
Secure Software Development
Life Cycle Processes:
A Technology Scouting Report

Noopur Davis

December 2005

Software Engineering Process Management

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2005-TN-024

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2005 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Contents

Acknowledgements ..vii

Abstract... ix

1 Introduction..1
1.1 Definitions...1
1.2 Background...3

2 Capability Maturity Models (CMMs) ...5
2.1 Capability Maturity Model Integration (CMMI) ..5
2.2 Federal Aviation Administration integrated Capability Maturity Model

(FAA-iCMM)..8
2.3 Trusted CMM/Trusted Software Methodology (T-CMM/TSM)...............10
2.4 Systems Security Engineering Capability Maturity Model (SSE-CMM) 10
2.5 Proposed Safety and Security Additions to the CMMI and

FAA-iCMM ..12

3 Additional Processes, Process Models, and Methodologies14
3.1 Microsoft’s Trustworthy Computing Security Development Lifecycle....14
3.2 Team Software Process for Secure Software Development14
3.3 Correctness by Construction ..17
3.4 Agile Methods...18
3.5 The Common Criteria ...20

4 Summary ..22

Bibliography ..23

CMU/SEI-2005-TN-024 i

ii CMU/SEI-2005-TN-024

List of Figures

Figure 1: Process Areas of the CMMI Framework... 7

Figure 2: Process Areas of the FAA-iCMM.. 9

Figure 3: Process Areas of the SSE-CMM .. 11

Figure 4: Vulnerability Removal Filters .. 16

CMU/SEI-2005-TN-024 iii

iv CMU/SEI-2005-TN-024

List of Tables

Table 1: Agile Methods – Compatibility with Security Assurance Practices 19

CMU/SEI-2005-TN-024 v

vi CMU/SEI-2005-TN-024

Acknowledgements

The author thanks Steve Lipner, Shawn Hernan, and Michael Howard of Microsoft, James
Moore of MITRE, and David Carrington and Julia Mullaney of the Software Engineering
Institute for their review comments on earlier drafts of this report. Thanks also to Pamela
Curtis and Susan Kushner for their editorial support.

CMU/SEI-2005-TN-024 vii

viii CMU/SEI-2005-TN-024

Abstract

As the use of the Internet and networked systems become more pervasive, the importance of
developing secure software increases. The purpose of this technical note is to present
overview information about existing processes, standards, life cycle models, frameworks, and
methodologies that support or could support secure software development. Where applicable
and possible, some evaluation or judgment is provided.

The target audience for this technical note includes software engineering process group
(SEPG) members, software developers, and managers seeking information about existing
software development life cycle (SDLC) processes that address security.

CMU/SEI-2005-TN-024 ix

x CMU/SEI-2005-TN-024

1 Introduction

The purpose of this document is to collect and present overview information about existing
processes, standards, life cycle models, frameworks, and methodologies that support or could
support secure software development. Where applicable and possible, some evaluation or
judgment may be provided for particular life cycle models, processes, frameworks, and
methodologies.

The target audience for this document includes software engineering process group (SEPG)
members who want to integrate security into their standard software development processes.
It is also relevant for developers and managers looking for information on existing software
development life cycle (SDLC) processes that address security. Technology or content areas
described include existing frameworks and standards such as the Capability Maturity Model®
Integration (CMMI®) framework, the FAA-iCMM, the Trusted CMM/Trusted Software
Methodology (T-CMM/TSM), the Systems Security Engineering Capability Maturity Model
(SSE-CMM), in addition to existing processes such as the Microsoft Trustworthy Computing
Software Development Lifecycle, the Team Software ProcessSM for Secure Software
Development (TSPSM-Secure), Correctness by Construction, Agile Methods, and the
Common Criteria.

Future technical notes can focus on secure engineering practices and tools such as threat
modeling, use of secure design principles, and use of static analysis tools.

1.1 Definitions
There are some terms used in this technical note for which a common understanding is
useful. They are

• Process – The Institute of Electrical and Electronics Engineers (IEEE) defines a process
as “a sequence of steps performed for a given purpose” [IEEE 91]. A secure software
process can be defined as the set of activities performed to develop, maintain, and deliver
a secure software solution. Activities may not necessarily be sequential; they could be
concurrent or iterative.

• Process model – A process model provides a reference set of best practices that can be
used for both process improvement and process assessment. Process models do not
define processes; rather, they define the characteristics of processes. Process models
usually have an architecture or a structure. Groups of best practices that lead to

® CMM, Capability Maturity Model, and CMMI are registered in the U.S. Patent and Trademark

Office by Carnegie Mellon University.
SM Team Software Process and TSP are service marks of Carnegie Mellon University.

CMU/SEI-2005-TN-024 1

achieving common goals are grouped into process areas and similar process areas may
further be grouped into categories. Most process models also have a capability or
maturity dimension that can be used for assessment and evaluation purposes.

It is important to understand the processes that an organization is using to build secure
software, because unless the process is understood, its weaknesses and strengths are difficult
to determine. It is also helpful to use common frameworks to guide process improvement
and to evaluate processes against a common model to determine areas for improvement.
Process models create common measures of organizational processes throughout the SDLC.
These models identify and employ many best technical and management practices. Although
very few of these models were designed from the ground up to address security, there is
substantial evidence that these models do address good software engineering practices to
manage and build software [Goldenson 03, Herbsleb 94].

