
Integrating the Quality Attribute

Workshop (QAW) and the

Attribute-Driven Design (ADD)

Method

Robert L. Nord
William G. Wood
Paul C. Clements

July 2004

Software Architecture Technology Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2004-TN-017

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2004 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2004-TN-017 i

Contents

Abstract ...vii

1 Introduction..1

2 A Need for Integrating the QAW and the ADD Method3
2.1 The QAW ..3

2.2 The ADD Method...5

2.3 Using the QAW and the ADD Method Together6

3 An Integrated QAW and ADD Method ...8
3.1 Tailoring the QAW ...8

3.2 Bridging the QAW and the ADD Method..10
3.2.1 Analyze the QAW Results ...10
3.2.2 Hold a Post-QAW Planning Workshop.....................................11
3.2.3 As Necessary, Transform the Elicited Scenarios So They’re

Useful for ADD...11
3.3 Tailoring the ADD Method..13

4 Reflections on Integrating the QAW and the ADD Method......................16
4.1 Aligning the QAW and the ADD Method ..16

4.2 Application to Small-Scale Systems ..16

4.3 Future Work ..17

5 Summary ..18

References...19

ii CMU/SEI-2004-TN-017

CMU/SEI-2004-TN-017 iii

List of Figures

Figure 1: Life-Cycle Activities of Architecture-Centric Development 2

Figure 2: QAW Inputs, Outputs, and Participants ... 4

Figure 3: ADD Inputs, Outputs, and Participants.. 5

iv CMU/SEI-2004-TN-017

CMU/SEI-2004-TN-017 v

List of Tables

Table 1: The Steps of the QAW .. 4

Table 2: The Steps of the ADD Method... 6

Table 3: Tailoring the QAW ... 8

Table 4: Tailoring the ADD Method ... 13

vi CMU/SEI-2004-TN-017

CMU/SEI-2004-TN-017 vii

Abstract

The Software Architecture Technology Initiative at the Carnegie Mellon Software
Engineering Institute (SEI) has developed a number of architecture-centric methods that are
currently in use. The initiative is now focusing on integrating these methods, as well as
building bridges between them and software development processes and software
architecture efforts outside the SEI, while continuing to refine existing methods and models.
The goal is to provide software architects with a comprehensive, end-to-end approach for
creating and using the right software architecture for the job at hand.

This technical note reports on a proposal to integrate the SEI Quality Attribute Workshop
(QAW) and the SEI Attribute-Driven Design (ADD) method. The QAW is a way to elicit and
articulate detailed quality attribute requirements for a system that an architecture must
support. ADD is an architectural design method that starts with statements of quality attribute
requirements and guides the architect through a series of design decisions that help to meet
those requirements. Integrating these methods involves tailoring the QAW to provide the
types of results needed by ADD and tailoring the ADD method to take full advantage of the
results provided by the QAW.

viii CMU/SEI-2004-TN-017

CMU/SEI-2004-TN-017 1

1 Introduction

The Software Architecture Technology (SAT) Initiative at the Carnegie Mellon Software
Engineering Institute (SEI) has developed a number of architecture-centric methods. The
Architecture Tradeoff Analysis Method (ATAM) helps a system’s stakeholder community
understand the consequences of architectural decisions with respect to the system’s quality
attribute requirements and business goals [Bass 03, Kazman 00]. The ATAM helps
stakeholders ask the right questions to discover potentially problematic architectural
decisions. The risks discovered from this process can then be made the focus of mitigation
activities.

As members of the SAT Initiative gained experience from conducting ATAM evaluations,
they developed methods that extend earlier into the software development life cycle. The SEI
Quality Attribute Workshop (QAW) provides a method for eliciting quality attribute
requirements [Barbacci 03]. The Attribute-Driven Design (ADD) method provides an
approach for defining a software architecture by basing the design process on the system’s
quality attribute requirements [Bachmann 00].

Members of the initiative also developed complementary evaluation methods. SEI Active
Reviews for Intermediate Designs (ARID) [Clements 02] are based on the ATAM. ARID
concentrates on whether the design being proposed is suitable for other parts of the
architecture that must use it. The SEI Cost Benefit Analysis Method (CBAM) is a method for
architecture-based economic analysis of software-intensive systems [Bass 03, Kazman 02]. It
can be used to help the system’s stakeholders choose architectural alternatives for enhancing
the system during the design or maintenance phases of the software development life cycle.

