
Embedded System Architecture

Analysis Using SAE AADL

Peter H. Feiler (SEI)
David P. Gluch (Embry-Riddle Aeronautic University/SEI)
John J. Hudak (SEI)
Bruce A. Lewis (U.S. Army AMRDEC)

June 2004

Performance-Critical Systems Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2004-TN-XXX

Technical Note
CMU/SEI-2004-TN-005

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2004 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2004-TN-005 i

Contents

Abstract..v

1 Introduction ..1

2 AADL Overview ..3

3 The Avionics System..5

4 Preemptive Scheduling and Port Communication.....................................8
4.1 Shared Data and Fixed Execution Order ...8

4.2 Use of Preemptive Fixed-Priority Scheduling...9

4.3 Port-Based Communication...11

4.4 Observations on the Use of the AADL ...13

5 To Poll or Not to Poll: Event Processing ..15
5.1 Event Polling ...15

5.2 Event Processing by Sporadic Server..16

5.3 Observations on the Use of the AADL ...17

6 Hidden Timing Side Effects of Partition Scheduling................................18
6.1 Inter-Partition Communication Within a Processor...............................18

6.2 Inter-Partition Communication Across Processors19

6.3 Observations on the Use of the AADL ...20

7 End-to-End Latency..21
7.1 End-to-End Latency Contributors...21

7.2 Managing End-to-End Latency ..23

7.3 Observations on the Use of the AADL ...25

8 Redundancy in Application Architectures..26
8.1 Redundancy Described In Design Documents.....................................26

8.2 An Application Architecture Perspective of Redundancy......................26

8.3 Modeling the Redundancy Protocol ...28

8.4 A Runtime View of Fault-Tolerant Systems ..29

ii CMU/SEI-2004-TN-005

8.5 Observations on the Use of the AADL... 30

9 Summary .. 31

References... 33

CMU/SEI-2004-TN-005 iii

List of Figures

Figure 1: AADL Graphical Icons ...4

Figure 2: Typical Documentation of Avionics System Architecture..........................6

Figure 3: A Cyclic Executive Within a Partition ...8

Figure 4: Data Flow in Form of Read and Write Access ...9

Figure 5: Preemptive Scheduling with Priority Assignment10

Figure 6: Port and Connection Based AADL Model of the Flight Manager............12

Figure 7: Partition Schedule and Communication...18

Figure 8: Cumulative Latency in Periodic Tasks for a) Immediate and b) Delayed
Data Communication...22

Figure 9: AADL Representation of Avionics System Redundancy27

Figure 10: Standby Sparing, Active Master-Passive Slave......................................28

Figure 11: Hot Standby Master-Slave Mode Logic ...29

iv CMU/SEI-2004-TN-005

CMU/SEI-2004-TN-005 v

Abstract

The emerging Society of Automotive Engineers Architecture Analysis and Design Language
(AADL) standard is an architecture modeling language for real-time, fault-tolerant, scalable,
embedded, multiprocessor systems. It enables the development and predictable integration of
highly evolvable systems as well as analysis of existing systems. It supports early and
repeated analyses of a system’s architecture with respect to performance-critical properties
through an extendable notation, a tool framework, and precisely defined semantics.

This report discusses the role and benefits of using the AADL in the process of analyzing an
existing avionics system. The AADL is used to describe architecture patterns in the system
being analyzed and to identify potentially systemic issues in the system. Findings related to
timing, scheduling, and fault tolerance and the benefits of the use of the AADL are examined.
The report also highlights the benefits of working with architecture abstractions that are
reflected in the AADL notation, in particular the separation of architecture design decisions
from implementation decisions. Such a lightweight architecture analysis is typically
followed by a full-scale AADL model of the system with required and actual timing,
performance, and reliability figures, and its analysis to determine whether the requirements
are met.

vi CMU/SEI-2004-TN-005

CMU/SEI-2004-TN-005 1

1 Introduction

The Society of Automotive Engineers Architecture Analysis and Design Language (AADL)
has been developed for embedded real-time systems that have challenging resource (size,
weight, power) constraints, requirements for real-time response, fault tolerance, and
specialized input/output hardware, and that must be certified to high levels of assurance
[Feiler 03]. Its development is based on experiences in using MetaH, an embedded systems
architecture notation and tool set prototyped by Honeywell under DARPA funding [Feiler
00]. Intended fields of application are avionics systems, flight management systems, space
applications, automotive applications such as engine and power train control systems,
robotics applications, industrial process control equipment, and certain medical devices.

The language is used to describe the structure of an embedded real-time system as an
assembly of software and hardware components. The language supports specification of
functional component interfaces (such as incoming and outgoing data streams) and non-
functional aspects of components (such as sampling rate, response time, degree of
redundancy, fault characteristics, space and time partitioning to address fault containment, as
well as safety and certification properties). The language describes the composition of and
interaction between application components (such as how sensor data streams are processed
by filters and controllers before being fed to actuators), and how these application
components are assigned to processors in the execution platform.