There is no guarantee that even when organizations conform to a particular process model,
the software they build is free of unintentional security vulnerabilities or intentional
malicious code. However, there is probably a better likelihood of building secure software
when an organization follows solid software engineering practices with an emphasis on good
design, quality practices such as inspections and reviews, use of thorough testing methods,
appropriate use of tools, risk management, project management, and people management.

Some additional terms used in this document are

• Standards – Standards are established by some authority, custom, or by general consent
as examples of best practices. Standards provide material suitable for the definition of
processes.

• Appraisals, evaluations, assessments – All three of these terms imply comparison of a
process being practiced to a reference process model or standard. Assessments,
evaluations, and appraisals are used to understand process capability in order to improve
processes. They help determine if the processes being practiced are adequately specified,
designed, integrated, and implemented sufficiently to support the needs, including the
security needs, of the software product. They are also an important mechanism for
selecting suppliers and then monitoring supplier performance.

• Security assurance – Although the term “security assurance” is often used, there does
not seem to be an agreed-upon definition for this term. In the Capability Maturity Model
for Software (SW-CMM), the purpose of “software assurance” is described as providing
appropriate visibility into the process being used by the software projects and into the
products being built [Paulk 93]. The SSE-CMM describes “security assurance” as the
process that establishes confidence that a product’s security needs are being met. In
general, the term means the activities, methods, and procedures that provide confidence
in the security-related properties and functions of a developed solution.

In the Security Assurance section of its Software Assurance Guidebook, the National
Aeronautics and Space Administration (NASA) defines a minimum security assurance
program is one that ensures the following:

2 CMU/SEI-2005-TN-024

• A security risk evaluation has been performed.

• Security requirements have been established for the software and data being developed
and/or maintained.

• Security requirements have been established for the development and/or maintenance
process.

• Each software review and/or audit includes evaluation of security requirements.

• The configuration management and corrective action processes provide security for the
existing software and that the change evaluation processes prevent security violations.

• Physical security for the software and the data is adequate.

Security assurance usually also includes activities for requirements, design, implementation,
testing, release and maintenance phases of a SDLC [NASA 89].

1.2 Background
A survey of existing processes, process models, and standards identifies the following four
SDLC focus areas for secure software development:

1. Security Engineering Activities
Security engineering activities include those activities needed to engineer a secure
solution. Examples include security requirements elicitation and definition, secure
design based on design principles for security, use of static analysis tools, secure reviews
and inspections, and secure testing methods. A good source of information about secure
engineering activities is the Department of Homeland Security (DHS) Build Security In
Web site [DHS 05].

2. Security Assurance Activities
Assurance activities include verification, validation, expert review, artifact review, and
evaluations.

3. Security Organizational and Project Management Activities
Organizational activities include organizational policies, senior management
sponsorship and oversight, establishing organizational roles, and other organizational
activities that support security. Project management activities include project planning
and tracking, resource allocation and usage to ensure that the security engineering,
security assurance, and risk identification activities are planned, managed, and tracked.

4. Security Risk Identification and Management Activities
There is broad consensus in the community that identifying and managing security risks
is one of the most important activities in a secure SDLC, and in fact is the driver for
subsequent activities. Security risks in turn drive the other security engineering
activities, the project management activities, and the security assurance activities.
Security risk is also addressed in the DHS Build Security In Web site [DHS 05].

Other common themes include security metrics and overall defect reduction as attributes of a
secure SDLC process. The remainder of this technical note provides overviews of process

CMU/SEI-2005-TN-024 3

models, processes, and methods that support one or more of these four focus areas. The
process model, process, and method overviews should be read in the following context:

• Organizations need to define organizational processes. To do so, they use process
standards but they also consider industry customs, regulatory requirements, customer
demands, and corporate culture.

• Individual projects apply the organizational processes, often with appropriate tailoring.
When applying the organizational processes to a particular project, the project selects the
appropriate SDLC activities.

• Projects use appropriate security risk identification, security engineering, and security
assurance practices as they do their work.

• Organizations need to evaluate the effectiveness and maturity of their processes as used.
They also need to perform security evaluations.

4 CMU/SEI-2005-TN-024

2 Capability Maturity Models (CMMs)

Capability Maturity Models provide a reference model of mature practices for a specified
engineering discipline. An organization can compare their practices to the model to identify
potential areas for improvement. The CMMs provide goal-level definitions for and key
attributes of specific processes (software engineering, systems engineering, security
engineering), but do not generally provide operational guidance for performing the work. In
other words, they don’t define processes, they define process characteristics; they define the
what, but not the how:

“CMM-based evaluations are not meant to replace product evaluation or
system certification. Rather, organizational evaluations are meant to focus
process improvement efforts on weaknesses identified in particular process
areas” [Redwine 04].

Historically, CMMs have emphasized process maturity to meet business goals of better
schedule management, better quality management and reduction of the general defect rate in
software. Of the four secure SDLC process focus areas mentioned earlier, CMMs generally
address organizational, project management, and assurance processes. They do not
specifically address security engineering activities or security risk management. They also
focus on overall defect reduction, not specifically on vulnerability reduction. This is
important to note, since many defects are not security-related and some security
vulnerabilities are not caused by software defects. For example, intentionally added
malicious code is a security vulnerability not caused by common software defects.

Of the three CMMs currently in widespread use, the CMMI framework, the FAA-iCMM, and
the SSE-CMM, only the SSE-CMM was developed specifically to address security. The
Trusted CMM, derived from the Trusted Software Methodology, is also of historical
importance. This section discusses each of these CMMs in more detail.