Members of the SAT Initiative started an effort to integrate the methods explicitly with each
other and to integrate them into an organization’s architecture-based software development
life cycle, building on the common heritage, set of concepts, and activities the methods share.
Previous reports showed how the architecture-centric methods can influence a wide variety of
activities throughout the software development life cycle and how the method’s activities can
be distributed across a generic software development life cycle [Kazman 03], how the ATAM
can be integrated with the CBAM [Nord 03], and how the architecture-centric methods are
integrated into the Rational Unified Process (RUP) [Kazman 04].

 Carnegie Mellon, Architecture Tradeoff Analysis Method, and ATAM are registered in the U.S.

Patent and Trademark Office by Carnegie Mellon University.

2 CMU/SEI-2004-TN-017

This report concentrates on the QAW and the ADD method to show how they can be
enhanced and integrated within a software development life-cycle process to help
organizations methodically design complex software-intensive systems. Such an architecture-
centric development life cycle would include the activities shown in Figure 1 [Bass 03]. The
integrated QAW/ADD elicits quality attribute scenarios to understand the architecturally
significant requirements and creates the software architecture.

Figure 1: Life-Cycle Activities of Architecture-Centric Development

In Section 2 of this report, we demonstrate the need for integrating the QAW and the ADD
method. In Section 3, we propose an integrated QAW/ADD method. In Section 4, we reflect
on the integration issues and note opportunities for further work.

Architecture-centric development involves iteratively

• creating the business case for the system

• understanding the requirements

• creating or selecting the software architecture

• documenting and communicating the software architecture

• analyzing or evaluating the software architecture

• implementing the system based on the software architecture

• ensuring that the implementation conforms to the software architecture

CMU/SEI-2004-TN-017 3

2 A Need for Integrating the QAW and the ADD Method

Assume that an organization is planning to develop a new system or evolving a system it has
already fielded. The business drivers and a high-level description of the system have been
documented. The organization needs help to understand the precise meaning of quality
attributessuch as modifiability, security, performance, and reliabilityin the context of the
system being built. The organization also has responsibility for system development and
needs help in designing an architecture that will enable the system to meet its quality goals.

This report is intended to help an architect or project manager meet these responsibilities
through the use of a single method that embodies both the QAW and the ADD method. We
are seeking to integrate the QAW and the ADD method, not merely append one to the other.
The benefits of such an integrated method would be the combination of otherwise duplicative
steps, more timely collection of necessary information, and more effective collection and use
of that information to achieve the desired architectural outcomes.

2.1 The QAW
The QAW is a facilitated method that engages a diverse group of system stakeholders early in
the life cycle to discover the driving quality attributes of a software-intensive system. The
QAW provides a way to identify important quality attributes and the scenarios associated
with them and to clarify system requirements before the software architecture has been
created. The QAW elicits, collects, and organizes software quality attribute requirements in
the form of scenarios. The results of the QAW are intended to be followed by an analysis and
planning activity to determine further steps, such as applying the ADD method.

Figure 2 provides a summary of the inputs, outputs, and participants of the QAW. This figure
is based on a functional modeling notation [IEEE 98] where inputs flow in from the left,
outputs flow out to the right, and the participants of the method are noted below. When we
refer to the QAW in this report, we’re referring specifically to the third edition of the QAW as
documented by Barbacci and associates [Barbacci 03]. Note that some of the suggestions in
this report will be incorporated in revisions to the QAW.

Table 1 shows the steps for the QAW.

4 CMU/SEI-2004-TN-017

Figure 2: QAW Inputs, Outputs, and Participants

Table 1: The Steps of the QAW

QAW Steps Description

Step 1 – QAW Presentation
and Introductions

QAW facilitators describe the motivation for the QAW and explain
each step of the method. Next, the facilitators introduce themselves
and the stakeholders do likewise, briefly stating their background,
their role in the organization, and their relationship to the system
being built.

Step 2 –
Business/Programmatic
Presentation

A stakeholder representing the business and/or programmatic
concerns presents the system’s business/programmatic context, high-
level functional requirements, constraints, and quality attribute
requirements.

Step 3 – Architectural Plan
Presentation

A technical stakeholder presents the system architectural plans
including (1) plans and strategies for how key
business/programmatic requirements will be satisfied; (2) key
technical requirements, risks, and constraints—such as mandated
operating systems, hardware, middleware, and standards—that will
drive architectural decisions; (3) existing context diagrams, high-
level system diagrams, and other written descriptions; (4)
operational and system architectures, and architectural frameworks,
tools, and architectural life-cycle processes being used; and (5) the
prototyping and engineering studies underway to mitigate known
risks.

Step 4 – Identification of
Architectural Drivers

The facilitators share their list of key architectural drivers that
include high-level requirements, business drivers, constraints, and
quality attributes.

Step 5 – Scenario
Brainstorming

The facilitators ask the stakeholders to brainstorm scenarios that are
operationally meaningful with respect to the stakeholders’ individual
roles.

