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Abstract 

This technical note examines some of the complexities of interoperability and some recent 
research approaches to achieving it. There are many reasons why achieving interoperability 
between complex, heterogeneous systems is difficult. These include the problem of 
semantics; the differences between hardware and software; the difference between bounded 
and unbounded software systems; the need for trust, trustworthiness, and security in software 
systems; and the difficulty of quantifying interoperability. Many research efforts currently 
underway are aimed at finding improvements in both technologies and procedures to 
achieving interoperability more easily. These efforts include work in ontologies, service-
oriented architectures, emergent methods, and new approaches to security. While these efforts 
show many signs of promise, a considerable amount of work will be needed to bring these to 
a mature state. 

CMU/SEI-2005-TN-033 iii 



iv  CMU/SEI-2005-TN-033 



1 Introduction 

In this paper, we consider relationships between multiple software systems, specifically, those 
relationships that produce cooperation between these systems. This cooperation is generally 
called interoperability. We examine some of the complexities of interoperability, and some 
recent research approaches to achieving it. As a preface, we first set out our initial 
understanding of what interoperability is, together with some of its necessary characteristics. 

1.1 Interoperation as a Relationship 
The term interoperability has many definitions; a reasonable one is 

The ability of a collection of communicating entities to (a) share specified 
information and (b) operate on that information according to a shared 
operational semantics in order to achieve a specified purpose in a given 
context.1

The essence of interoperation is that it is a relationship between systems, where systems are 
the entities in the above definition. While our focus will be on computer-based systems, the 
definition extends beyond the world of mechanical systems to organizational and other 
contexts. To interoperate one system must provide a service2 that is used by another. This 
cannot be achieved without, at a minimum, communication from the provider to the 
consumer of the service. 

Interoperability relationships necessarily involve communication. Just as in the physical 
world a relationship of proximity may not involve interoperability (e.g., the table is close to 
the chair), a proximity relationship in the software domain may not involve interoperation. 
For instance, the mere fact that two software systems are both installed on a single machine 
does not imply that they are interoperable (though they might, of course, be interoperable by 
some other relationship). 

1.2 Changing Demands on Interoperability 
While there are many ways that multiple, heterogeneous systems can interoperate, we posit 
two of the most important, which we term design-time interoperability and run-time 
interoperability.  

                                                 
1  Carney, D.; Smith, J.; & Place, P. Topics in Interoperability: Infrastructure Replacement in a 

System of Systems Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University.  
To be published.  

2 While it seems obvious, it must be stated that provision of service includes the provision of data. 
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In the former case,  it is often possible for all of the parties responsible for all components of 
a system of systems to agree a priori on the particulars necessary to achieve whatever level of 
interoperability is needed. These systems of systems tend to be closed (e.g., the various 
systems that make up an automobile) and amenable to control by some individual or group 
with full responsibility for the overall system and its interoperation. When no individual is in 
total control, agreement among the various system managers can be achieved before the 
systems are developed. We term this kind of interoperation design-time. (This is, for example, 
how the Army’s software blocking policy produces such agreement.) Design-time 
interoperability is relatively well understood and, while not necessarily easily achieved, is 
well within current technological capability for many classes of systems.  

A very different notion of interoperability, which we term run-time interoperability, is less 
well understood. In this kind of system of systems, now imagined for “net-centric operations” 
(NCO),  it is assumed that the constituent  systems will be able to support ever-changing 
demands for service; to meet those demands, the components will continually adapt to new 
operational contexts. Because the operational context is changing continuously, the 
developers of those systems cannot know a priori the systems with which they will 
interoperate. The result is that the difficulty of reaching agreement between developers has 
been magnified, since agreement can only be reached after the systems have been developed. 
In essence, interoperability becomes a run-time and not a design-time problem. The most 
significant implication of this is that, since interoperability becomes a run-time issue, it 
follows that no overall set of agreements can be reached, but that each system must negotiate 
on a pair-wise basis on the meaning of a particular communication, and do this dynamically, 
at run-time. 