2.1 Capability Maturity Model Integration (CMMI)
The Capability Maturity Model Integration (CMMI) framework helps organizations increase
the maturity of their processes to improve long-term business performance. The CMMI
provides the latest best practices for product and service development, maintenance, and
acquisition, including mechanisms to help organizations improve their processes and
provides criteria for evaluating process capability and process maturity. Improvement areas
covered by this model include systems engineering, software engineering, integrated product
and process development, supplier sourcing, and acquisition. The CMMI has been in use for
more than three years and will eventually replace its predecessor, the Capability Maturity

CMU/SEI-2005-TN-024 5

Model for Software (SW-CMM), which has been in use since the mid-1980s. As of June
2005, the Software Engineering Institute (SEI) reports that 782 organizations and 3250
projects have reported results from CMMI-based appraisals [SEI 05a]. Beginning in 1987
through June 2005, 2,859 organizations and 15,634 projects have reported results from SW-
CMM-based appraisals and assessments [SEI 05b].

The CMMI addresses four categories for process improvement and evaluation. Each
category includes several Process Areas. As shown in Figure 1, the CMMI addresses project
management, supplier management, organization-level process improvement as well as
training, quality assurance, measurement, and engineering practices. However, it does not
specifically address the four areas mentioned earlier (security risk management, security
engineering practices, security assurance, and project/organizational processes for security),
although it is not unreasonable to assume that each of these are special cases of practices
already addressed by the CMMI. Further information about the CMMI framework is
available at http://www.sei.cmu.edu/cmmi/.

6 CMU/SEI-2005-TN-024

CMMI
Categories

Process
Management

Project
Management

Engineering Support

Organizational
Process Focus

Organizational
Innovation and

Deployment

Organizational
Process

Performance

Organizational
Training

Organization
Process

Definition

Project Planning

Risk
Management

Integrated
Project

Management

Supplier
Agreement

Management

Project
Monitoring and

Control

Integrated
Teaming

Integrated
Supplier

Management

Quantitative
Project

Management

Requirements
Development

Requirements
Management

Technical
Solution

Product
Integration

Verification

Validation

Configuration
Management

Process and
Product Quality

Assurance

Measurement
and Analysis

Organizational
Environment for

Integration

Decision
Analysis and
Resolution

Causal Analysis
and Resolution

Figure 1: Process Areas of the CMMI Framework

CMU/SEI-2005-TN-024 7

2.2 Federal Aviation Administration integrated Capability Maturity
Model (FAA-iCMM)

The FAA-iCMM was developed and is widely used by the Federal Aviation Administration. It
provides a single model of best practices for enterprise-wide improvement, including
outsourcing and supplier management. The latest version includes process areas to address
integrated enterprise management, information management, deployment/ transition/disposal,
and operation/support. The FAA-iCMM integrates the following standards and models:

• ISO 9001:2000

• EIA/IS 731

• Malcolm Baldrige National Quality Award

• President’s Quality Award

• CMMI-SE/SW/IPPD and CMMI-A

• ISO/IEC TR 15504, ISO/IEC 12207, and ISO/IEC CD 15288

As shown in Figure 2, the FAA-iCMM is organized into three main categories and 23 Process
Areas [FAA 01]. The FAA-iCMM addresses project management, risk management, supplier
management, information management, configuration management, design, and testing, all of
which are integral to a secure SDLC. However, the FAA-iCMM does not address security
specifically in any of these areas. Just as with the CMMI, the FAA-iCMM includes a generic
set of best practices that do not specifically address security concerns. Details about the FAA-
iCMM model and each process area are available at http://www.faa.gov/aio or
http://www.faa.gov/ipg.

8 CMU/SEI-2005-TN-024

http://www.faa.gov/aio
http://www.faa.gov/ipg

iCMM
Categories

Management
Processes

Life Cycle Processes Support Processes

Integrated Enterprise
Management

Integrated Teaming

Supplier Agreement
Management

Risk Management

Project Management

Needs

Deployment,
Transition, Disposal

Integration

Design

Requirements

Integration

Operation and
Support

Evaluation

Outsourcing

Alternatives Analysis

Measurement and
Analysis

Quality Assurance
and Management

Configuration
Management

Information
Management

Innovation

Training

Process Improvement

Process Definition

Design
Implementation

Figure 2: Process Areas of the FAA-iCMM

CMU/SEI-2005-TN-024 9

2.3 Trusted CMM/Trusted Software Methodology (T-CMM/TSM)
In the early 1990s, the then-Strategic Defense Initiative (SDI) developed a process called the
“Trusted Software Development Methodology,” later renamed to the “Trusted Software
Methodology” (TSM). This model defined levels of trust, with lower trust levels
emphasizing resistance to unintentional vulnerabilities and higher trust levels adding
processes to counter malicious developers. SDI conducted experiments using the TSM to
determine if such processes could be implemented practically and what the impact of those
processes would be (especially on cost and schedule). The TSM was later harmonized with
the CMM, producing the Trusted CMM (T-CMM) [Kitson 95]. While the TCMM/TSM is
not widely used today, it nevertheless remains a source of information on processes for
developing secure software.

2.4 Systems Security Engineering Capability Maturity Model
(SSE-CMM)

The SSE-CMM is a process model that can be used to improve and assess the security
engineering capability of an organization. The SSE-CMM provides a comprehensive
framework for evaluating security engineering practices against the generally accepted
security engineering principles. By defining such a framework, the SSE-CMM, provides a
way to measure and improve performance in the application of security engineering
principles [Redwine 04]. The SSE-CMM has been adopted as the ISO/IEC 21827 standard.
Further information about the model is available at http://www.sse-cmm.org.