Step 6 – Scenario
Consolidation

Similar scenarios are consolidated when reasonable.

QAW Business drivers
Architectural plan

Business goals
Scenarios
Scenario prioritization
Refined scenarios

Analysis team
Stakeholders

CMU/SEI-2004-TN-017 5

Table 1: The Steps of the QAW (cont.)

QAW Steps Description

Step 7 – Scenario
Prioritization

Stakeholders vote to establish the priorities of the scenarios.

Step 8 – Scenario Refinement The high-priority scenarios are refined in more detail. Facilitators
further elaborate each one, documenting the following: the six parts
of the scenario, the business/programmatic goals that are affected by
this scenario, the relevant quality attributes associated with this
scenario, and the questions and issues regarding the scenario.

2.2 The ADD Method
The ADD method defines a software architecture by basing the design process on the quality
attributes that the software must fulfill; thus, it can complete the functional candidate
architecture defined by the RUP. The ADD method documents a software architecture in a
number of views: most commonly, a module decomposition view, a concurrency view, and a
deployment view [Clements 03]. The ADD method depends on an understanding of the
system’s constraints and its functional and quality requirements. Figure 3 provides a
summary of the inputs, outputs, and participants of the ADD method. The ADD method is
targeted at software architects who develop the software architecture. Bass and colleagues
provide more details about the ADD method [Bass 03].

Table 2 shows the steps for the ADD method.

Figure 3: ADD Inputs, Outputs, and Participants

ADD
Decomposition
 of the architecture
Refined scenarios

Software Architect

Constraints
Functional requirements
Quality requirements

6 CMU/SEI-2004-TN-017

Table 2: The Steps of the ADD Method

ADD Steps Description

Step 1 – Choose the module to
decompose.

Use the whole system as the initial module to start ADD. All
required inputs for this module should be available (constraints,
functional requirements, and quality requirements).

Step 2 – Refine the module according to these steps:

a – Choose the architectural
drivers.

Choose the architectural drivers from the set of concrete quality
scenarios and functional requirements. This step determines what
is important for this decomposition.

b – Choose an architectural
pattern that satisfies the
architectural drivers.

Create or select the pattern based on the tactics that can be used to
achieve the drivers. Identify the child modules required to
implement the tactics.

c – Instantiate the modules
and allocate
functionality from the
uses cases using
multiple views.

Consider views from each of the three major groups of views
(module decomposition, concurrency, and deployment).

d – Define the interfaces of
the child modules.

The decomposition provides modules and constraints on the types
of module interactions. Document this information in the interface
documents for each module.

e – Verify and refine the use
cases and quality
scenarios, and make
them constraints for the
child modules.

This step verifies that nothing important was forgotten and
prepares the child modules for further decomposition or
implementation.

Step 3 – Repeat the steps above for the next module.

2.3 Using the QAW and the ADD Method Together
As shown in Figures 2 and 3, the QAW provides business goals and a collection of quality
attribute scenarios for the system that define the system’s quality requirements, whereas the
ADD method requires constraints, functional requirements, and quality requirements. The
quality requirements are expressed as quality attribute scenarios for the system. In addition,
the QAW is focused on eliciting information about the scenarios and quality attributes that
drive the system as determined by a diverse group of stakeholders, whereas the ADD method
is focused on using the QAW results as inputs for developing the software architecture by a
group of architects.

Note that the architectural drivers identified during the QAW are an initial collection based
on the facilitators’ experience in distilling what they heard from the business and architectural
plan presentations. The ADD method provides further guidance on refining the collection and
choosing those drivers that will contribute to the selection of a major architectural style or
pattern that will shape the architecture.

CMU/SEI-2004-TN-017 7

There is clearly a match between QAW outputs and ADD inputs. The QAWs conducted so far
have all been for large-scale software-intensive distributed systems of systems1 at an early
stage of their development. They have resulted in scenarios that address more system-
oriented issues, rather than software-oriented issues. Hence, the QAW results that address
system-oriented issues will need to be transformed before they can be used directly in the
ADD method. This transformation is discussed in Section 3.2.3.

1 Systems of systems are built from components that are large-scale systems in their own right.

Prominent examples include integrated air defense networks, the Internet, intelligent transport
systems, and enterprise information networks. Systems of systems should be distinguished from
large monolithic systems by the independence of their components, their evolutionary nature,
emergent behaviors, and a geographic extent that limits the interaction of their components to
information exchange [Maier 99].

8 CMU/SEI-2004-TN-017

3 An Integrated QAW and ADD Method

The integrated method is described in three portions: tailoring the QAW, bridging the QAW
and the ADD method, and tailoring the ADD method.