1.3 The Need for Flexibility 
Design-time and run-time interoperability exhibit many differences. For instance, design-time 
interoperable systems achieve their necessary degree of interoperability only by means of 
tight programmatic control of engineering choices. This approach typically comes at high 
cost, and involves inflexible agreements about specific requirements (e.g., standards, data 
semantics, and QoS), very close interaction between the organizations responsible for the 
systems, and very extensive testing to verify the specific interoperable pathways. The 
resulting integrations are commonly too inflexible to permit introduction of any new 
elements into the systems. Also, maintaining such interoperability has its own level of 
difficulty as system versions change and evolve. More significant to end users, these 
inflexible integrations limit the users’ ability to form ad hoc, creative solutions when 
necessary.  

By contrast, we can consider several tactics employed by U.S. Armed Forces in Afghanistan 
in 2001 that manifest run-time interoperability:  B-52's were used to provide on-call close air 
support; F-18's were used to support cavalry charges; and Predators provided real-time video 
to gunships. In Iraq, soldiers without military issue radios maintained contact within convoys 
by using commercial walkie-talkies; they also used commercial Global Positioning System 
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positioners to create their own maps of Iraqi desert roads [Davis 03]. None of these solutions 
were the result of tightly integrated systems of systems that had been predefined by Pentagon 
planners. Rather, these solutions resulted from creative solutions developed to address 
situational needs.   

What these examples suggest is that, to meet changing business or battlefield demands, users 
want integrated solutions, not integrated systems. Users will cobble together any 
combination of doctrine, organization, computing and other material capability to provide an 
integrated solution to their problem. The type of tightly coupled systems of systems described 
above, which is what too many users currently have available, often frustrate their efforts.  

Thus, the goal for planners and developers of future computing capabilities is to find ways to 
support interoperability between components while maintaining the flexibility to construct 
new, creative solutions.   

This technical note discusses several conceptual issues that affect our understanding of the 
task of achieving interoperability, and provides short overviews of some new software 
approaches that are potential solutions. In Section 2 we posit some of the factors that 
complicate the problem of system interoperation. In Section 3 we examine some of the more 
promising research efforts currently underway. Section 4 is a brief summary of the paper. 
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2 Some Complicating Factors 

In this section, we consider a number of factors that make achieving interoperability difficult 
in today’s software-intensive systems of systems. Of the many complicating factors that exist, 
we posit the following as exemplars:  

• the problem of semantics 

• the differences between hardware and software  

• the difference between bounded and unbounded software systems 

• the need for trust, trustworthiness, and security in software systems 

While we shall discuss these factors separately, significant interrelationships will become 
apparent. The first factor, that of semantics, permeates every other aspect of interoperability. 
Then, after noting that a key difference between software and hardware systems is that 
software boundaries are far more fluid than hardware, we shall see that this concept leads 
directly to considering the differences between bounded and unbounded systems. Finally, 
even conjecturing about unbounded systems necessitates considering how security and trust 
can operate in such a context.  

2.1 The Problem of Semantics 
Interoperability depends to a large extent on common understanding. For two systems to 
interoperate, hardware pins must align, communication protocols must be consistent, data 
formats and structure must be understandable, system invocation mechanisms must be 
shared, and so forth. Yet even with all of the things in place to assure connectivity, there is 
still no guarantee that either system will be able to the convert signals, bits, and bytes into the 
information necessary to perform its requisite tasks. Both systems must also make consistent 
interpretations on the meaning of the data communicated between them; they must exhibit 
semantic interoperability. 

As a trivial example, suppose one system sends the number “5” to another system. What does 
that communication mean? The answer is that its meaning depends on both systems having 
agreed that “5” represents a high-priority risk, or that it represents the fifth day of the week, 
or some other such meaning. In other words, we need to relate the communicated data itself 
to the meaning of that data. We may, therefore, informally define semantics as the implied 
meaning of data, providing a way to establish what entities mean with respect to their roles in 
a system.  
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There is a limited number of ways that agreements on meaning can be achieved. In the 
context of design-time interoperability, semantic agreements are reached in the same manner 
as interface agreements between the constituent systems. If the system of systems is a closed 
system, then the context of those agreements is only that of the system of systems; there is no 
need for any other entity to share in the agreements, or to understand the implied meaning of 
the data. However, in the context of run-time interoperability, the situation is more complex, 
since there is need for some manner of universal agreement, so that a new system can join, ad 
hoc, some other group of systems. The new system must be able to usefully share data and 
meaning with those other systems, and those other systems must be able to share data and 
meaning from an unfamiliar newcomer. 