The stated purpose for developing the model is that, although the field of security
engineering has several generally accepted principles, it lacks a comprehensive framework
for evaluating security engineering practices against the principles. The SSE-CMM, by
defining such a framework, provides a way to measure and improve performance in the
application of security engineering principles. The SSE-CMM also describes the essential
characteristics of an organization’s security engineering processes.

The model is organized into two broad areas: Security Engineering, and Project and
Organizational processes. Security Engineering in turn is organized into Engineering
Processes, Assurance Processes, and Risk Processes. There are 22 Process Areas distributed
among the three categories. Each Process Area is composed of a related set of process goals
and activities. The International Systems Security Engineering Association (ISSEA)
maintains the SSE-CMM.

10 CMU/SEI-2005-TN-024

SSE-CMM Categories

Security Engineering
Process Areas

Project and Organizational
Process Areas

Engineering Process

Risk Process

Assurance Process

Specify Security Needs

Assess Threat

Assess Vulnerability

Assess Impact

Assess Security Risk

Provide Security Input

Monitor Security Posture

Administer Security Controls

Coordinate Security

Verify and Validate Security

Build Assurance Argument

Ensure Quality

Manage Configuration

Manage Project Risk

Monitor and Control
Technical Effort

Plan Technical Effort

Define Organization’s Systems
Engineering Process

Improve Organization’s
Systems Engineering Process

Manage Product Line Evolution

Manage Systems Engineering
Support Environment

Provide Ongoing Skills and
Knowledge

Coordinate with Suppliers

Figure 3: Process Areas of the SSE-CMM

CMU/SEI-2005-TN-024 11

2.5 Proposed Safety and Security Additions to the CMMI and
FAA-iCMM

Because of the integration of process disciplines and coverage of enterprise issues, the CMMI
and the FAA-iCMM are used by more organizations than the SSE-CMM; yet the two
integrated models contain gaps in their coverage of safety and security. As a result, some
organizations within the FAA and the Department of Defense (DoD) have sponsored a joint
effort to identify best safety and security practices for use in combination with the FAA-
iCMM and the CMMI. The proposed Safety and Security additions to the FAA-iCMM and
the CMMI identify standards-based practices expected to be used as criteria in guiding
process improvement and in appraising an organization’s capabilities for providing safe and
secure products and services.

The proposed safety and security additions include the following four goals and 16 practices:

1. Goal 1 – An infrastructure for safety and security is established and maintained.

a. Ensure safety and security awareness, guidance, and competency.

b. Establish and maintain a qualified work environment that meets safety and security
needs.

c. Ensure integrity of information by providing for its storage and protection, and
controlling access and distribution of information.

d. Monitor, report, and analyze safety and security incidents and identify potential
corrective actions.

e. Plan and provide for continuity of activities with contingencies for threats and
hazards to operations and the infrastructure.

2. Goal 2 – Safety and security risks are identified and managed.

a. Identify risks and sources of risks attributable to vulnerabilities, security threats,
and safety hazards.

b. For each risk associated with safety or security, determine the causal factors,
estimate the consequence and likelihood of an occurrence, and determine relative
priority.

c. For each risk associated with safety or security, determine, implement and monitor
the risk mitigation plan to achieve an acceptable level of risk.

3. Goal 3 – Safety and security requirements are satisfied.

a. Identify and document applicable regulatory requirements, laws, standards,
policies, and acceptable levels of safety and security.

b. Establish and maintain safety and security requirements, including integrity levels,
and design the product or service to meet them.

c. Objectively verify and validate work products and delivered products and services
to assure safety and security requirements have been achieved and fulfill intended
use.

d. Establish and maintain safety and security assurance arguments and supporting
evidence throughout the life cycle.

12 CMU/SEI-2005-TN-024

4. Goal 4 – Activities and products are managed to achieve safety and security
requirements and objectives.

a. Establish and maintain independent reporting of safety and security status and
issues.

b. Establish and maintain a plan to achieve safety and security requirements and
objectives.

c. Select and manage products and suppliers using safety and security criteria.

d. Measure, monitor and review safety and security activities against plans, control
products, take corrective action, and improve processes.

Further information about the proposed safety and security additions is available at
http://www.faa.gov/ipg.

CMU/SEI-2005-TN-024 13

http://www.faa.gov/ipg

3 Additional Processes, Process Models, and

Methodologies

3.1 Microsoft’s Trustworthy Computing Security Development
Lifecycle

Microsoft’s Trustworthy Computing Security Development Lifecycle (SDL) is a process that
they have adopted for the development of software that needs to withstand security attacks.
The process adds a series of security-focused activities and deliverables to each phase of
Microsoft’s software development process. These security activities and deliverables include
definition of security feature requirements and assurance activities during the requirements
phase, threat modeling for security risk identification during the software design phase, the
use of static analysis code-scanning tools and code reviews during implementation, and
security focused testing, including “fuzz testing” during the testing phase. An extra security
activity includes a final code review of new as well as legacy code during the Verification
phase. Finally, during the release phase, a Final Security Review is conducted by the Central
Microsoft Security team, a team of security experts who are also available to the product
development team throughout the development life cycle, and who have a defined role in the
overall process [Lipner 05].