3.1 Tailoring the QAW
Table 3 shows the changes to the QAW that are required when it is integrated with the ADD
method. Terms used in the table are described in the text following the table. You may want
to skim the table first to get a general understanding of the approach before reading the text
and then return to the table for a summary of the approach. Steps not requiring changes are
not discussed.

Our goal is to build on the success of the QAW and thus preserve the steps and objectives of
the QAW, while at the same time tailoring its steps to optimize its integration with the ADD
method.

Table 3: Tailoring the QAW

QAW Steps Changes

Step 1 – QAW Presentation
and Introductions

None

Step 2 – Business/
Programmatic Presentation

The business plan must include a table mapping the business goals to
the quality attributes and a prioritization of this mapping.

Step 3 – Architectural Plan
Presentation

The architect includes a list of the major risks and design challenges
facing the system architects.

Step 4 – Identification of
Architectural Drivers

The table mapping the business goals to the quality attribute drivers
is expanded to include any new entries that arose during the
architectural plan presentation.

Step 5 – Scenario
Brainstorming

Scenarios are elicited that are software oriented and focused on the
architect’s design challenges as much as is reasonable; however,
experience has shown that many of the scenarios will be system
oriented. The facilitator ensures that the listed quality attributes are
well covered by the scenarios and that the quality attributes and
business goals associated with each scenario are captured.

Step 6 – Scenario
Consolidation

None

Step 7 – Scenario
Prioritization

After the voting, the architect “promotes” one of the lower level
scenarios into the group to be refined.

Step 8 – Scenario Refinement To aid ADD, the questions concentrate on the quality attribute
aspects of the scenario and any concerns that the stakeholders might
have in achieving the response called for in the scenario.

CMU/SEI-2004-TN-017 9

Step 2 – Business/Programmatic Presentation

The business plan presentation defines the business goals and includes a table showing how
the quality attributes map to the business goals. The business plan also prioritizes the table
entries. This mapping requires coordination among the engineers involved with business
planning, the system and software architects, and those developing the operational concepts.

Step 3 – Architectural Plan Presentation

The architect should discuss process challenges faced by the architecture team, such as the
following: the degrees of freedom that are still open in the system architecture and the
operational concepts, how to choose the appropriate software architecture views, the tool set
to be used to build the architecture, the process for evaluating the architecture, the
relationship to system and operational views, and studies and prototypes already underway
(and planned) to mitigate the identified risks.

Step 4 – Identification of Architectural Drivers

The facilitators share their list of key architectural drivers that they have assembled from
listening to the presentations so far. These drivers include high-level requirements, business
drivers, constraints, and quality attributes. The architect will also include a list of the
architectural challenges presented by the system, to give the stakeholders some concept of the
difficulties faced by the architecture team, and map each challenge to the associated quality
attribute concerns.

Step 5 – Scenario Brainstorming

The QAW participants will be able to see the tables showing the business goals versus quality
attribute concerns and the architectural challenges versus quality attribute concerns. As each
scenario is generated, the mappings that have been addressed by the scenario will be
recorded.

During this step, the facilitator will refer to the previously mentioned tables in an effort to
cover them reasonably with at least one scenario for each entry. Although scenarios in the
QAW are explicitly generated using a bottom-up brainstorming technique, the facilitator
implicitly relies on the notion of a utility tree to ensure coverage.

A one-page sheet will be passed out that explains the format of the scenarios and has some
blank space to allow the participants to prepare their scenarios.

10 CMU/SEI-2004-TN-017

Step 7 – Scenario Prioritization

Stakeholders are allowed to cast their votes in the manner of their choosing. When the voting
is completed, the architect (in consultation with the business person) will promote one of the
lower level scenarios to be refined.

Step 8 – Scenario Refinement

The collection of general scenarios [Bass 03] provides a way to characterize attributes and
guide scenario refinement. The general scenario tables will be passed out and used to fill in
the parts of the scenario in the refinement table; in doing so, the relevant general scenarios
are made system specific.

The participants will be encouraged to raise questions and issues associated with the
architectural challenges.

3.2 Bridging the QAW and the ADD Method
To prepare for applying the ADD method, we recommend performing the following
activities:

1. Analyze the QAW results.

2. Hold a post-QAW planning workshop.

3. As necessary, transform the elicited scenarios so they’re useful for ADD.

The results should be analyzed immediately after the QAW, and the post-QAW planning
workshop should follow that analysis. The transformation of the scenarios can occur during
the post-QAW planning workshop.

Other requirements analysis occurs in parallel with the QAW; for example, refinement of the
functional requirements into the form of use cases. Scenarios generated during the QAW
could lead to multiple use cases.