One mechanism often mentioned to solve this problem is the use of standards, to which all 
systems adhere, and which govern all interactions, whether planned or otherwise. If this goal 
could be achieved, then the standards would provide a third-party locus for agreements: 
system A follows standard Y, and system B also follows standard Y, hence interconnections 
between system A and B are guaranteed to succeed, even if they have been designed and built 
in complete isolation from each other. 

This is, in fact, the situation that occurs at the lower levels of software interconnection. 
Standards define the parameters of the physical components, making it possible to connect 
one hardware device to another. Similarly, standards define protocols for communication so 
that data can be successfully passed from one system to another.  

But at the higher levels of meaning, gaining consensus on such “universal” standards has 
proven remarkably difficult to achieve. For one thing, as systems deal more and more with 
meanings, namely, with the complexities of  “information” as opposed to raw data, the 
ambiguity of human semantics enters in. Thus, even in human communication, 
misunderstandings arise. It is not uncommon for two people to believe that they fully 
understand each other’s words, yet their understandings are different. This ambiguity does 
not disappear when the communication takes place through software systems. Another 
problem with standards is that, even when efforts have been made to gain universal and 
standardized agreements on some useful subset of information, the rapid march of 
technological change has been much faster than the pace at which these standardized 
agreements can be implemented in systems. Hence, many such agreements have been 
obsolete even before they were achieved.  

One way proposed for sharing semantic agreements has been the use of mathematics. But 
even in the purely mathematical representations of semantics, the problem is quite difficult. 
For instance, if one system represents its meaning using set theory and another uses a process 
algebra, it is unlikely that those two systems can communicate their semantics to each other 
dynamically. (Indeed, mathematics-based semantic agreements are difficult to resolve even at 
design time.) 

CMU/SEI-2005-TN-033 5 



2.2 Differences between Hardware and Software 
There has been considerable argument over the degree to which software is genuinely 
different from hardware; this argument typically finds expression in a parallel argument about 
software engineering vs. system engineering. The long-standing view is that software 
engineering is less disciplined than the system engineering commonly found in hardware 
projects. Critics of software engineering point to this supposed lack of discipline as a leading 
cause of failure for many software-intensive systems. This perspective is supported by the 
degree of success that has been achieved by applying more disciplined approaches from 
system engineering to software engineering activities (most notably the Capability Maturity 
Model®(CMM®) and its later instantiation, the Capability Maturity Model Integration 
(CMMI®). 

We will not argue whether this impression is fair or not. However, we do assert that at least 
part of the solution lies in the realization that software genuinely is different from hardware:  

• The potential rate of change for software components vastly exceeds that for 
hardware components. This flexibility is a direct result of software’s malleability; 
software is easier and cheaper to change, and it requires no retooling of production 
machinery. 

• Hardware interfaces, being observable, are easier to identify; they are also apt to be 
less complex than software interfaces. 

• The boundaries between software components are not as easy to define and are more 
fluid than those between hardware components. 

• Hardware components tend to be better isolated from other components. Hence, 
changes to software components tend to have more widely cascading effects on other 
components, due to their greater interdependence.  

• Quality of service (QoS) for hardware components is better understood, in terms of 
what is required, which component can deliver it, and how it is measured. Hardware 
engineers also have a better understanding of how to increase performance for a 
specific quality of service. 

Most of the attempts to improve software engineering assume the superiority of the system 
engineering common for hardware projects. These attempts usually consist of strategies that 
target areas such as requirements management, design, standards, and management 
processes, and seek to apply techniques successful in hardware to the software engineering 
domain.  