Microsoft has augmented the SDL with mandatory security training for its software
development personnel, security metrics, and with available security expertise via the Central
Microsoft Security team. Microsoft is reporting encouraging results from products developed
using the SDL, as measured by the number of critical and important security bulletins issued
by Microsoft for a product after its release.

3.2 Team Software Process for Secure Software Development
The SEI’s Team Software Process (TSP) provides a framework, a set of processes, and
disciplined methods for applying software engineering principles at the team and individual
level [Humphrey 02]. Software produced using the TSP has one or two orders of magnitude
fewer defects than software produced with current practices—that is, 0 to .1 defects per
thousand lines of code, as opposed to 1 to 2 defects per thousand lines of code [Davis 03].

TSP for Secure Software Development (TSP-Secure) extends the TSP to focus more directly
on the security of software applications. The TSP-Secure project is a joint effort of the SEI’s
TSP initiative and CERT® program. The principal goal of the project is to develop a TSP-

® CERT is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

14 CMU/SEI-2005-TN-024

based method that can predictably produce secure software. TSP-Secure addresses secure
software development in multiple ways:

• Secure software is not built by accident – TSP-Secure addresses how to plan for security

• Schedule pressures and inter-personal issues can get in the way of implementing best
practices – TSP-Secure helps to build self-directed development teams and then expects
these teams to manage their own work

• Security and quality are closely related – TSP-Secure helps manage quality throughout
the product development life cycle.

• People developing secure software must have an awareness of software security issues –
TSP-Secure includes security awareness training for developers

Teams using TSP-Secure create their own plans. Initial planning is conducted during a series
of meetings called a “project launch,” which takes place over a three– to four–day period.
The launch is led by a qualified team coach. During a TSP-Secure launch, the team reaches a
common understanding of the security goals for the work and the approach they will take to
do the work, produces a detailed plan to guide the work, and obtains management support for
the plan. Typical tasks included in the plan are identifying security risks, eliciting and
defining security requirements, secure design and code reviews, use of static analysis tools,
unit tests, and fuzz testing. (Fuzz testing is thought to enhance software security and software
safety because it often finds odd oversights and defects which human testers would fail to
find, and even careful human test designers would fail to create tests for [Wikipedia 05].)

Each team member of a TSP-Secure team selects at least one of nine standard team member
roles (roles can be shared). One of the defined roles is a Security Manager role. The
Security Manager leads the team in ensuring that product requirements, design,
implementation, reviews, and testing address security. He or she ensures that the product is
statically and dynamically assured, provides timely analysis and warning about security
problems, and tracks any security risks or issues to closure. The Security Manager works
with external security experts when needed.

After the launch, the team executes its plan and ensures all security-related activities take
place. Security status is presented and discussed during every management status briefing.

Visits to web sites such as the SANS Institutes Top 20 list of security vulnerabilities, the
MITRE Common Vulnerabilities and Exposures (CVE) site, the US-CERT Technical Cyber
Security Alerts site, and the Microsoft Security Advisory site show that common software
defects are the leading cause of security vulnerabilities (buffer overflows have been the most
common software defect leading to security vulnerabilities) [SANS 05, CVE 05, US-CERT
05, Microsoft 05]. Therefore, The TSP-Secure quality management strategy is to have
multiple defect removal points in the software development life cycle. The more defect
removal points there are, the more likely one is to find problems right after they are
introduced, enabling problems to be more easily fixed and their root causes more easily
determined and addressed.

CMU/SEI-2005-TN-024 15

Each defect removal activity can be thought of as a filter that removes some percentage of
defects that can lead to vulnerabilities from the software product, as shown in Figure 4. The
more defect removal filters there are in the software development life cycle, the fewer defects
that can lead to vulnerabilities remain in the software product when it is released. More
importantly, early measurement of defects enables the organization to take corrective action
early in the software development life cycle.

Figure 4: Vulnerability Removal Filters

Each time defects are removed, they are measured. Every defect removal point becomes a
measurement point. Defect measurement leads to something even more important than
defect removal and prevention: it tells teams where they stand with regard to their goals,
helps them decide whether to move to the next step or to stop and take corrective action, and
indicates where to correct their process in order to meet their goals.

The TSP-Secure team considers the following questions when managing defects:

• What type of defects lead to security vulnerabilities?

• Where in the software development life cycle should defects be measured?

• What work products should be examined for defects?

• What tools and methods should be used to measure the defects?

16 CMU/SEI-2005-TN-024

• How many defects can be removed at each step?

• How many estimated defects remain after each removal step?

In addition, the TSP-Secure method includes training for developers, managers, and other
team members that specifically focuses on security awareness.

3.3 Correctness by Construction
The Correctness by Construction methodology developed by Praxis Critical Systems is a
process for developing high-integrity software [Hall 02]. It has been used to develop safety-
critical and security-critical systems with a great degree of success [Ross 05]. It delivers
software with very low defect rates by rigorously eliminating defects at the earliest possible
stage of the process. Correctness by Construction is based on the following tenets: do not
introduce errors in the first place and remove any errors as close as possible to the point that
they are introduced.

The process is based on the strong belief that each step should serve a clear purpose and be
carried out using the most rigorous techniques available to address that particular problem.
Specifically, the process almost always uses formal methods to specify behavioral, security,
and safety properties of the software. The belief is that only by using formality can the
necessary precision be achieved.

The seven key principles of Correctness by Construction are:

1. Expect requirements to change. Changing requirements are managed by adopting an
incremental approach and paying increased attention to design to accommodate change.
Apply more rigor, rather than less, to avoid costly and unnecessary rework.