3.2.1 Analyze the QAW Results

At the completion of the QAW, information associated with the quality attributes has been
generated and prioritized, but it has not been put into context. The first step toward providing
this context is to analyze the QAW results. The suggested steps for this analysis are described
below:

1. Build a utility tree showing how the scenarios are organized according to the quality
attributes.

CMU/SEI-2004-TN-017 11

2. Build a table showing how the scenarios map to the business goals, and identify any
missing business goals that are obvious from the QAW results.

3. Build a table showing how the scenarios map to the architectural drivers, and identify
any missing architectural drivers.

4. Build a table showing the architectural life-cycle processes being used and how they
relate to the scenarios. Identify any missing processes implied by a scenario.

5. Develop a list of concerns resulting from the missing business goals, architectural
drivers, and architectural life-cycle processes. Note any concerns resulting from the lack
of scenario coverage in any of the business goals, architectural drivers, and processes
identified earlier.

6. Identify any potential studies, and prototype development needed to mitigate the risks
and concerns that have been identified.

3.2.2 Hold a Post-QAW Planning Workshop

After the QAW results have been analyzed, a post-QAW planning workshop can be held to
review the concerns expressed in the results analysis and determine what further actions can
be taken to assist in the ADD approach. Suggested activities for such a workshop are listed
below:

1. Review the concerns and classify them in some manner: for example, those that can be
dealt with in a cursory manner (e.g., by adding a new business goal), those that require
some further exploration (e.g., by writing appropriate white papers or doing feasibility
studies), and those that require extensive integration with outside agencies.

2. Determine if any of the lower priority scenarios need to be refined, and then refine them.

3. Perform flow downs of the scenarios (see Section 3.2.3).

3.2.3 As Necessary, Transform the Elicited Scenarios So They’re Useful for

ADD

Some scenarios from QAW may be useful directly in ADD. Others may need to be refined
and allocated to hardware, software, people, or data in the system architecture. The ADD
method can be used on the software-architecture portion of the system architecture.

The QAW stakeholders often express high-level scenarios of the following types:

12 CMU/SEI-2004-TN-017

• operational scenarios. These scenarios describe, for example, how a system of systems
responds to a stimulus while under a heavy workload. These scenarios are often at the
following levels: mission or business threads (stimulus to response); resource changes
such as operators, communications, sensors, and hardware and software components;
conditions under which the data integrity, data consistency, and security of access must
be maintained; interoperability between different releases of the system; or switching
from training mode to operational mode.

• life-cycle process scenarios. These scenarios are concerned largely with the life-cycle
processes involved with the system of systems. Life-cycle scenarios often describe
detecting and isolating software errors during operation and in integration testing,
building and releasing systems in blocks, installing new systems and upgrades in the
field, including commercial off-the-shelf (COTS) products developed from software
standards, or making modifications to the system to enhance its operation.

In many large-scale software-intensive systems, there is a significant body of existing
documents, such as the following: the system requirements document (SRD); the concept of
operations (CONOPS) document or operational views describing the CONOPS; system
scenarios describing the activities to be performed by the end users, the interrelationships
among the activities, and the relationships between these activities and individual systems;
and some appropriate system architectural views.

For example, a QAW scenario may not distinguish between what is done by operators and
what is done by the automation, especially where multiple operators are involved in the
scenario. In this case, the architect will have to review the existing documentation (such as
those documents listed above) and transform the original scenario into a group of overlapping
scenarios that combine to provide the original scenario. Some examples of such
transformations are given below:

• A system-specific quality scenario describes the operation between a sensor detecting an
event of interest and an actuator responding to the event, including a time deadline for the
response; however, it ignores the manual operations involved. The architect reviews the
other documentation and discovers that the scenario involves a number of operators at a
number of locations using different systems. The architect must then re-express this
scenario as a number of scenarios that can be used to develop the software architecture
for the interoperation between the systems, allocating timing budgets to each scenario to
satisfy the original timing deadline.

• A system-specific quality scenario describes an activity involving many (hundreds of)
nodes connected by a low bandwidth communication system. The software architect
knows enough from the scenario to separate out the software architectural decisions from
the system decisions and to build a software architectural fragment to satisfy the scenario.
However, the architect cannot verify that the scenario will be satisfied until a simulation
study is executed for the environmental workload included in the scenario. In this case,
he or she will probably have to work cooperatively with the system engineers.

CMU/SEI-2004-TN-017 13

• A 30-day quick update requirement is levied on the system to correct some inadvertent
behavior. The software architect must then describe how this requirement affects the
architecture, development, integration, test, and field-deployment organizations.