                                                 
®  Capability Maturity Model, CMM, and CMMI are registered in the U.S. Patent and Trademark 

Office. 
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However, the gains achieved in this manner have been uneven, and require tremendous and 
disciplined effort to sustain, particularly as the proportion of software increases in most 
systems. And the problem is greatly intensified when several independently developed 
software systems must cooperate—the normative condition when several software systems 
interoperate. When no one controls the whole, the best efforts at hardware-derived discipline 
very often fail.  

The typical perceived solution is to apply still more hardware and system engineering 
discipline to gain better control of the changes to the various components. But there is an 
alternate perspective. It speculates that ultimately all traditional approaches to managing 
software complexity will fail in large-scale systems of systems. The failure will occur 
precisely because the techniques try to counteract the features of software that give it its 
power, for instance, its malleability and flexibility. And as these techniques apply ever-
increasing discipline and coordination, the engineering problems will become ever more 
resistant to solution, as software, true to its inherent nature, becomes used in ever more 
complex and unanticipated ways.  

Proponents of this alternate perspective maintain that the way to achieve and sustain the 
interconnected system of systems that are in such constant demand is to use the inherent 
characteristics of software (e.g., its flexibility) as a key to the solution, rather than something 
to be tamed. They suggest that research efforts must begin to determine just how the 
traditional hardware-derived approach breaks down, and then to modulate traditional 
engineering techniques with new techniques better fitted to the real challenges at hand.  

2.3 Bounded vs. Unbounded Systems 
Engineers often make the assumption that the requirements for a system are completely 
knowable.  We refer to such systems, developed with complete knowledge of the 
expectations and actions of all participating components, as “bounded.”   Bounded systems 
typically rely on effective mechanisms involving centralized control, centralized data, or 
hierarchical structures both in the development and execution of the system in order to 
provide the required degree of trust.  

The degree to which software systems have ever been truly bounded is debatable. Software 
systems (and software engineers) have, as described in the previous section, been plagued by 
a very large number of spectacular failures, many of which relate to unclear requirements. 
But whatever the truth for the past, it is a virtual certainty for the future that software 
engineers will probably never have complete knowledge of the expectations and actions for 
the software systems of systems they will build. 

Consider, for instance, one growing phenomenon: many systems of systems now employ 
their components in ways that were neither intended nor anticipated. Such is clearly the case 
regarding the Internet, where the numbers of participants and the quality of the information 
they provide is often unknown. It is also the case in complex systems of systems such as 
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command and control, air traffic control, electric power grid, individual aircraft, and modern 
PC operating systems. For example, in recent battlefield encounters, agility and rapid 
progress were achieved by direct and unplanned interactions among ground troops, 
helicopters, artillery, and bombers, all using equipment whose designs did not anticipate the 
ad hoc manner of use.  

The massively interconnected systems now imagined, such as the semantic Web, or the 
DoD’s net-centric operations are likely to contain even more component parts and be even 
more dynamic, with participants and components almost constantly changing [W3C 01, 
Cebrowski 88]. These systems of systems are unbounded, because they involve an unknown 
number of participating systems. They require individual systems to act and interact in 
unanticipated ways, often in the absence of complete information. It is not possible a priori to 
understand all of the ways in which the elements in unbounded systems will behave. Unlike 
bounded automated systems, where neither correct nor useful results can be computed in the 
absence of complete and correct data, unbounded systems must function effectively with 
incomplete data and with data that cannot be fully trusted.  

It is in this context that the need for deep and rich semantic underpinnings is so vital. Making 
an assumption that a new component or system can join a network of existing systems is also 
making the assumption that there will be some significant level of understanding between the 
newcomer and the existing systems; that understanding must be more than just ASCII or 
HTML.  