2. Know why you’re testing. Recognize that there are two distinct forms of testing, one to
build correct software (debugging) and another to show that the software built is correct
(verification). These two forms of testing require two very different approaches.

3. Eliminate errors before testing. Better yet, deploy techniques that make it difficult to
introduce errors in the first place. Testing is the second most expensive way of finding
errors. The most expensive is to let your customers find them for you.

4. Write software that is easy to verify. If you don’t, verification and validation (including
testing) can take up to 60% of the total effort. Coding typically takes only 10%. Even
doubling the effort on coding will be worthwhile, if it reduces the burden of verification
by as little as 20%.

5. Develop incrementally. Make very small changes, incrementally. After each change,
verify that the updated system behaves according to its updated specification. Making
small changes makes the software much easier to verify.

6. Some aspects of software development are just plain hard. There is no silver bullet.
Don’t expect any tool or method to make everything easy. The best tools and methods
take care of the easy problems, allowing you to focus on the difficult problems.

CMU/SEI-2005-TN-024 17

7. Software is not useful by itself. The executable software is only part of the picture. It is
of no use without user manuals, business processes, design documentation, well-
commented source code and test cases. These should be produced as an intrinsic part of
the development, not added at the end. In particular, recognize that design
documentation serves two distinct purposes:

a. To allow the developers to get from a set of requirements to an implementation.
Much of this type of documentation outlives its usefulness after implementation.

b. To allow the maintainers to understand how the implementation satisfies the
requirements. A document aimed at maintainers is much shorter, cheaper to
produce and more useful than a traditional design document.

Correctness by Construction is one of the few secure SDLC processes that incorporate formal
methods into many development activities. Requirements are specified using the formal
specification notation Z (pronounced “zed”) and is verified. Code is written in SPARK (a
subset of Ada), which can be statically assured and is then checked by verification software.

3.4 Agile Methods
Over the past few years, a new family of software engineering methods has started to gain
acceptance in the software development community. These methods, collectively called
Agile Methods, conform to the Manifesto for Agile Software Development, which states

“We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools,

Working software over comprehensive documentation,

Customer collaboration over contract negotiation,

Responding to change over following a plan,

That is, while there is value in the items on the right, we value the items on
the left more” [Agile Alliance 01].

The individual Agile Methods include Extreme Programming (the most well known), Scrum,
Lean Software Development, Crystal Methodologies, Feature Driven Development, and
Dynamic Systems Development Methodology. While there are many differences between
these methodologies, they are based on some common principles, such as short development
iterations, minimal design up front, emergent design and architecture, collective code
ownership and ability for anyone to change any part of the code, direct communication and
minimal or no documentation (the code is the documentation), and gradual building of test
cases. Some of these practices are in direct conflict with secure SDLC processes. For
example, a design based on secure design principles that addresses security risks identified
during an up front activity such as Threat Modeling, is an integral part of most secure SDLC

18 CMU/SEI-2005-TN-024

http://vl.zuser.org/zed.au

processes, but conflicts with the emergent requirements and emergent design principles of
Agile Methods.

In their article Towards Agile Security Assurance, Beznosov and Kruchten address this issue
and make some proposals as to how security assurance activities could be merged into Agile
development methods [Beznosov 05]. They classified existing software assurance activities
into four categories: those that are a natural match for Agile methods, those that are
independent of any development methodology, those that can be automated or semi-
automated so that they could be incorporated into Agile methods, and those that are
fundamentally mismatched with Agile methods. Table 1 (included with permission from the
authors) shows that almost 50% of traditional security assurance activities are not compatible
with Agile Methods (12 out of 26 mismatches), less than 10% are natural fits (2 out of 26
matches), about 30% are independent of development method and slightly more than 10% (4
out of 26) could be semi-automated and thus integrated more easily into the Agile Methods.

Table 1: Agile Methods – Compatibility with Security Assurance Practices

Security assurance method or
technique

Match (2) Independent (8) Semi-automated
(4)

Mismatch
(12)

Guidelines X

Specification Analysis X

R
eq

ui
re

m
en

ts

Review X

Application of specific
architectural approaches
X

 X

Use of secure design
principles

 X

Formal validation X

Informal validation X

Internal review X

D
es

ig
n

External review X

Informal requirements
traceability

 X

Requirements testing X

Informal validation X

Formal validation X

Security testing X

Vulnerability and
penetration testing

 X

Test depth analysis X

Security static analysis X

Im
pl

em
en

ta
tio

n

High-level programming
languages and tools

 X

CMU/SEI-2005-TN-024 19

Adherence to
implementation
standards

 X

Use of version control
and change tracking

 X

Change authorization X

Integration procedures X

Use of product
generation tools

 X

Internal review X

External review X

Security evaluation X

Others have started to explore the integration of security assurance with Agile Methods
[Poppendieck 02, Beznosov 03, Wäyrynen 04].

3.5 The Common Criteria
In January 1996, Canada, France, Germany, the Netherlands, the United Kingdom, and the
United States released a jointly developed security evaluation standard. This standard is
known as the “Common Criteria for Information Technology Security Evaluation,” but is
more often referred to just as the “Common Criteria” (CC) [CC 05]. The CC has become the
dominant security evaluation framework and is now an international standard, ISO/IEC
15408.

