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Abstract 

Model checking is a fully automated formal verification technology that can be used to 
determine whether models of software satisfy behavioral requirements in such areas as safety, 
reliability, and security. This report explores the packaging of model checking technology in 
a reasoning framework. The goal of a reasoning framework is to simplify the analysis of 
software designs by nonexperts. This report describes the application of such a reasoning 
framework to the design of an industrial communications library and the problems that were 
found. This report also notes the tasks that were unreasonably complex or time-consuming 
and concludes with thoughts on techniques that could be used to develop a model checking 
reasoning framework that better supports use by nonexperts. 

CMU/SEI-2005-TN-039 ix 



x  CMU/SEI-2005-TN-039 



1 Introduction 

Model checking is a formal verification technique for checking whether a model satisfies 
specific behavioral requirements [Clarke 99]. Model checking has been successfully applied 
in numerous domains, such as chip design [Russinoff 98, O’Leary 99], telecommunications 
[Chaves 92, Chandra 02], and device drivers [Ball 04]. In the software community, model 
checking is applied both to design artifacts [Hatcliff 03, Holzmann 03] and source code [Ball 
01, Henzinger 02] to determine whether software satisfies critical behavioral requirements in 
such areas as safety, reliability, and security. 

Model checkers use a collection of algorithms to verify whether a finite model satisfies user 
specified claims in all possible executions. This exhaustive analysis is an effective means to 
discover subtle problems, such as race conditions, not easily detected by conventional testing 
techniques. Additionally, model checking provides diagnostic feedback in the form of 
counterexamples, which are execution traces that lead to the violation of a claim. This 
feedback identifies specific circumstances under which problems occur, which in turn helps 
designers and developers to locate the cause of the failure. 

The principle obstacle to successful adoption of model checking for software has been the 
state space explosion problem. Because the cost of performing exhaustive verification grows 
exponentially with the size of the models, verification can fail to complete with available 
resources.1 However, model checking research has made tremendous progress in recent 
years, and today’s model checking tools include a variety of sophisticated algorithms based 
on fundamental techniques for coping with state space growth such as 

• using more efficient, symbolic representations of models, such as binary decision 
diagrams (BDDs) [Burch 92] 

• pruning the search space based on the equivalence of different paths using partial-order 
reduction [Godefroid 91, Katz 92, Valmari 91] 

• using compositional reasoning techniques to verify portions of the model individually, 
rather than verifying the explicit composition of all models [Clarke 89] 

• using predicate abstraction to construct conservative abstractions that retain the 
properties of the original models [Graf 97] 

Despite such advances in model checking theory, the degree of expertise that is often required 
to successfully complete verification remains an impediment to widespread adoption of 
model checking technology by software developers. Ideally, developers should be able to 
apply model checking to their designs and implementations without learning the intricacies of 

                                                 
1  Typically, available memory used to store the state space to be searched is the limiting factor, 

though verification attempts that require tens of hours are also problematic. 
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model checking theory, the nuances of particular algorithms, or the peculiar notations used by 
specific tools. 

This report explores the packaging of model checking technology in a reasoning framework 
[Bass 05] that simplifies the analysis of software designs by nonexperts. Software model 
checking, a term used to refer to the verification of source code, is another important use of 
model checking technology. In this report, however, we restrict our attention to verifying 
software designs. The key benefits of verifying design artifacts are that the models are 
usually smaller and finding problems earlier in the development process results in less costly 
fixes. 

We describe a set of available tools that together effectively form a model checking reasoning 
framework and their application to the design of an industrial communications library. In 
addition to presenting the problems discovered by model checking, we note the tasks that 
were unreasonably complex or time-consuming and conclude with thoughts on techniques 
that could be used to develop a model checking reasoning framework that better supports use 
by nonexperts. 
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2 A Model Checking Reasoning Framework 

In addition to functional correctness, software systems typically have to satisfy a variety of 
quality attribute requirements in such areas as performance, reliability, and security. While 
conventional testing techniques are used with varying degrees of success to determine 
whether systems satisfy such requirements, that feedback comes late in the development 
process, and adequate coverage is difficult to achieve.  

Alternatively, specialized theories developed to reason about specific qualities can be applied 
to predict whether systems will satisfy these requirements prior to implementation or 
integration. For example, rate monotonic analysis (RMA) is an effective theory for reasoning 
about system performance given a task structure, execution times, and thread priorities [Klein 
93]. Such theories, however, typically require some degree of expertise to apply effectively 
and use specialized analytic models of the system. 

A reasoning framework is a way of packaging an analytic theory and its accompanying 
models so that nonexperts can reason about a quality attribute [Bass 05]. Figure 1 shows the 
elements of a reasoning framework. When a user supplies a description of a software 
architecture that is annotated to satisfy the information requirements of a reasoning 
framework (e.g., the priority of each thread), the reasoning framework computes a prediction 
of how the system will behave with respect to some quality attribute (e.g., task latency). 

Reasoning Framework

Key:
Transformation

Dependency Data flow

Packageable
implementation

Data 
representation

Architecture 
description

Evaluation 
procedure

Interpretation Model 
representation

Predicted 
quality 

attribute 
measures

satisfies

based on

Analytic 
theory

Analytic 
constraints

 

Figure 1:  Elements of a Reasoning Framework 
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Internally, a reasoning framework generates the appropriate model representation for the 
analytic theory based on the information found in the architecture description. This model is 
subjected to some evaluation procedure grounded in the analytic theory that computes some 
set of predicted quality attribute measures. The degree of complexity that is hidden from 
users depends on the underlying analytic theory and the semantic gap between the analytic 
models and the software description. 