The ADD method has an activity (Step 2e) for refining use cases, constraints, and scenarios
that could be applicable here. Requirements and constraints flow from the module chosen to
decompose to its child modules. Quality scenarios also have to be refined and assigned to the
child modules. This is done in one of the following ways:

• A quality scenario may be completely satisfied by the decomposition without any
additional impact. It can then be marked as satisfied.

• A quality scenario may be satisfied by the current decomposition with constraints on
child modules.

• The decomposition may be neutral with respect to a quality scenario. This scenario
should be assigned to one of the child modules.

• A quality scenario may not be satisfied with the current decomposition. If the scenario is
important, the decomposition should be reconsidered. Otherwise, the rationale for the fact
that the decomposition does not support this scenario must be recorded. This occurrence
is usually the result of a tradeoff with other, perhaps higher priority, scenarios.

The Rational Unified Process for Systems Engineering (RUP SE) has a notion of use case
flow down that could be applicable here [Cantor 03].

3.3 Tailoring the ADD Method
Table 4 shows the steps for a tailored ADD method, as we envision it, that could be applied
when it is integrated with the QAW. The steps that are changed as a result of tailoring are
described in more detail after the table. Steps not requiring changes are not discussed.

Table 4: Tailoring the ADD Method

ADD Steps Changes

Step 1 – Choose the module to
decompose.

None

Step 2 – Refine the module according to these steps:

a – Choose the architectural
drivers.

This step is completed by the QAW and the Analyze the QAW
Results activities for the first iteration of the ADD method (where
the module chosen in Step 1 is the system).

b – Choose an architectural
pattern that satisfies the
architectural drivers.

The QAW begins the process of “type-checking” the scenarios.

14 CMU/SEI-2004-TN-017

Table 4: Tailoring the ADD Method (cont.)

ADD Steps Changes

c – Instantiate the modules
and allocate
functionality from the
uses cases using
multiple views.

None

d – Define the interfaces of
the child modules.

None

e – Verify and refine the use
cases and quality
scenarios, and make
them constraints for the
child modules.

None

Step 3 – Repeat the steps above for the next module.

Step 2a – Choose the architectural drivers.

An architecture is shaped by some collection of functional (e.g., training crews in flight
simulation), quality (e.g., high security), and business (e.g., product line) requirements. The
ADD method refers to these shaping requirements as architectural drivers.

The architectural drivers must be expressed ultimately as quality attribute scenarios for the
system.

ADD defines a three-step process for finding the drivers:

1. Identify the business goals with the highest priority.

2. Turn business goals into quality attribute scenarios of use cases (e.g., via construction of
a utility tree).

3. Choose the quality attribute scenarios with the most impact on the architecture. These
scenarios are the architectural drivers, and there should be fewer than 10.

The QAW-prioritized scenarios provide a pool of potential drivers from which to choose.
Making enhancements to the QAW to record marketers’ and architects’ voting narrows the
pool to those drivers that have the highest priority business goals and the most impact on the
architecture. For the first iteration of the ADD where the module chosen in Step 1 is the
system, this step is already completed by the QAW and the Analyze the QAW Results activity
to construct a utility tree.

CMU/SEI-2004-TN-017 15

Step 2b – Choose an architectural pattern that satisfies the architectural drivers.

Bachmann, Bass, and Klein [Bachmann 03] provide more details for this step. Scenarios are
“type-checked” by using general scenarios to fill in and identify the six parts of the concrete
scenario. This, in turn, helps identify the associated reasoning frameworks and later the
tactics.

Scenarios could be “type-checked” during the QAW refinement step. The general-scenario-
generation tables can be used to help fill in the concrete scenario. At the same time, the
general scenario can be generated (or, at least, the entries chosen from the table can be noted
to facilitate later generation of the general scenario) in preparation for this ADD step.

Associated tactics might also be identified during the QAW to help with the generation of
questions and issues.

16 CMU/SEI-2004-TN-017

4 Reflections on Integrating the QAW and the ADD

Method

4.1 Aligning the QAW and the ADD Method
To integrate the QAW and the ADD method, we used our understanding of their artifacts and
activities to align the two methods more closely.

The ADD method informs the QAW as described below:

• The information needed by the ADD method could constrain the QAW in terms of the
types of scenarios generated, the stakeholders invited, the questions or issues recorded in
the refinement template, and so forth.

• The notion of general scenarios was originally developed in the context of ADD.
Incorporating them into the QAW helps guide scenario refinement into six parts.

• Step 2e of the ADD method might be applied to refine the system scenarios that flow
from the QAW to the ADD method.

The QAW informs the ADD method as described below:

• An enhanced QAW can help guide or take the place of ADD Step 2a, in which the
architectural drivers are chosen. Mapping quality attributes to business goals is necessary
to support the construction of a utility tree before applying the ADD method.