The CC is documented in three sections: the introduction section describes the history,
purpose, and the general concepts and principles of security evaluation, and describes the
model of evaluation. The second section describes a set of security functional requirements
that users of products may want to specify, and that serve as standard templates for security
functional requirements. The functional requirements are catalogued and classified, basically
providing a “menu” of security functional requirements from which product users make a
selection. The third section of the document includes security assurance requirements, which
includes various methods of assuring that a product is secure. This section also defines seven
pre-defined sets of assurance requirements called the Evaluation Assurance Levels (EALs).

There are two artifacts that must be created to go through a CC evaluation: a Protection
Profile (PP) and a Security Target (ST). Both documents must be created based on specific
templates provided in the CC. A Protection Profile identifies the desired security properties
(user security requirements) of a product type. Protection Profiles can usually be built by
selecting appropriate components from section two of the CC, since it is likely that user
requirements for the type of product being built already exists. Protection Profiles are an
implementation-independent statement of security needs for a product type (for example,
firewalls). Protection Profiles can include both the functional and assurance requirements for

20 CMU/SEI-2005-TN-024

the product type. A Security Target is an implementation-dependent statement of security
needs for a specific product.

The PPs and the ST allow the following process for evaluation:

1. An organization that wants to acquire or develop a particular type of security product
defines their security needs using a PP. The organization then has the PP evaluated, and
publishes it.

2. A product developer uses this PP to write an ST that complies with it and then has the
ST evaluated.

3. The product developer then builds a Target of Evaluation (TOE) (or uses an existing
one) and has it evaluated against the ST.

The seven evaluation levels are

1. Evaluation assurance level 1 (EAL1) – functionally tested

2. Evaluation assurance level 2 (EAL2) – structurally tested

3. Evaluation assurance level 3 (EAL3) – methodically tested and checked

4. Evaluation assurance level 4 (EAL4) – methodically designed, tested, and reviewed

5. Evaluation assurance level 5 (EAL5) – semi-formally designed and tested

6. Evaluation assurance level 6 (EAL6) – semi-formally verified design and tested

7. Evaluation assurance level 7 (EAL7) – formally verified design and tested

A current list of validated products and their associated EAL levels is available at
http://niap.nist.gov/cc-scheme/vpl/vpl_type.html.

CMU/SEI-2005-TN-024 21

4 Summary

Other key standards and methods that apply to developing secure software but have not been
summarized in this technical note include

• ISO/IEC 15288 for System Life Cycle Processes, available from http://www.iso.org

• ISO/IEC 12207 for Software Life Cycle Processes, available from http://www.iso.org

• ISO/IEC 15026 for System and Software Integrity Levels, available from
http://www.iso.org

• Cleanroom Software Engineering [Linger 94, Mills 87]

This technical note demonstrates that although there are several processes and methodologies
that could support secure software development, very few are designed specifically to address
software security from the ground up. The notable exceptions are Microsoft’s Trustworthy
Computing SDL and the SSE-CMM. As software security becomes a more important issue
in an increasingly networked world, more processes that explicitly address the four focus
areas identified in this paper (security engineering activities, security assurance activities,
security organizational and project management activities, and security risk identification and
management activities) should achieve visibility.

22 CMU/SEI-2005-TN-024

Bibliography

URLs are valid as of the publication date of this document.

[Agile Alliance 01] The Agile Alliance. Manifesto for Agile Software Development.
http://agilemanifesto.org (2001).

[Beznosov 03] Beznosov, Konstantin. eXtreme Security Engineering: On
Employing XP Practices to Achieve ‘Good Enough Security’
without Defining It.
http://konstantin.beznosov.net/professional/papers
/eXtreme_Security_Engineering.html (2003).

[Beznosov 05] Beznosov, Konstantin & Kruchten, Philippe. Towards Agile
Security Assurance.
http://konstantin.beznosov.net/professional/papers
/Towards_Agile_Security_Assurance.html (2004).

[CC 05] Common Criteria. http://www.commoncriteriaportal.org/ (2005).

[CVE 05] Common Vulnerabilities and Exposures. http://www.cve.mitre.org/
(2005).

[Davis 03] Davis, Noopur & Mullaney, Julia. The Team Software Process
(TSP) in Practice: A Summary of Recent Results (CMU/SEI-2003-
TR-014, ADA418430). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2003.
http://www.sei.cmu.edu/publications/documents/03.reports
/03tr014.html

[DHS 05] Department of Homeland Security. Build Security In.
https://buildsecurityin.us-cert.gov/portal/ (2005).

[FAA 01] Federal Aviation Administration. The Federal Aviation
Administration Integrated Capability Maturity Model® (FAA-
iCMM®), Version 2.0. Washington, DC: Federal Aviation
Administration, September 2001.
http://www.faa.gov/aio/common/documents/iCMM
/FAA-iCMMv2.htm

CMU/SEI-2005-TN-024 23

[Goldenson 03] Goldenson, Dennis R. & Gibson, Diane L. Demonstrating the
Impact and Benefits of CMMI: An Update and Preliminary Results
(CMU/SEI-2003-SR-009). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2003.
http://www.sei.cmu.edu/publications/documents/03.reports
/03sr009.html

[Hall 02] Hall, Anthony & Chapman, Roderick. “Correctness by
Construction: Developing a Commercial Secure System.” IEEE
Software 19, 1 (January/February 2002): 18–25.