The AADL is an emerging standard that was developed under the auspices of the
International Society for Automotive Engineers (SAE) in their Avionics Systems Division
(ASD) [SAE AADL 04]. It was balloted and accepted in May 2004. This standardization
effort is led by Bruce Lewis, U.S. Army Munitions and Chemical Command (AMCOM);
SAE AS2C Subcommittee Chair; Peter Feiler, Software Engineering Institute (SEI), editor
and lead author; Steve Vestal, Honeywell, coauthor; Ed Colbert, University of Southern
California (USC) and Absolute Software, author of the Unified Modeling Language profile
for the AADL; and Joyce Tokar, Pyrrhus Software, author of the Programming Language
Compliance Annex. Other participants in the standardization effort range from U.S.
organizations such as Rockwell, Lockheed Martin, Boeing, Raytheon, Smith Industries,
General Dynamics, National Institute of Standards Technology (NIST), U.S. Army and Navy
to European partners such as Airbus Industries, European Space Agency, British Ministry of
Defence (MOD), Axlog, Dassault Aviation, TNI-Valiosys, and European Aeronautic Defence
and Space Company (EADS).

2 CMU/SEI-2004-TN-005

CMU/SEI-2004-TN-005 3

2 AADL Overview

The AADL is a modeling notation with both a textual and graphical representation. It
provides modeling concepts to describe the runtime architecture of application systems in
terms of concurrent tasks and their interactions as well as their mapping onto an execution
platform. The AADL offers threads as schedulable units of concurrent execution, processes to
represent virtual address spaces whose boundaries are enforced at runtime, and systems to
support hierarchical organization of threads and processes. The AADL supports modeling of
the execution platform in terms of processors that schedule and execute threads; memory that
stores code and data; devices such as sensors, actuators, and cameras that interface with the
external environment; and buses that interconnect processors, memory, and devices.

Threads can execute at given time intervals (periodic), triggered by events (aperiodic) and
paced to limit the execution rate (sporadic), by remote subprogram calls (server), or as
background tasks. These thread characteristics are defined as part of the thread declaration.
Application components interact with other application components and devices exclusively
through defined interfaces. A component interface consists of ports for unidirectional flow of
data (data ports for unqueued state data, and event data ports for queued message data) and events
(event ports) between threads and to and from devices; synchronous subprogram calls between
threads, possibly located on different processors; and access to data that is concurrency
controlled. Data port connections can be specified to perform mid-frame (immediate)
communication within the same dispatch period, or phase delayed (delayed) communication
for data to be available after the deadline of the originating thread. These semantics ensure
deterministic transfer of data streams between periodic threads—an important characteristic
for embedded control systems. Deterministic transfer means that a thread always receives
data with the same time delay; if the receiving thread is over- or under-sampling the data
stream, it always does so at a constant rate.

AADL components can have multiple modes. A mode represents a particular configuration of
subcomponents and interconnections. Different modes may represent different operational
configurations. Mode transitions specify event arrival conditions that cause mode switches to
occur.

Application components have properties that specify timing requirements such as period,
worst-case execution time, deadlines, space requirements, arrival rates, and characteristics of
data and event streams. In addition, properties identify the following: the source code and
data that implement the application component being modeled in the AADL; and constraints
for binding threads to processors, and source code and data onto memory. The constraints can
limit binding to specific processor or memory types, for example, to a processor with DSP
support, as well as prevent collocation of application components to support fault tolerance.

4 CMU/SEI-2004-TN-005

The AADL can be used to model and analyze existing systems and to design and predictably
integrate new systems. AADL models can be used for both analysis and construction throughout
the life of a system. The AADL is extensible in that new properties and specification notations
(e.g., constraint notation, reliability model), can be added (via language Annexes) to
accommodate analyses not directly supported by the core AADL. Further details regarding the
AADL can be obtained by referring to the AADL standard [SAE AADL 03].

The AADL also has a graphical notation to facilitate a visual presentation of the system
hierarchy and communication topology. The graphical symbols used in this document are
summarized in Figure 1. Some graphical symbols include an icon to indicate that its
semantics differ from a similar graphical symbol in the Unified Modeling Language (UML).
Some symbols are decorated with additional icons such as circles to represent component
properties such as the period of a thread.

Figure 1: AADL Graphical Icons

The AADL can be used in two ways: lightweight analysis of architecture patterns identified
in real systems to discover potentially systemic issues, and full-scale analysis of a complete
system model with fully quantified system property values. In this technical note we focus
on the use of the AADL as an effective tool for initial analysis of embedded systems for
potential problem spots. We do so by focusing on different aspects of the embedded system
architecture and identifying potentially unanticipated side effects:

• the migration from a statically scheduled system to a preemptively scheduled system to
improve resource utilization and create a flexible architecture

• the impact of this change in task scheduling on task communication via shared variables

• the processing of system events by polling

• the scheduling of system partitions as virtual processors, management of end-to-end
latency

• the modeling of redundancy in a fault-tolerant architecture

We will examine each of these issues in the next sections.