Given that few of today’s systems (and systems of systems) are based on a rich and shared 
semantics, and few exhibit the kind of flexibility required, making that assumption and 
achieving that scenario can seldom succeed. There are many reasons for this. For instance, 
the primary mechanisms for reducing error, compromise, and failure, and for achieving data 
integrity and trust in closed, tightly coupled, and fully understood systems are far less 
effective for unbounded systems of systems. Another reason is that few owners of such 
bounded systems are willing to open their systems to any other system whose provenance is 
unknown. This is because today’s systems are highly vulnerable. Centralized data and control 
create a single-point target for attacks, accidents, and other failures. They also create 
communications vulnerabilities by increasing communication delay, transaction time, and 
ultimately user response times. If the success of the system of systems depends on the 
success of each of its components and subsystems, then an error, compromise, or failure in a 
critical central component propagates to the system as a whole and undermines enterprise 
success. The unknown provenance of the unbounded system presents a high risk for such 
undermining activity. 

2.4 Trust, Trustworthiness and Security 
The issue of vulnerability described above is significant, and we consider it from the 
standpoint of three related notions: trust, trustworthiness, and security. All of these notions 
play a part in achieving interoperability, and all of them depend on deep, rich, and shared 
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semantic understanding. Discussion of these notions is also dependent on our initial 
definition, where we stress that interoperability can be considered only in a given context. 

In the hoped-for context of unbounded systems of systems, trust in the actions and 
capabilities provided by interoperating parties is essential. Each party to an interaction must 
have, develop, or perceive a sense of whether the actions of interoperating parties can be 
trusted. This sense of trust is not Boolean (e.g., parties can be trusted to varying degrees), is 
context dependent (Party A can be trusted in a particular context but not in another), and is 
time sensitive (Party A can be trusted for a certain period). Further, the absence of trust—
distrust—is less dangerous than misplaced trust: it is better to know that you cannot trust a 
particular party than to misplace trust in a party. 

Trustworthiness relates to the actual state of the end-to-end service provided (e.g., by a 
system of systems). Thus, misplaced trust is essentially a condition where one party perceives 
that a second party can be trusted, but the latter party is not trustworthy. Like trust, 
trustworthiness is context and time dependent, but it is not continuous (e.g., for a specific 
context, at a specific instance, the end-to-end capability is either trustworthy or not.).  

Security addresses issues of confidentiality (information available only to those authorized), 
integrity (information not corrupted due to unauthorized—by error or intent—change), and 
availability (information not erased or inaccessible) [CERT 97]. Security concerns are 
commonly addressed through either policies or technologies: 

• security policies identifying risks and threats, guidelines and security practices for system 
management and for legitimate use, and guidelines for reacting to compromises in 
security 

• security technologies to minimize or detect intrusion or to limit the damage, such as one-
use password technologies, firewalls, monitoring tools, security analysis tools, and 
encryption   

Whereas security is concerned with preventing unauthorized and accidental use, corruption, 
and blocking of access, trust and trustworthiness are concerned with other factors and the 
overall system behaving as expected. Thus, it is entirely possible for a highly secure and 
error-free actor providing information over an equally secure network to be untrustworthy for 
a particular need. For example, the data provided by a secure radar device with a slow sweep 
rate may be untrustworthy for fire control of an anti-missile missile system. It would be a 
mistake for the commander of the anti-missile system to trust the information from the radar 
for this purpose. The key is that interoperating systems rely not only on secure interactions, 
but on interactions that provide appropriate information for a given context and point in time. 

Thus, the mechanisms that are useful for providing security are useful but insufficient for 
constructing trustworthy capabilities and establishing trust between components. In 
traditional system development, we circumvent this problem and establish trustworthiness of 
components by working closely with component providers and modeling and testing the end-
to-end capability that is expected.  
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However, we expect to require greater degrees of dynamism and on-the-fly composition for 
future systems such as the Semantic Web and systems capable of net-centric warfare. For 
these sorts of systems, unanticipated uses, rapidly evolving and uneven technology, 
capabilities coming online and departing rapidly, changing mission needs, and potentially 
untrustworthy and even adversarial users are the norm. Establishing the kind of complete 
trustworthiness found in tightly coupled or bounded systems is highly unlikely and perhaps 
even impossible in these environments.  
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3 Some Current Proposed Solutions 

3.1 Ontologies 
An ontology defines the terms and relationships among terms that represent an area of 
knowledge. In software engineering, computer-readable ontologies are growing in 
importance for defining basic concepts within a domain. If multiple-domain applications are 
developed utilizing a shared ontology, or if their distinct ontologies can be related, then the 
applications can have a common understanding of data, and semantic interoperability is 
enhanced. In addition, ontologies can be developed that relate information across domains, 
opening up new possibilities for interoperability. 