[Herbsleb 94] Herbsleb J.; Carlton, A.; Rozum, J.; Siegel, J.; & Zubrow D.
Benefits of CMM-Based Software Process Improvement: Initial
Results (CMU/SEI-94-TR-013, ADA283848). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 1994.
http://www.sei.cmu.edu/publications/documents/94.reports
/94.tr.013.html

[Humphrey 02] Humphrey, Watts S. Winning with Software: An Executive Strategy.
Boston, MA: Addison Wesley, 2002 (ISBN 0201776391).

[IEEE 91] IEEE. IEEE Standard Glossary of Software Engineering
Terminology. ANSI/IEEE Std 610.12-1990. February 1991.

[Kitson 95] Kitson, David H. “A Tailoring of the CMM for the Trusted Software
Domain,” Proceedings of the Seventh Annual Software Technology
Conference. Salt Lake City, Utah, April 9–14, 1995.

[Linger 94] Linger, R. C. “Cleanroom Process Model.” IEEE Software 11, 2
(March 1994): 50–58.

[Lipner 05] Lipner, Steve & Howard, Michael. The Trustworthy Computing
Security Development Lifecycle.
http://msdn.microsoft.com/security/default.aspx?pull=/library
/en-us/dnsecure/html/sdl.asp (2005).

[McAndrews 00] McAndrews, Donald. The Team Software Process (TSP): An
Overview and Preliminary Results of Using Disciplined Practices
(CMU/SEI-2000-TR-015, ADA387260). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2000.
http://www.sei.cmu.edu/publications/documents/00.reports
/00tr015.html

24 CMU/SEI-2005-TN-024

[Microsoft 05] Microsoft. Microsoft Security Advisories.
http://www.microsoft.com/technet/security/advisory/default.mspx
(2005).

[Mills 87] Mills, H.; Dyer, M.; & Linger, R. “Cleanroom Software
Engineering.” IEEE Software 4, 5 (September 1987): 19–25.

[NASA 89] NASA. Software Assurance Guidebook, NASA-GB-A201.
http://satc.gsfc.nasa.gov/assure/agb.txt (1989).

[Paulk 93] Paulk, M.; Curtis, B.; Chrissis, M.; & Weber, C. “The Capability
Maturity Model for Software (Version 1.1) (CMU/SEI-93-TR-24).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 1993.
http://www.sei.cmu.edu/publications/documents/93.reports
/93.tr.024.html

[Poppendieck 02] Poppendieck, M. & Morsicato, R. “Using XP for Safety-Critical
Software.” Cutter IT Journal 15, 9 (2002): 12–16.

[Redwine 04] Redwine, Samuel T. & Davis, Noopur, Eds. Processes to Produce
Secure Software: Towards More Secure Software, Volume II.
http://www.cyberpartnership.org/Software%20Pro.pdf (2004).

[Ross 05] Ross, Philip E. “The Exterminators: A Small British Firm Shows
That Software Bugs Aren’t Inevitable.” IEEE Spectrum 42, 9
(September 2005): 36–41.

[SANS 05] The SANS Institute. The Twenty Most Critical Internet Security
Vulnerabilities (Updated) – The Experts Consensus.
http://www.sans.org/top20/ (2005).

[SEI 05a] Software Engineering Institute. Process Maturity Profile: CMMI
v1.1 SCAMPI v1.1 Class A Appraisal Results, 2005 Mid-Year
Update. Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, September 2005. http://www.sei.cmu.edu
/appraisal-program/profile/pdf/CMMI/2005sepCMMI.pdf

[SEI 05b] Software Engineering Institute. Process Maturity Profile Software
CMM 2005 Mid- Year Update. Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, September
2005.
http://www.sei.cmu.edu/appraisal-program/profile/pdf
/SW-CMM/2005sepSwCMM.pdf

CMU/SEI-2005-TN-024 25

[US-CERT 05] United States Computer Emergency Readiness Team. Technical
Cyber Security Alerts. http://www.us-cert.gov/cas/techalerts/
(2005).

[Wäyrynen 04] Wäyrynen, J.; Bodén, M.; & Boström, G. “Security Engineering and
eXtreme Programming: an Impossible Marriage?” Proceedings of
XP/Agile Universe 2004: 4th Conference on Extreme Programming
and Agile Methods, Calgary, Canada, August 15–18, 2004.
Germany: Springer-Verlag, 2004.

[Wikipedia 05] Wikipedia, The Free Encyclopedia. Definition of Fuzz testing.
http://en.wikipedia.org/wiki/Fuzz_testing (2005).

26 CMU/SEI-2005-TN-024

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

December 2005
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Secure Software Development Life Cycle Processes: A Technology
Scouting Report

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Noopur Davis
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2005-TN-024

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

As the use of the Internet and networked systems become more pervasive, the importance of developing
secure software increases. The purpose of this technical note is to present overview information about
existing processes, standards, life cycle models, frameworks, and methodologies that support or could
support secure software development. Where applicable and possible, some evaluation or judgment is
provided.

The target audience for this technical note includes software engineering process group (SEPG) members,
software developers, and managers seeking information about existing software development life cycle
(SDLC) processes that address security.

14. SUBJECT TERMS

CMM, CMMI, process, process area, process improvement, maturity,
maturity model, maturity profile, methodology, metric, secure system,
software development, software engineer, SW-CMM, test, TSP

15. NUMBER OF PAGES

38

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Secure Software Development Life Cycle Processes: A Technology Scouting Report
	Contents
	 List of Figures
	 List of Tables
	Acknowledgements
	Abstract
	1 Introduction
	2 Capability Maturity Models (CMMs)
	3 Additional Processes,Methodologies
	4 Summary
	Bibliography