In this exercise, we explored the use of a reasoning framework to package model checking 
for nonexperts. We chose an existing set of tools for model checking software designs 
expressed in xUML [Mellor 02]. These tools, shown in Figure 2, closely match the design of 
a reasoning framework. The principle tools are 

• Objectbench: a CASE tool used to generate xUML descriptions. In addition to the class 
diagrams that typically dominate object-oriented CASE tools, xUML descriptions contain 
state machines annotated with sufficient behavioral information to generate complete 
implementations. It is these behavioral descriptions that provide suitable information for 
model checking [SES 96].  

• COSPAN: a commercial model checker implementing a variety of state space reduction 
techniques that is designed for hardware verification. COSPAN consumes models written 
in the S/R language [Hardin 96].  

• ObjectCheck: tools for generating S/R models from Objectbench descriptions and for 
generating xUML counterexamples from S/R counterexamples [Xie 02]. 

 

Reasoning Framework
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implementation
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Figure 2:  Model Checking Reasoning Framework 
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While these tools have been used successfully on other problems (e.g., a robot controller 
[Sharygina 01] and an online ticket sales system [Xie 02]), they were not an ideal match to 
our goals for a reasoning framework for model checking software designs. At the outset, we 
were aware of several mismatches: 

• Objectbench and xUML are intended to describe object-oriented systems, but we wanted 
to model check a communications library composed of a collection of C functions. 
Functions had to be modeled as active objects. While sound, this approach introduced 
inefficiencies. In particular, each active object has an associated event queue; interactions 
via function calls, however, are more efficiently verified using event synchronization 
rather than event queues. 

• COSPAN uses a synchronous execution model2 that best supports hardware models, 
whereas we would be looking at software, for which an asynchronous execution model is 
usually more appropriate. ObjectCheck accommodates these differences by generating an 
S/R model that includes an explicit scheduler process that simulates an asynchronous 
execution model, though at the cost of increased complexity in the model. This, in turn, 
translates into greater verification expense. 

• The collection of tools was not as opaque to the user as we would envision a reasoning 
framework to be. Most significantly, for nontrivial problems, users must be expert 
enough to tweak the models (e.g., by constraining type ranges for variables) and choose 
verification algorithms in order to coax the verification to completion. 

On the whole, this collection of tools proved to be effective and helped us to gain valuable 
insight into the effectiveness of and difficulties in packaging model checking as a reasoning 
framework. 

                                                 
2  In a synchronous execution model, each concurrent process makes progress during each execution 

step. In an asynchronous execution model, only one process makes progress during each execution 
step and the behavior of different processes is interleaved over multiple execution steps. 
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3 Case Study 

We applied the collection of tools identified in Section 2 to the design of a communications 
library that is widely deployed in industrial automation systems. A commercial partner 
provided us with the source code for this library, which is complex enough to be realistic but 
readily understandable without significant domain expertise.  

The library provides operations for message-based communication among threads. It 
supports a variety of synchronous and asynchronous forms of communication and includes 
such realistic but complicating features as 

• timeouts on both sender and receiver operations 

• shared memory-based message queues implementing a message-based communication 
style 

• three different types of synchronization primitives to coordinate operations invoked by 
different threads 

In particular, we focused on the most complicated portion of the library—those operations 
used to perform a synchronous message exchange. The sequence diagram in Figure 3 
summarizes typical use of the communication library for this case. A sending thread initiates 
the interaction by sending a message and waiting for the answer (by calling ipc_sendwait). A 
receiving thread requests its next message (ipc_receive) and eventually sends a response back 
to the sending thread (ipc_answer).  

Sender
Communication

Library Receiver
ipc_sendwait(msg)

ipc_receive()
return(msg)

return(answer)

ipc_answer(answer)
return()

Sender
Communication

Library Receiver
ipc_sendwait(msg)

ipc_receive()
return(msg)

return(answer)

ipc_answer(answer)
return()

 

Figure 3:  Sequence Diagram Showing Synchronous Exchange 

During a quick brainstorming session, we identified 14 claims that (a) this portion of the 
communications library should satisfy when correctly implemented and (b) are representative 
of the types of properties that are typically verified using model checking. Some examples 
include 
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• If no operations time out, the intended recipient always receives the message sent. 

• A sent message is only received by the intended recipient. 

• When a sender receives an answer, it is an answer to the sender’s most recently sent 
message. 

• A sender (receiver) only blocks when writing to a full message queue (reading from an 
empty message queue). 

In most cases, as demonstrated by extensive testing and field use, the protocol and its 
implementation behaved as expected. Model checking, however, excels at uncovering 
unusual or seldom executed paths over which interactions do not behave as expected. In 
particular, we were interested in whether the combinations of synchronization primitives 
were used correctly for all possible executions, including possible combinations of failures 
such as timeouts. Any problems discovered might expose a flaw that could cause systems 
built on top of the communications library to misbehave in seemingly untraceable or 
irreproducible ways. 
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4 Communications Library Verification 

The nominal process for applying this reasoning framework is relatively simple: 

1. Describe the design in Objectbench. 

2. Formalize the claims to be verified by model checking. 

3. Use ObjectCheck to generate an S/R model. 

4. Use COSPAN to verify the S/R model. 

5. Interpret the results, generating an xUML counterexample from the S/R counterexample 
for any claims that do not hold. 

The actual experience, however, became somewhat more complicated due to our need to 
compensate for state space explosion. Figure 4 depicts the resulting process, which shows the 
additional activities and iterations needed to tune the verification process to a point where 
model checking became tractable. These steps are elaborated in the following sections (as 
indicated in parentheses in Figure 4). 