While offering promise for enhanced semantic interoperability by helping developers to 
locate relevant descriptions and allowing computers to infer relationships and properties, 
ontologies are hard to define well because 

• Few people are expert in the representation of knowledge, and these experts are 
rarely the domain experts building ontologies. As a result, ontologies are often poorly 
constructed and hard to maintain.  

• Consensus building is a hard task that can be made more difficult by the scope and 
diversity of the organization and domain(s), by the existence of legacy applications 
that encourage advocates to fight for their solutions, and by widely different intended 
uses of the ontology. 

In addition, the long-term evolution of ontologies is a complex task. Since applications are 
strongly coupled to specific ontology versions, evolution will be constrained to maintain 
upward compatibility, unless mappings between versions are provided.  

Several ontology languages have been developed, but interest is now focused on the Web 
Ontology Language (OWL) [W3C 04b]. OWL is a core capability leading to the semantic 
Web, which supports interoperation across system and organizational boundaries by 
providing well-defined and shared meaning to data. OWL builds on other Web standards to 
define ontologies that can be distributed across the Web. It is supported by a growing number 
of tools (see http://www.w3.org/2004/OWL/#specs) and hundreds of domain ontologies 
representing commercial, government, military, and academic interests have been developed 
(see http://www.daml.org/ontologies/). 

Merging ontologies or mapping between them is also a current research topic. While a variety 
of approaches and tools are under investigation, almost all require significant human 
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intervention, normally by an individual or group of individuals familiar with the ontologies to 
be joined.  

Two additional and somewhat contradictory problems with ontology evolution have been 
noted: diffusion (or mission creep) and enforced orthodoxy. 

Diffusion refers to a phenomenon whereby an ontology originally intended to serve one 
purpose is adopted and extended to serve other purposes [Musen 05]. As a result, the 
complexity and number of ontologies grow, becoming difficult to use for all and less useful 
for the original intent. The International Classification of Diseases (ICD) that forms the basis 
of all medical claims and reimbursements in the U.S. represents a case in point. The original 
classification was created in the 19th century to compare causes of death. In 1948, the World 
Health Organization took responsibility and added non-fatal diseases to the classification. In 
1977, the ICD was expanded further to address statistics for the planning, monitoring and 
evaluation of health services. It is now difficult to find and add terms amid codes such as 
“W65.40: Drowning and submersion while in bath-tub, street and highway, while engaged in 
sports activity.” 

Enforced orthodoxy refers to avoiding change to an ontology, even when change is needed. 
Since the ontology represents a form of community orthodoxy, bias can develop against 
change. Such orthodoxy is in part practical, since large volumes of data may be encoded 
based on an obsolete model. Enforced orthodoxy may also hinder new ways of thinking, 
particularly regarding revolutionary paradigm shifts, because the new thoughts that can be 
constructed are limited by the language that is used. 

In summary, ontologies provide a useful mechanism for sharing semantic content of data 
across applications or system components. They may also help to increase the flexibility with 
which components interoperate, but only if sufficiently broad ontologies are developed and 
shared, and actively managed to prevent the loss of focus or constraining of new ideas. 

3.2 Service Oriented Architectures 
A service-oriented architecture (SOA) is a software architectural paradigm that is defined by 
a collection of independent, self-contained services that can be accessed in a standard way. 
Capabilities provided by individual services can be connected to perform required 
processing.  