• High-priority scenarios from the QAW inform the types of views that are selected, which
encourages designers to look at the difficult design problems first.

• In additional to quality requirements, the ADD method also takes constraints and
functional requirements as inputs. QAW scenarios could lead to use cases, which are
input into ADD as functional requirements. Issues and questions in refined scenarios that
are further refined into themes and suggestions could provide input into ADD as
constraints.

4.2 Application to Small-Scale Systems
The basic intent of the QAW is to first lay out the intent of the system (by presenting business
drivers and architectural drivers) and then to have the (10 to 25) diverse stakeholders of the
system generate (30 to 40) scenarios from their viewpoint, prioritize them, and finally refine
the (5 or so) high-priority scenarios further by capturing a number of questions and
statements about each one.

CMU/SEI-2004-TN-017 17

The key reason for requiring a workshop to generate and prioritize scenarios is the diversity
of the stakeholders. And such diversity almost always exists for large-scale systems.
However, for smaller scale systems, the stakeholder diversity may not be great, and the
architects may have sufficient experience to act as surrogate stakeholders. Hence, it may be
possible to achieve the same results as a QAW in a smaller scale setting by getting the design
team together in a room and performing the following activities:

1. Have the marketing representative present a few slides on the business goals.

2. Have the architect present a few slides on the architectural drivers, including the quality
attributes of concern.

3. Have the team members generate scenarios for the system and then prioritize them.

4. Finally, refine the high-priority scenarios.

Doing this would produce the same results as the QAW, which could then be used as input for
the ADD.

4.3 Future Work
Further work remains to be done to verify the benefits of our proposed integration approach
through pilot projects with customers. The goal of such projects is to provide tailored
architecture methods to help customers add architecture-based and quality-attribute-based
thinking to their planning and development efforts.

Further work should also be done in improving techniques such as scenario flow down,
bridging the boundary between system and software architectures, and extending the ADD
method to the systems-of-systems or enterprise level.

We have noted in the previous section where the QAW and the ADD method interact
seamlessly in the application to small-scale systems. QAW scenarios provide (directly or with
minimal processing) architectural drivers for the ADD method. Further work remains in
characterizing this problem set more precisely. This further work could put constraints on the
kinds of systems to which this integrated method is applied and how it is applied. Targeting
the QAW portion of the method to information needed by the ADD could influence the kinds
of scenarios that are generated to focus on those that (1) are more software oriented than
system oriented, (2) highlight major software design challenges, and (3) are used directly as
inputs to the ADD method without further processing.

18 CMU/SEI-2004-TN-017

5 Summary

This technical note reports on a proposal to integrate the QAW and the ADD method. The
QAW is a way to elicit and articulate detailed quality attribute requirements for a system that
an architecture must support. ADD is an architectural design method that starts with
statements of quality attribute requirements and guides the architect through a series of
design decisions that help to meet these requirements. As such, these two methods are good
candidates for method integration. The benefits of such an integrated method would be the
combination of otherwise duplicative steps, more timely collection of necessary information,
and more effective collection and use of that information to achieve the desired architectural
outcomes.

The integration of different methods and techniques with each other or with other
development life cycles is possible and will be addressed in future reports. Investigating such
potential combinations is part of a larger effort to understand how to

• integrate the approaches

• package the methods’ activities into the software development life cycles of typical
organizations

• understand the appropriate fit with other architectural processes and technologies

• connect with other business, management, or acquisition processes that can help enforce
software architecture practices throughout the life cycle

• make the methods more usable to software practitioners

CMU/SEI-2004-TN-017 19

References

URLs valid as of the publication date of this document

[Bachmann 00] Bachmann, F.; Bass, L.; Chastek, G.; Donohoe, P.; & Peruzzi, F. The
Architecture Based Design Method (CMU/SEI-2000-TR-001,
ADA375851). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2000. http://www.sei.cmu.edu
/publications/documents/00.reports/00tr001.html

[Bachmann 03] Bachmann, F.; Bass, L.; & Klein, M. Deriving Architectural
Tactics: A Step Toward Methodical Architectural Design
(CMU/SEI-2003-TR-004, ADA413644). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2003.
http://www.sei.cmu.edu/publications/documents/03.reports
/03tr004.html

[Barbacci 03] Barbacci, M. R.; Ellison, R.; Lattanze, A. J.; Stafford, J. A.;
Weinstock, C. B.; & Wood, W. G. Quality Attribute Workshops
(QAWs), Third Edition (CMU/SEI-2003-TR-016, ADA418428).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2003. http://www.sei.cmu.edu/publications
/documents/03.reports/03tr016.html

[Bass 03] Bass, L.; Clements, P.; & Kazman, R. Software Architecture in
Practice, Second Edition. Boston, MA: Addison-Wesley, 2003.