 

Figure 4:  Verification Process 
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4.1 Document the Design 
While design documents were not available to us, we did have access to the source code for 
the Windows version of the communications library. Creating design models from the source 
code was a straightforward task once we settled on modeling conventions such as the 
following: 

• Functions are modeled as classes in Objectbench, each of which has its own state 
machine. 

• Function calls are modeled as pairs of events between objects, one representing the call 
and the other representing the return. 

• The shared memory segment used to implement message queues was also represented as 
a class, and reads and writes were represented using event exchanges. 

• Occurrences of timeouts were modeled using nondeterminism; that is, a state machine 
would nondeterministically decide whether to respond in time or with a timeout event. 

For the majority of the state machines, we closely mirrored the control flow found in the 
corresponding source code (approximately one thousand lines of C code were modeled). For 
the system calls implementing the various synchronization primitives (critical sections, 
semaphores, and event objects), we instead relied on documentation from Microsoft. In both 
cases, various low level details—such as data marshalling, logging, and routine error 
checking—were omitted to simulate a level of information more indicative of design models.  

An example of the type of state machines that were created is shown in Figure 5. The states 
and transitions reflect the control flow of the corresponding function, and states are annotated 
with action statements that combine C code with Generate statements for sending an event 
to another state machine. 
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Figure 5:  Sample Objectbench State Machine 

In fact, the syntax used in Objectbench to denote sending events from one state machine to 
another became problematic. It introduced a tight binding between state machines, 
particularly with regard to our convention of representing function returns by events sent 
back to the caller, which made the state machines less reusable. Moreover, it forced us to use 
awkward modeling conventions in cases in which multiple functions could call the same 
function. In these cases, we use a parameter of the call event to determine which event to 
generate to represent the function return. 

In addition to modeling the functions from the communication library and certain system 
calls, we had to create models for senders and receivers to simulate use of the library. The 
sender’s behavior was to complete initialization and enter a loop in which it would 
nondeterministically pick a receiver, send the receiver a message, and wait for the answer. 
The receiver’s behavior was even simpler; after completing initialization, it entered a loop in 
which it would attempt to receive its next message and then send an answer. We used integers 
to simulate messages and answers; further, receivers were designed to answer with the same 
integer message they received, allowing us to easily match messages and answers. 

We also had to decide how many senders and receivers to include in our verification scenario. 
We created general-purpose senders and receivers so that we could instantiate various 
numbers of each and ultimately move to a peer-based model in which any process could send 
or receive. For each sender and receiver instantiated, corresponding instances had to be 
created of the models of all functions called by those processes. For example, senders call 
IPCSendWait, so one instance of IPCSendWait must be created for each instance of Sender. 
We began with one sender and two receivers, and the complete original Objectbench model 
contained a total of 46 instances. 

10  CMU/SEI-2005-TN-039 



Figure 6 shows a screen shot of the original Object Communication Model (OCM) for the 
design of the communication library. Each bubble in the OCM represents a class, and each 
labeled line represents an event that can be sent from one class to another. While the model 
does not indicate the number of instances of each class, the degree of connectedness should 
give the reader an impression of the number of interactions among elements of the library. 

 

Figure 6:  Original OCM 
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4.2 Formalize Claims 
When brainstorming claims, we simply recorded each claim in prose. To model check a 
claim, though, it must be formalized in a language understood by the model checker. In the 
case of COSPAN, we recorded each claim as a linear temporal logic (LTL) formula [Manna 
92] that referred to variables from the Objectbench models. ObjectCheck then translated 
these claims to refer to the corresponding variables in the generated S/R models. 

For example, consider this prose claim: a sender only blocks when attempting to write to a 
full message queue. The natural expression of this claim refers to both events (invoking the 
system call WaitForSingleObject to block) and state information (the current size and 
capacity of the destination message queue). However, most variants of LTL and the specific 
variant that ObjectCheck translates to S/R only permit references to state. Consequently, we 
had to annotate the Objectbench model with additional flag variables used to denote 
interesting points in the execution—like calling WaitForSingleObject. Formalized in 
LTL, we express this claim as 

G (WRITEMSGQUEUE(1).FLAG==1 && WRITEMSGQUEUE(1).QUEUE_ID==1 

  --> IPC_QUEUE(2).NUMMESSAGES == 3)

A prose translation of this “it is always true that when FLAG == 1 and QUEUE_ID == 1, 
NUMMESSAGES must be 3.” That is, for the first sender instance, whenever it blocks (FLAG 
== 1), the destination queue must be full (the current value of NUMMESSAGES equals the 
size of the queue—3 in this case). FLAG is one of the variables we had to introduce into the 
Objectbench model for the sole purpose of writing claims to be model checked; blocking is 
actually represented by generating a WaitForSingleObject event, which corresponds to 
invoking a system call to wait on a synchronization condition.  

The inability to cleanly refer to the occurrence of events caused us to add such additional 
variables, which further exacerbated the state space explosion problem, reduced clarity, and 
limited the ability to review that each formalized claim correctly matched the intent. 

4.3 Generate S/R Model 
This was by far the simplest step in our process. As long as our Objectbench models 
conformed to the constraints imposed by ObjectCheck, this was a completely automated step. 
One notable restriction, however, was the set of allowable datatypes—only integers could be 
used in the Objectbench models. This meant modeling Booleans, for example, as a more 
expensive datatype.  

As part of generating an S/R model, ObjectCheck sets a bound on the range of values each 
integer variable could have (a necessary step to define a finite-state machine). The default 
range was -1024..1023. This range was much larger than necessary for all variables in 
our model of the communications library (even for the integer representing messages and 
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answers, because we designed the sender to reset this value to zero after N iterations) and was 
something we adjusted during verification tuning (see Section 4.5 for more information). 