A service is a coarse-grained, discoverable, and self-contained software entity that interacts 
with applications and other services through a loosely coupled, often asynchronous, message-
based communication model [Brown 02]. A service differs from an object with associated 
methods in that the service is normally coarser grained and tends to have a relatively small 
set of interfaces employing messages with a standard format, structure, and semantics. A 
common example of a capability that could be provided by a service is credit card validation 
[Lewis 04]. 
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Proponents of SOA suggest the following advantages: 

• simple standards that define the available interfaces and structure of data that is 
conveyed across those interfaces 

• platform- and language-independent interfaces based on these standards, which allow 
applications to invoke services operating on any device supporting the SOA 
regardless of the hardware platform, operating system, or implementation language 

• clear separation of service interface from implementation, allowing many service 
upgrades to occur without impact on service users 

• message oriented communication allowing distribution across a wide area 

• loose coupling between services, thus minimizing interdependencies and facilitating 
reuse  

• mechanisms for discovery of services available and for establishing connections with 
services, facilitating service use3  

The most common form of SOA is represented by Web services, which define programmatic 
interfaces for application to application communication across the World Wide Web. Web 
services use the Simple Object Access Protocol (SOAP) and Web Services Design Language 
(WSDL)  standards to define an Extensible Markup Language (XML)-based protocol for 
exchanging structured information. They also define a language for describing a Web service 
in terms of the messages it sends and receives, along with bindings to underlying transport 
and network protocols [W3C 04, W3C 01]. However, it is possible to implement SOA using 
other protocols, languages, and technologies. 

The hallmark of SOA is flexibility. Computing platforms and languages can vary; services 
can be accessed across a network via simple, well-defined interfaces, and without concern for 
side effects resulting from dependencies between services. These factors allow applications to 
use (or be composed of) services efficiently and effectively.4  

However, SOA in isolation does little to guarantee interoperability. For interoperability to be 
achieved by SOA, additional capabilities needed include 

• mechanisms for conveying additional semantic information about services such 
as behavior, QoS and expected preconditions and post conditions. Currently, we 
do not have good ways of representing this information such that a user of the 
service could efficiently and reliably determine whether the service provides 
appropriate capability for a given context. 

                                                 
3  Some experts do not include discovery mechanisms in core SOA capabilities.  In fact, it is possible 

to create an SOA that does not have an online discovery capability (e.g., no searchable database of 
available services). 

4 Our experiments at the SEI have not convinced us that SOA is very quick and relatively simple for 
engineers to use when building applications. See Lewis [Lewis 04]. 
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• mechanisms for conveying semantics of data required by and shared by a service. 
Ontologies provide a good starting point, but new techniques are needed to map 
between the different ontologies that are likely with independently developed 
services. 

• ways of achieving optimal and predictable performance and other QoS 
expectations for the end to end capability provided by sequences of services and 
other application components 

• ways of constructing services that have wide application to avoid proliferation of 
similar, but slightly different, services 

3.3 Emergent Properties 
Emergent properties are those properties of a whole that are different from, and not 
predictable from, the cumulative properties of the entities that make up the whole. The 
concept of emergent properties becomes increasingly important as the number and type of 
“actors” in a system of systems increase. Thus, large-scale networks such as the Internet (and 
in the future, networks that support net-centric warfare) are likely to experience emergent 
properties. Such networks are composed of large numbers of widely varied components 
(hosts, routers, links, users, etc.) that interact in complex ways. 

Of necessity, each participant in such real-world systems (both the actor in the network and 
the engineer who constructed it) acts primarily in his or her own best interest. As a result, 
perceptions of system-wide requirements are interpreted and implemented differently by 
various participants, and local needs often conflict with overall system goals. Although 
collective behavior is governed by control structures (e.g., in the case of the networks, 
network protocols), central control can never be fully effective in managing complex, large-
scale, distributed, or networked systems. 

The net effect is that the global properties, capabilities, and services of the system as a whole 
emerge from the cumulative effects of the actions and interactions of the individual 
participants propagated throughout the system. The resulting collective behavior of the 
complex network shows emergent properties that arise out of the interactions among the 
participants.  

The effect of emergent properties can be profound. In the best cases, the properties can 
provide unanticipated benefits to users. In the worst cases, emergent properties can detract 
from overall capability. In all cases, emergent properties make predictions about behavior 
such as reliability, performance, and security suspect. This is potentially the greatest risk to 
wide-scale networked systems of systems. Any long-term solution must involve better 
understanding and managing of emergent properties. 