[Cantor 03] Cantor, M. “Rational Unified Process for Systems Engineering.”
Rational edge: the e-zine for the rational community (September
2003). http://www-106.ibm.com/developerworks/rational
/library/content/RationalEdge/sep03/m_systemarch_mc.pdf

[Clements 02] Clements, P.; Kazman, R.; & Klein, M. Evaluating Software
Architectures: Methods and Case Studies. Boston, MA: Addison-
Wesley, 2002.

20 CMU/SEI-2004-TN-017

[Clements 03] Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little,
R.; Nord, R.; & Stafford, J. Documenting Software Architectures:
Views and Beyond. Boston, MA: Addison-Wesley, 2003.

[IEEE 98] Institute of Electrical and Electronics Engineers. IEEE Standard for
Functional Modeling Language (IEEE Std 1320.1-1998). New
York, NY: IEEE Computer Society, 1998 (ISBN 0-738-10340-3).

[Kazman 00] Kazman, R.; Klein, M.; & Clements, P. ATAM: Method for
Architecture Evaluation (CMU/SEI-2000-TR-004, ADA382629).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2000. http://www.sei.cmu.edu/publications/documents
/00.reports/00tr004.html

[Kazman 02] Kazman, R.; Asundi, J.; & Klein, M. Making Architecture Design
Decisions: An Economic Approach (CMU/SEI-2002-TR-035,
ADA408740). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2002. http://www.sei.cmu.edu
/publications/documents/02.reports/02tr035.html

[Kazman 03] Kazman, R.; Nord, R. L.; & Klein, M. A Life-Cycle View of
Architecture Analysis and Design Methods (CMU/SEI-2003-TN-
026, ADA421679). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon Institute, 2003. http://www.sei.cmu.edu
/publications/documents/03.reports/03tn026.html

[Kazman 04] Kazman, R.; Kruchten, P.; Nord, R. L.; Tomayko, J. E. Integrating
Software-Architecture-Centric Methods into the Rational Unified
Process (CMU/SEI-2004-TR-011). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2004.
http://www.sei.cmu.edu/publications/documents/04.reports
/04tr011.html

[Maier 99] Maier, M. W. “Architecting Principles for Systems-of-Systems.”
Systems Engineering 1, 4 (Feb. 1999): 267-284.

[Nord 03] Nord, R. L.; Barbacci, M. R.; Clements, P.; Kazman, R.; Klein, M.;
O’Brien, L.; & Tomayko, J. E. Integrating the Architecture Tradeoff
Analysis Method (ATAM) with the Cost Benefit Analysis Method
(CBAM) (CMU/SEI-2003-TN-038, ADA421615). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University 2003.
http://www.sei.cmu.edu/publications/documents/03.reports
/03tn038.html

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

July 2004

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Integrating the Quality Attribute Workshop (QAW) and the Attribute-
Driven Design (ADD) Method

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

Robert L. Nord, William G. Wood, Paul C. Clements
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2004-TN-017

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The Software Architecture Technology Initiative at the Carnegie Mellon Software Engineering Institute (SEI)
has developed a number of architecture-centric methods that are currently in use. The initiative is now
focusing on integrating these methods, as well as building bridges between them and software-development
processes and software-architecture efforts outside the SEI, while continuing to refine existing methods and
models. The goal is to provide software architects with a comprehensive, end-to-end approach for creating
and using the right software architecture for the job at hand.

This technical note reports on a proposal to integrate the SEI Quality Attribute Workshop (QAW) and the SEI
Attribute-Driven Design (ADD) method. The QAW is a way to elicit and articulate detailed quality attribute
requirements for a system, which the architecture must support. ADD is an architectural design method that
starts with statements of quality attribute requirements and guides the architect through a series of design
decisions that help to meet those requirements. Integrating these methods involves tailoring the QAW to
provide the types of results needed by ADD and tailoring the ADD method to take full advantage of the results
provided by the QAW.

14. SUBJECT TERMS

architecture-centric methods, Architecture Tradeoff Analysis Method,
ATAM, Attribute-Driven Design method, ADD method, integrated
QAW/ADD, Quality Attribute Workshop, QAW

15. NUMBER OF PAGES

30

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Integrating the Quality Attribute Workshop (QAW) and the Attribute-Driven Design (ADD) Method
	Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 A Need for Integrating the QAW and the ADD Method
	3 An Integrated QAW and ADD Method
	4 Reflections on Integrating the QAW and the ADD Method
	5 Summary
	References