Automation was invaluable for this step. The size and complexity of the generated S/R 
models were well beyond what we could have reasonably produced manually, and the 
semantic gap between the models and designs would have significantly complicated any peer 
review process. As an example, the textual representation of the final version of our 
Objectbench models is a 1,698-line file; the corresponding S/R model is a 7,710-line file. 

4.4 Apply Model Checker 
Naïve application of the model checker consists of simply executing COSPAN over the 
generated S/R model. On applying COSPAN to our initial model of the communications 
library, it reported an estimated state space of 2.35 × 101932 states—well beyond what was 
tractable. While COSPAN can be applied in a more sophisticated manner by using command 
line options to apply various state space reduction algorithms—such as using a symbolic 
representation (BDDs), partial order reduction, and bounded model checking—it was obvious 
that we first needed to reduce the size of the problem before these optimizations would be 
enough to complete verification. 

After examining how ObjectCheck generates S/R models, we noted a number of factors 
contributing to the large state space: 

• As already noted, the default range for integer values was much larger than necessary for 
the variables in the model, usually by three orders of magnitude. 

• As noted in Section 2, the models ObjectCheck generates are not ideal for the kind of 
software we were analyzing. For example, given that we were modeling function calls 
without their own threads of control, most state machines did not need the accompanying 
event queue generated by ObjectCheck. Each such event queue constituted an additional 
process, and state space growth is exponential in the number of processes. 

• The Objectbench model and corresponding S/R model contained many unnecessary 
variables, particularly the referential attributes used to identify instances to which a state 
machine could send events. When creating the Objectbench models, we adopted a 
convention for assigning instances such that there would be one instance of each state 
machine representing a function that could be called by a thread of control (specifically, 
the senders and receivers) and the ID attribute of each such instance would have the same 
value as the ID of the thread of control. Consequently, all referential attributes in most 
instances would always have the same value, and only one copy really needed to be 
included. 

• The models we created were more general than necessary for a verification scenario 
involving strict senders and receivers. We created the models with the hope of 
generalizing the verification scenario by modeling a collection of peers that could send 
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and receive. A consequence of this generalization was that more instances were present in 
the model than were necessary. 

With these observations in mind, we began tuning the models to ameliorate state space 
growth, as discussed in the next section. 

4.5 Verification Tuning 
As shown in Figure 4, the various modifications we applied fell into three categories: 

1. applying manual abstractions 

2. tuning model generation  

3. trying different algorithms 

The following sections describe some of the modifications we performed in each category. 
We used an incremental approach, going for big reductions first and iterating until we 
produced a state space small enough to complete verification. The result of this tuning was to 
reduce the state space estimates from 2.35 × 101932 states to 6.07 × 10233 states, only a small 
fraction of which were searched in locating the problems we found (details on problems 
found are reported in Section 5). 

4.5.1 Applying Manual Abstractions 

When applying manual abstractions, the goal is to make the model smaller without losing any 
information relevant to the claims of interest. The biggest difference can be made by 
eliminating unnecessary state machines (recall that the size of the state space is exponential 
in the number of processes and that each state machine results in two processes due to the 
addition of the implicit event queue). Over a series of changes, we were able to eliminate 26 
of the 46 object instances in our original Objectbench model by 

• reducing the number of receivers from two to one, which eliminated all 15 object 
instances in that receiver’s thread of control 

• removing the flexibility for each sender or receiver to become a peer and engage in both 
sending and receiving behavior 

• removing a critical section that was only used to coordinate writes among senders, which 
was unnecessary with only one sender included 

• removing a pair of classes used to model delegations that existed in the code (i.e., one 
function that only calls another using specific parameters) by inlining the delegation in 
the state machine modeling the original calling function 

Eliminating more than half of the object instances was one of the two largest sources of 
improvement in our manual state space reduction efforts. 

We also eliminated a number of variables from the Objectbench models. The largest gain here 
was in the removal of the many unnecessary referential attributes mentioned in Section 4.4. 
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Additionally, we were able to eliminate about 20 variables by reducing the size of the 
message queues used in the communications library (not to be confused with the implicit 
event queues generated by ObjectCheck) and synchronization functions. Many of these 
reductions were only safe given knowledge of the usage scenario (the number of senders and 
receivers and the maximum queue utilization) for which we would be verifying the behavior 
of the communications library. 

4.5.2 Tuning Model Generation 

While we could not disable the generation of the implicit event queues by ObjectCheck in 
S/R models, we were able to tune the range of values of each variable. Bounding variables is 
a commonly used technique for managing state space growth but must be performed 
carefully. Bounding an integer variable to a small, finite range such as 0..5 may 
dramatically reduce the state space size, but it can also introduce problems in the model. 
First, should the range be too small to permit problematic behavior to arise, model checking 
will produce a false sense of confidence. Second, the ranges of variables must be coordinated. 
If x has a range of 0..5 and y has a range of 0..5, then z should usually have a range of 
0..10 if the statement z = x + y; appears in the model. Determining a consistent set of 
ranges can be, therefore, a tedious task.  

For the communications library, the basic process was to trace each variable to the source of 
its values (often by tracing back through several function calls or events exchanged among 
state machines) and determining or constraining the maximum set of possible values given 
the number of object instances being created in our scenario. The default range for all 
variables was -1024..1023. In the final version, this range was three orders of magnitude 
smaller for all variables, with some having ranges as small as 0..1. This form of tuning was 
one of the two largest sources of improvement in our manual state space reduction efforts. 

4.5.3 Trying Different Algorithms 

At various points in the process of manually reducing the size of the state space by using the 
techniques described in Sections 4.5.1 and 4.5.2, we would attempt to model check the 
resulting S/R models. Until we were able to get the state space estimate down to the 10300 
range, however, we were unable to get any results within a reasonable period of time3 or 
without exhausting available memory. 