Recent research in the area of emergent algorithms has begun to identify, develop, and refine 
the methods first developed for other sorts of systems to solve problems of interoperability 
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[Davis 03]. These methods and techniques are derived by analogy from approaches that have 
been effective in social, biological, and economic systems, but are applicable to the design, 
implementation, and evolution of software in a systems-of-systems context. 

At their most fundamental level, emergent algorithms provide an alternative to those 
approaches that achieve interoperability through ever tighter control of engineering processes 
and technology choices. Emergent algorithms exploit cascading effects of loosely coupled, 
dynamically changing, and partially trusted neighbors to achieve a common purpose shared 
by a subset of the participants.  

Only a limited repertoire of emergent algorithms has been identified, and they are only 
partially understood. The methods of emergent algorithms as they apply to interoperability 
include cooperation without coordination, dynamic adaptation, continuous trust validation, 
dynamic capability assessment, opportunistic actions, anticipatory neighbor assistance, 
encouragement and influence, perturbation, and survivable architectures.  

3.4 Potential New Approaches to Security 
For environments such as the semantic Web or net-centric computing, entirely new ways of 
establishing adequate trustworthiness and developing trust must be created. Potential 
mechanisms that can establish trustworthiness within this essentially untrustworthy 
environment can be placed in three very broad categories: 

1. approaches that establish trust through a trusted third party, such as a certificate 
authority for public-key certificates. This approach is proven in security application, but 
it is questionable whether the approach could “keep up” with changing components and 
expectations in a highly dynamic environment. The approach is also subject to calamity 
resulting from failure of the central trust authorities. 

2. approaches based on networks of members who incorporate trust information into 
modeling of relationships for a small number of other members. These trust webs can 
then be composed into trust relationships for all members. This approach, like the 
previous approach, requires research in defining the semantics of trust and trusting 
relationships, models for computing and manipulation of trust, and algorithms for 
quickly building and updating trust webs. 

3. approaches that essentially mimic the swarming behavior of ants. For example, software 
“ants” deposit a cue on a search trip for a capability and modify that cue on the return 
trip if the correct capability is found. Other ants can then “swarm”—follow that cue to 
the goal. This allows rapid dissemination of information about trustworthy and 
untrustworthy actors by employing very simple, locally implemented rules. Such 
techniques are promising, particularly for highly volatile network environments, but are 
relatively new and unproven outside of network routing application.  

There is a significant volume of research aimed at developing and maturing each of these 
approaches. It is entirely possible that all these approaches will find their way into use in 
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varying circumstances, or even as complementary ways of varying trust and supporting 
interoperability. 
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4 Summary 

Ontologies, SOA, emergent algorithms, and novel approaches to security are providing 
significant opportunities to improve the degree and flexibility of interoperability that can be 
achieved. Alone, each technology is limited. In combination, these technologies have the 
potential to address many problems of data sharing, application construction, and managing 
the cumulative effects of the actions and interactions of diverse and varying system 
components. Before they reach that potential, several questions must be answered: 

• Can accepted ontologies be established and maintained by communities of interest, 
and can techniques and tools be built to map between ontologies? 

• Can the community quantify the characteristics of applications and services that 
affect semantic interoperability such that engineers will trust SOA services in 
demanding applications? 

• Will emergent algorithms be developed that establish control of our increasingly 
unbounded systems? 

• Can sufficient security and trust be found in massively connected systems of 
systems? 

Changes in technology alone will not be sufficient to drive the shift from integrated systems 
to supporting integrated solutions. Individual program offices that are building individual 
systems will continue to be a barrier to integrated solutions to the extent that each considers 
its program distinct from others. In addition, even if program offices begin to build 
capabilities that are flexible and can be integrated to the extent that system boundaries are no 
longer evident, end users will continue to be thwarted in their desire for integrated solutions 
unless the organizations they represent and the doctrine they employ become equally flexible. 
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