distributed Programs Using
Representative Interleaving Sequences.” Distributed Computing 6,
2 (1992): 107-120.

[Klein 93] Klein, M. H.; Ralya, T.; Pollak, B.; Obenza, R.; & Harbour, M. G. A
Practitioner’s Handbook for Real-Time Analysis: Guide to Rate
Monotonic Analysis for Real-Time Systems. Boston, MA: Kluwer
Academic Publishers, 1993.

[Manna 92] Manna, Z. & Pnueli, A. The Temporal Logic of Reactive and
Concurrent Systems: Specification. New York, NY: Springer-
Verlag, 1992.

[Mellor 02] Mellor, S. & Balcer, M. J. Executable UML: A Foundation for
Model-Driven Architecture. Boston, MA: Addison-Wesley, 2002.

[O’Leary 99] O’Leary, J.; Zhao, X.; Gerth, R.; & Seger, C. H. “Formally
Verifying IEEE Compliance of Floating-Point Hardware.” Intel
Technology Journal 3, 1 (February 1999).

[Russinoff 98] Russinoff, D. “A Mechanically Checked Proof of IEEE Compliance
of the Floating-Point Multiplication, Division, and Square Root
Algorithms of the AMD-K7* Processor.” London Mathematical
Society Journal of Computation and Mathematics 1 (December
1998): 148-200.

[SES 96] Scientific & Engineering Solutions. SES/objectbench User’s
Manual. Annapolis Junction, MD: SES, Inc., 1996.

[Sharygina 01] Sharygina, N.; Kurshan, R. P.; & Browne, J. C. “A Formal Object-
oriented Analysis for Software Reliability,” 318-332. Proceedings
of the 4th International Conference on FASE 2001 (Lecture Notes
in Computer Science [LNCS], volume 2029). Genova, Italy, April

CMU/SEI-2005-TN-039 29

http://www.sei.cmu.edu/publications/documents/04.reports

2-6, 2001. Berlin, Germany: Springer-Verlag, 2001.

[Valmari 91] Valmari, A. “Stubborn Set for Reduced State Space Generation,” 1-
22. Proceedings of the 10th International Conference on
Application and Theory of Petri Nets, Volume 2. (Lecture Notes in
Computer Science [LCNS], volume 483). Bonn, Germany, June
1989. Berlin, Germany: Springer-Verlag, 1991.

[Wallnau 03] Wallnau, K. Volume III: A Technology for Predictable Assembly
from Certifiable Components (CMU/SEI-2003-TR-009,
ADA413574). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2003.
http://www.sei.cmu.edu/publications/documents/03.reports
/03tr009.html

[Xie 02] Xie, F.; Browne, J. C.; & Levin, V. “ObjectCheck: Model Checking
Tool for Model Checking Executable Object-Oriented Software
Designs,” 64-79. Proceedings of FASE 2002 (Lecture Notes in
Computer Science [LCNS], volume 489). Grenoble, France, April
8-12, 2002. Berlin, Germany: Springer-Verlag, 2002.

30 CMU/SEI-2005-TN-039

http://www.sei.cmu.edu/publications/documents/03.reports

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

September 2005
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Lessons Learned Model Checking an Industrial Communications
Library

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

James Ivers
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2005-TN-039

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Model checking is a fully automated formal verification technology that can be used to determine whether
models of software satisfy behavioral requirements in such areas as safety, reliability, and security. This
report explores the packaging of model checking technology in a reasoning framework. The goal of a
reasoning framework is to simplify the analysis of software designs by nonexperts. This report describes the
application of such a reasoning framework to the design of an industrial communications library and the
problems that were found. This report also notes the tasks that were unreasonably complex or time-
consuming and concludes with thoughts on techniques that could be used to develop a model checking
reasoning framework that better supports use by nonexperts.

14. SUBJECT TERMS

model checking, reasoning framework, software design analysis
15. NUMBER OF PAGES

42
16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Lessons Learned Model Checking an Industrial Communications Library
	Contents
	 List of Figures
	 List of Tables
	Acknowledgements
	Abstract
	1 Introduction
	2 A Model Checking Reasoning Framework
	3 Case Study
	4 Communications Library Verification
	5 Results
	6 Conclusion
	Appendix A Example Fragments
	References