COSPAN provides a variety of state space reduction algorithms that can be applied by 
supplying the appropriate command line arguments. Over the course of various experiments 
and iterations, we used a variety of these algorithms to attempt to complete verification, 
including 

                                                 
3  Our subjective measure of reasonable was an overnight job on cluster machines. Sole access to 

these machines was atypical, however, and better results or more timely feedback should be 
expected given better computing resources. 
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• symbolic representation with BDDs to represent models very efficiently in memory 

• bounded model checking for limiting the search depth of any particular path4 

• partial-order reduction, which avoids searching interleavings that are equivalent with 
respect to claims of interest 

Of the model checking attempts we were able to complete with available resources and 
patience, all used an explicit (not symbolic) state space search using partial-order reduction. 
That’s not to say that other techniques aren’t helpful or that others couldn’t have been tried; 
but with our general goal of minimal manual intervention, this approach turned out to be 
what worked. 

4.6 Interpret Results 
Interpreting model checking results involves two steps with this reasoning framework. First, 
all counterexamples generated by COSPAN are execution traces of the S/R model, something 
not suitable for user consumption. ObjectCheck automates the production of a usable version 
by generating corresponding execution traces of the Objectbench models from the S/R 
counterexamples. This form allows a user to relate the trace leading to a problem to the 
models he or she created in the first place. 

The more difficult step is examining the Objectbench counterexamples and understanding the 
cause(s) of the indicated problems. Counterexamples can be quite long, particularly when 
problems only manifest after a significant period of execution necessary to put the system 
into particular states, such as error recovery modes. One particular counterexample we 
examined uses 183 steps to demonstrate a problem.5

In such circumstances, we found it helpful to sketch a sequence diagram abstracting the 
counterexample as we read. By manually producing a version in which perhaps dozens of 
low-level execution steps are replaced by abstractions like “read message and send answer,” 
we created a more manageable set of sequenced steps separated by interleavings (context 
switches). See Figure 7 in the following section for an example. 

                                                 
4  The effectiveness of bounded model checking often seems counterintuitive. However, when model 

checking finds problems, it is usually after searching a fraction of the state space; only when claims 
hold must the full state space be searched. 

5 For reference, the S/R version of this counterexample is a 376-line file. 
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5 Results 

Despite various inconveniences encountered during our application of the model checking 
reasoning framework to the design of the communications library, it was a valuable exercise. 
In addition to identifying problems and areas for improvement for future model checking 
reasoning frameworks, we discovered several problems with the design of the 
communications library. 

Specifically, the following claims did not hold: 

1. When a sender receives an answer, it is an answer to the sender’s most recently sent 
message. 

2. A sender only blocks when writing to a full message queue. 

3. Answers are not delivered to an inactive slot. 

These problems varied in importance, with the first being most significant in that a system 
could take inappropriate action based on incorrect responses, the second potentially 
degrading system performance, and the third resulting in generation of the wrong error 
message. 

Regarding the first problem, Figure 7 illustrates a summary of an execution of the 
communications library, focusing on the use of a semaphore that leads to the problem. This 
result was a product of the final Objectbench model, whose corresponding S/R model 
contained an estimated 6.07 × 10233 states. The problem, consisting of 183 steps though the 
20 object instances from the Objectbench model, was found after searching only 19,759 
states. Total verification time, however, was approximately 2.5 hours, the majority of which 
was needed to construct the state space prior to starting the search. 

To summarize the problem, it is possible for a sender and receiver communicating 
synchronously to get “out-of-sync” if the proper sequence of timeouts and context switches 
occurs. The problem arises when the sender sends a message and times out before an answer 
is received. When the sender sends its next message, the receiver might finally answer the 
first message at a point when the sender is expecting an answer to the second message. 
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Sender ReceiverSemaphore
21: ipc_sendwait(m == 1)
23: wait(t == 0) 

26: wait times out

36: put m == 1 in msgq
47: wait(t == 1)

49: wait times out

51: ipc_sendwait times out
53: ipc_receive()
65: read m == 1 from msgq
76: ipc_receive returns m == 1
77: ipc_answer(a == 1)
78: a == 1 written to slot
79: release semaphore

85: ipc_sendwait(m == 2)
87: wait(t == 0) 

89: acquires semaphore

100: put m == 2 in msgq
112: wait(t == 1)

113: wait times out
115: ipc_sendwait times out

117: ipc_receive()
128: read m == 2 from msgq
140: ipc_receive returns m == 2
141: ipc_answer(a == 2)
141: a == 2 written to slot

145: ipc_sendwait(m == 3)
146: wait(t == 0)

149: wait times out
150: release semaphore

163: put m == 3 in msgq
175: wait(t == 1) on semaphore

177: acquires semaphore

179: reads a == 2

Sender ReceiverSemaphoreSender ReceiverSemaphore
21: ipc_sendwait(m == 1)
23: wait(t == 0) 

26: wait times out

36: put m == 1 in msgq
47: wait(t == 1)

49: wait times out

51: ipc_sendwait times out
53: ipc_receive()
65: read m == 1 from msgq
76: ipc_receive returns m == 1
77: ipc_answer(a == 1)
78: a == 1 written to slot
79: release semaphore

85: ipc_sendwait(m == 2)
87: wait(t == 0) 

89: acquires semaphore

100: put m == 2 in msgq
112: wait(t == 1)

113: wait times out
115: ipc_sendwait times out

117: ipc_receive()
128: read m == 2 from msgq
140: ipc_receive returns m == 2
141: ipc_answer(a == 2)
141: a == 2 written to slot

145: ipc_sendwait(m == 3)
146: wait(t == 0)

149: wait times out
150: release semaphore

163: put m == 3 in msgq
175: wait(t == 1) on semaphore

177: acquires semaphore

179: reads a == 2  

Figure 7:  Sequence Diagram Summarizing a Counterexample 

Figure 7 shows one way in which we used the xUML counterexample—to produce a 
summary for communicating with the engineers responsible for maintaining the 
communications library. The information found in the counterexample was also sufficient to 
find the relevant bits of source code, confirm the existence of the problem by code inspection, 
and to help us to write a test program demonstrating the problem. 

While model checking was successfully used to discover the three cited problems, we had 
considerably more difficulty using model checking to show the absence of problems. 
Verification attempts on other claims typically exhausted available memory or were aborted 
after lengthy executions (some after more than 12 hours). This does not diminish the 
importance of the findings, however. According to one engineer, the problem of a sender 
receiving the wrong answer had existed in the communications library for more than seven 
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years before it was identified.6 It is an exemplar of the kinds of subtle problems caused by 
race conditions that are notoriously difficult to locate or reproduce via testing but routinely 
uncovered by the exhaustive searches used in model checking. 

                                                 
6  The engineers had, in fact, found the problem independently of our model checking effort. We were 

analyzing an older version of the library in which the problem still existed. 
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6 Conclusion 

Model checking the communications library was a success in two respects. First, as is typical 
of model checking exercises, we were able to find and verify the existence of design and 
implementation problems, one of which was quite serious (though seldom encountered). This 
process provided valuable feedback to the engineers maintaining the communications library 
and helped them understand the effectiveness of model checking in discovering these kinds 
of subtle problems. 

Second, and more important from a research perspective, we compared the application of the 
collection of tools to our ideal expectations of a model checking reasoning framework and 
identified tasks that are unreasonably complex or time consuming for application by 
nonexperts or when dealing with a larger code base. This comparison helped fuel our 
development of the ComFoRT model checking reasoning framework [Ivers 04]. 

Our goals for ComFoRT are twofold: 

1. Support the verification of industrial-scale problems by incorporating state-of-the-art 
model checking algorithms and associated techniques for generating efficient models 
from software designs. 

2. Support verification by nonexperts by eliminating the need for the types of manual 
intervention described in Sections 4.2 and 4.5 of this report. 

Table 1 summarizes the most significant problems we encountered while model checking the 
communications library and techniques we are investigating to address them in ComFoRT. 
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Problem Possible Solution 
Objectbench models are tightly coupled due 
to a need to identify the destination of each 
event; this characteristic complicates the 
model logic dealing with generating 
responses and limits model reuse. 

 

Architecture description languages and 
composition languages provide a better 
model for isolating the behavior of one 
component from that of another. Binding 
decisions can be deferred until components 
are instantiated and wired together, at which 
point the model of each instance can be 
tailored as needed. 

The language used to formalize claims does 
not permit references to events, forcing the 
user to instrument Objectbench models with 
additional information that has nothing to do 
with the design or implementation of the 
software. 

A state/event temporal logic [Chaki 04] can 
be used that allows claims to reference both 
states and events, as was needed for many of 
the claims we identified for the 
communications library. 

The mismatches between the toolset and the 
design of the communications library 
resulted in the generation of an overly 
complex (large) model. 

Model generation should use conventions 
that more closely match the semantics of the 
designs being modeled. A suitable set of 
conventions should be easily identifiable for 
a constrained domain, such as systems built 
using a specific component technology. 

The size of the generated model was too 
large for the model checking tool to manage 
automatically; forcing the user to try various 
manual state space reduction techniques, 
some of which are tedious or error-prone. 

Many of the manual techniques we used 
(e.g., limiting the number of receivers) were 
point solutions and have no systematic 
solution beyond generic state space reduction 
algorithms. 

The problem of variable ranges, however, 
can be addressed by using techniques based 
on predicate abstraction. These techniques 
use predicates over variable values rather 
then enumerating them over a finite range, 
which dramatically reduces verification 
complexity in addition to eliminating the 
need for user calculations.  

Table 1:  Problems and Possible Solutions 
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The current version of ComFoRT implements, to differing degrees of completeness, each of 
the solutions identified in Table 1 and has been successfully applied to a subset of the 
communications library with substantially less effort than reported in Section 4. We are 
currently refining these solutions and researching other alternatives to improve the scalability 
and applicability to industrial problems of ComFoRT while retaining its usability by 
nonexperts. 
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Appendix A Example Fragments 

The diagrams in this appendix are shown to give the reader an impression of the degree to 
which the structure of the Objectbench models changed during the process of verification 
tuning (see Section 4.5 for more information about specific changes). 

Figure 8 shows the original (pre-tuning) Object Information Model (OIM). This diagram 
shows a box for each class in the model along with their attributes. Each line represents a 
relationship between two classes, indicating that one can identify the other. Each line is 
further represented by a reference attribute (e.g., REQ_ID in PulseEvent) in which the run-
time value of an association is stored. 

Figure 9 shows the final (post-tuning) version of the OIM. The final version is much smaller 
due to the elimination of two classes, of many associations that are redundant given modeling 
conventions, and of many attributes. 

Figure 10 shows the final version of the OCM. Again, the final version is simplified in part 
due to the elimination of two classes. It is also simplified by the elimination of some 
functionality (e.g., the critical section used to coordinate write attempts), which eliminated 
some paths of communication. For comparison, see the original OCM shown in Figure 6. 
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Figure 8:  Original OIM 
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Figure 9:  Final OIM 
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Figure 10:  Final OCM 

26  CMU/SEI-2005-TN-039 



References 

URLs are valid as of the publication date of this document. 

[Ball 01] Ball, T. & Rajamani, S. “Automatically Validating Temporal Safety 
Properties of Interfaces,” 103-122. Proceedings of the 8th 
International SPIN Workshop on Model Checking of Software 
(SPIN ‘01) (Lecture Notes in Computer Science [LNCS], volume 
2057). Toronto, Canada, May 19-20, 2001. Berlin, Germany: 
Springer-Verlag, 2001. 

[Ball 04] Ball, T.; Cook, B.; Levin, V.; & Rajamani, S. “SLAM and Static 
Driver Verifier: Technology Transfer of Formal Methods Inside 
Microsoft,” 1-20. Integrated Formal Methods: 4th International 
Conference (IFM 2004). Canterbury, Kent, UK, April 4-7, 2004. 
New York, NY: Springer-Verlag, 2004. 

[Bass 05] Bass, L.; Ivers, J.; Klein, M.; & Merson, P. Reasoning Frameworks 
(CMU/SEI-2005-TR-007). Pittsburgh, PA: Software Engineering 
Institute, Carnegie Mellon University, 2005. 
http://www.sei.cmu.edu/publications/documents/05.reports/05tr007 
/05tr007.html 

[Burch 92] Burch, J. R.; Clarke, E. M.; McMillan, K. L.; Dill, D. L.; & Hwang, 
L. J. “Symbolic Model Checking: 1020 States and Beyond.” 
Information and Computation 98, 2 (June 1992): 142-170. 

[Chaki 04] Chaki, S.; Clarke, E.; Ouaknine, J.; Sharygina, N.; & Sinha, N. 
“State/Event-Based Software Model Checking,” 128-147. 
Integrated Formal Methods: The 4th International Conference 
(IFM 2004) (Lecture Notes in Computer Science [LNCS], volume 
2999). Canterbury, Kent, UK, April 4-7, 2004. Berlin, Germany: 
Springer-Verlag, 2004. 

[Chandra 02] Chandra, S.; Godefroid, P.; & Palm, C. “Software Model Checking 
in Practice: An Industrial Case Study,” 431-441. Proceedings of the 
24th International Conference on Software Engineering (ICSE 
2002). Orlando, FL, May 19-25, 2002. New York, NY: Association 
for Computing Machinery (ACM), 2002. 

CMU/SEI-2005-TN-039 27 

http://www.sei.cmu.edu/publications/documents/05.reports/05tr007


[Chaves 92] Chaves, J. “Formal Methods at AT&T: An Industrial Usage 
Report,” 83-90. Proceedings of Formal Description Techniques IV. 
Sydney, Australia, November 19-22, 1991. Amsterdam, 
Netherlands: North-Holland, 1992 (ISBN 0-444-89402-0). 

[Clarke 89] Clarke, E.; Long, D.; & McMillan, K. “Compositional Model 
Checking,” 353-362. Proceedings of the 4th Annual IEEE 
Symposium on Logic in Computer Science (LICS ‘89). Asilomar, 
CA, June 5-8, 1989. Piscataway, NJ: IEEE Computer Society Press, 
1989 (ISBN 0-8186-1954-6). 

[Clarke 99] Clarke, E.; Grumberg, O.; & Peled, D. Model Checking. 
Cambridge, MA: MIT Press, 1999. 

[Godefroid 91] Godefroid, P. “Using Partial Orders to Improve Automatic 
Verification Methods,” 321-339. Proceedings of the 2nd 
International Workshop on Computer Aided Verification (CAV 
1990). (Lecture Notes in Computer Science [LNCS], volume 531). 
New Brunswick, NJ, June 18-21, 1990. Berlin, Germany: Springer-
Verlag, 1991. 

[Graf 97] Graf, S. & Saïdi, H. “Construction of Abstract State Graphs with 
PVS,” 72-83. Proceedings of the Computer Aided Verification 9th 
International Conference (CAV ‘97) (Lecture Notes in Computer 
Science [LNCS], volume 1254). Haifa, Israel, June 22-25, 1997. 
Berlin, Germany: Springer-Verlag, 1997. 

[Hardin 96] Hardin, R.; Har’El, Z.; & Kurshan, R. P. “COSPAN,” 423-427. 
Proceedings of Computer Aided Verification 8th International 
Conference (CAV 1996) (Lecture Notes in Computer Science 
[LNCS], volume 1102). New Brunswick, NJ, July 31-August 3, 
1996. Berlin, Germany: Springer-Verlag, 1996. 

[Hatcliff 03] Hatcliff, J.; Deng, X.; Dwyer, M. B.; Jung, G.; & Ranganath, V. P. 
“Cadena: An Integrated Development, Analysis, and Verification 
Environment for Component-Based Systems,” 160-173. 
Proceedings of 25th International Conference on Software 
Engineering (ICSE 2003). Portland, OR, May 3-10, 2003. 
Piscataway, NJ: IEEE Computer Society Press, 2003. 

[Henzinger 02] Henzinger, T. A.; Jhala, R.; Majumdar, R.; & Sutre, G. “Lazy 
Abstraction,” 58-70. Proceedings of 29th ACM SIGPLAN-SIGACT 
Symposium on Principles of Programming Languages (POPL ’02) 
(SIGPLAN Notices, volume 37[1]). New York, NY: Association for 

28  CMU/SEI-2005-TN-039 



Computing Machinery (ACM), 2002. 

[Holzmann 03] Holzmann, G. J. The SPIN Model Checker: Primer and Reference 
Manual. Boston, MA: Addison-Wesley, 2003. 

[Ivers 04] Ivers, J. & Sharygina, N. Overview of ComFoRT: A Model 
Checking Reasoning Framework (CMU/SEI-2004-TN-018). 
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon 
University, 2004. 
http://www.sei.cmu.edu/publications/documents/04.reports 
/04tn018.html 

[Katz 92] Katz, S. & Peled, D. “Verification of Distributed Programs Using 
Representative Interleaving Sequences.” Distributed Computing 6, 
2 (1992): 107-120. 

[Klein 93] Klein, M. H.; Ralya, T.; Pollak, B.; Obenza, R.; & Harbour, M. G. A 
Practitioner’s Handbook for Real-Time Analysis: Guide to Rate 
Monotonic Analysis for Real-Time Systems. Boston, MA: Kluwer 
Academic Publishers, 1993. 

[Manna 92] Manna, Z. & Pnueli, A. The Temporal Logic of Reactive and 
Concurrent Systems: Specification. New York, NY: Springer-
Verlag, 1992. 

[Mellor 02] Mellor, S. & Balcer, M. J. Executable UML: A Foundation for 
Model-Driven Architecture. Boston, MA: Addison-Wesley, 2002. 

[O’Leary 99] O’Leary, J.; Zhao, X.; Gerth, R.; & Seger, C. H. “Formally 
Verifying IEEE Compliance of Floating-Point Hardware.” Intel 
Technology Journal 3, 1 (February 1999). 

[Russinoff 98] Russinoff, D. “A Mechanically Checked Proof of IEEE Compliance 
of the Floating-Point Multiplication, Division, and Square Root 
Algorithms of the AMD-K7* Processor.” London Mathematical 
Society Journal of Computation and Mathematics 1 (December 
1998): 148-200. 

[SES 96] Scientific & Engineering Solutions. SES/objectbench User’s 
Manual. Annapolis Junction, MD: SES, Inc., 1996. 

[Sharygina 01] Sharygina, N.; Kurshan, R. P.; & Browne, J. C. “A Formal Object-
oriented Analysis for Software Reliability,” 318-332. Proceedings 
of the 4th International Conference on FASE 2001 (Lecture Notes 
in Computer Science [LNCS], volume 2029). Genova, Italy, April 

CMU/SEI-2005-TN-039 29 

http://www.sei.cmu.edu/publications/documents/04.reports


2-6, 2001. Berlin, Germany: Springer-Verlag, 2001. 

[Valmari 91] Valmari, A. “Stubborn Set for Reduced State Space Generation,” 1-
22. Proceedings of the 10th International Conference on 
Application and Theory of Petri Nets, Volume 2. (Lecture Notes in 
Computer Science [LCNS], volume 483). Bonn, Germany, June 
1989. Berlin, Germany: Springer-Verlag, 1991. 

[Wallnau 03] Wallnau, K. Volume III: A Technology for Predictable Assembly 
from Certifiable Components (CMU/SEI-2003-TR-009, 
ADA413574). Pittsburgh, PA: Software Engineering Institute, 
Carnegie Mellon University, 2003. 
http://www.sei.cmu.edu/publications/documents/03.reports 
/03tr009.html 

[Xie 02] Xie, F.; Browne, J. C.; & Levin, V. “ObjectCheck: Model Checking 
Tool for Model Checking Executable Object-Oriented Software 
Designs,” 64-79. Proceedings of FASE 2002 (Lecture Notes in 
Computer Science [LCNS], volume 489). Grenoble, France, April 
8-12, 2002. Berlin, Germany: Springer-Verlag, 2002. 

 

 

30  CMU/SEI-2005-TN-039 

http://www.sei.cmu.edu/publications/documents/03.reports


 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching 
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding 
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters 
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of 
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 
1. AGENCY USE ONLY 

(Leave Blank) 
2. REPORT DATE 

September 2005 
3. REPORT TYPE AND DATES COVERED 

Final 
4. TITLE AND SUBTITLE 

Lessons Learned Model Checking an Industrial Communications 
Library 

 

5. FUNDING NUMBERS 

FA8721-05-C-0003 

6. AUTHOR(S) 

James Ivers 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Software Engineering Institute 
Carnegie Mellon University 
Pittsburgh, PA 15213 

8. PERFORMING ORGANIZATION  
REPORT NUMBER 

CMU/SEI-2005-TN-039 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
HQ ESC/XPK 
5 Eglin Street 
Hanscom AFB, MA 01731-2116 

10. SPONSORING/MONITORING AGENCY 
REPORT NUMBER 

 

11. SUPPLEMENTARY NOTES 

 
12A DISTRIBUTION/AVAILABILITY STATEMENT 

Unclassified/Unlimited, DTIC, NTIS 
12B DISTRIBUTION CODE 

 
13. ABSTRACT (MAXIMUM 200 WORDS) 

Model checking is a fully automated formal verification technology that can be used to determine whether 
models of software satisfy behavioral requirements in such areas as safety, reliability, and security. This 
report explores the packaging of model checking technology in a reasoning framework. The goal of a 
reasoning framework is to simplify the analysis of software designs by nonexperts. This report describes the 
application of such a reasoning framework to the design of an industrial communications library and the 
problems that were found. This report also notes the tasks that were unreasonably complex or time-
consuming and concludes with thoughts on techniques that could be used to develop a model checking 
reasoning framework that better supports use by nonexperts.  

14. SUBJECT TERMS 

model checking, reasoning framework, software design analysis 
15. NUMBER OF PAGES 

42 
16. PRICE CODE 

 
17. SECURITY CLASSIFICATION 

OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION OF 
THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102 

 

 

 


	Lessons Learned Model Checking an Industrial Communications Library
	Contents
	 List of Figures
	 List of Tables
	Acknowledgements
	Abstract
	1 Introduction
	2 A Model Checking Reasoning Framework
	3 Case Study
	4 Communications Library Verification
	5 Results
	6 Conclusion
	Appendix A Example Fragments
	References