System

Process Thread Thread Group

Data Subprogram

Bus Device Processor Memory

CMU/SEI-2004-TN-005 5

3 The Avionics System

The Carnegie Mellon Software Engineering Institute (SEI) applied the AADL to analyze an

existing avionics system design. An avionics system typically consists of a collection of
hardware and software that controls the flight, navigation, radio communication, and in the
case of military aircraft, the targeting and weapons systems. Early generations of digital
avionics systems consisted of embedded controllers executing on specialized hardware. As
general-purpose processors became faster, controllers were implemented with application
software executing with a static timeline and shared variable architecture. Use of shared
variables minimized the memory footprint and resulted in efficient communication between
components within a controller. This approach led to an efficient implementation with
deterministic execution behavior, but resulted in a software runtime architecture that was
carefully crafted and difficult to change.

As avionics systems became more sophisticated, controller information had to be exchanged
between avionics subsystems, and the systems have been continuously evolving. On the
hardware side, high-speed bus architectures have been introduced but weapons systems and
other devices still depend on the slower 1553 bus. This has led to a hybrid execution platform
with some processors connected only to the high-speed bus, while others act as gateways to
legacy hardware (see Figure 2 below).

On the software side, this led to the need for better resource utilization1 of the available
processors, and for a more flexible and distributed software runtime architecture. Preemptive
fixed-priority scheduling and rate-monotonic scheduling analysis (RMA) have been
introduced by commercial vendors [Klein 93]. This improves resource utilization and offers
more flexibility in adding and re-allocating tasks across processors while using design time
analysis to ensure that critical real-time deadlines are met. Modularization of the application
and port-based communication has facilitated distribution of application components.

Embedded avionics software systems use partitions as virtual machines to achieve space and
time partitioning [ARINC 653]. A partition provides runtime address space boundary
enforcement; that is, code executing in one partition cannot inadvertently overwrite data or
code in another partition. Such runtime enforcement of the address space is found in both
Portable Operating Systems Interface (POSIX) processes and in the AADL process concept.
A partition provides time partitioning by guaranteeing each partition a specified amount of
real processor time. A faulty thread in one partition that exceeds its worst-case execution time

 Carnegie Mellon is registered in the U.S. Patent and Trademark Office.
1 Better resource utilization means being able to execute a larger number of tasks while continuing to

meet all deadlines.

6 CMU/SEI-2004-TN-005

cannot affect the execution of threads in other partitions. This is accomplished by scheduling
the partitions on a static timeline. In other words, within a given time frame each partition
sharing a processor will be given the processor for a specified amount of time. Each partition
can then allocate this time to its tasks (called processes in Aeronautical Radio Incorporated
[ARINC] 653 and threads in POSIX and AADL) according to its scheduling protocol. Tasks
(a set of routines that execute within a partition) communicate across partitions through
messages. This permits tasks to be relocated across processors for load-balancing purposes.

High speed bus

1553 bus

DM

WAM

PCM

DM

WAM

DM

WAM

PCM

DM

WAM

FMCM

WMSA 1553

MSM

High speed bus

1553 bus

Copilot
MFD Processors

Pilot

Mission

processors

GPS Nav Radio

MSM FM

SA

CM

1553 WM

High speed bus

1553 bus

DM

WAM

PCM

DM

WAM

DM

WAM

PCM

DM

WAM

FMCM

WMSA 1553

MSM

High speed bus

1553 bus

Copilot
MFD Processors

Pilot

Mission

processors

GPS GPS Nav Radio Nav Radio

MSM FM

SA

CM

1553 WM

Figure 2: Typical Documentation of Avionics System Architecture

A typical diagram of such a software architecture mapped onto the hardware is shown in
Figure 2. The figure shows two multifunction displays (MFDs), one for the pilot and one for
the copilot. The MFDs provide menu-based access and data entry for different avionics
subsystems and display warnings and alerts. Each MFD has a display processor that can host
application functionality as well. Each application subsystem is implemented as a separate
partition. The following application subsystems are shown as hosted by the MFD processors:
MFD display manager (DM), warning and annunciation manager (WAM), page content and
menu manager (PCM), and flight director (FD). The mission processors host the
communication manager (CM), weapons manager (WM), situational awareness (SA), flight
manager (FM), mission sensor manager (MSM), and the software interface to the MIL-STD-
1553B communication bus (1553) and the devices hosted by it.

These types of ‘architecture’ drawings tend to raise more questions than they answer. For
example, are the four DMs redundant or do they represent separate functionality? What are
the delays (processing and communication) of certain signal paths? When a pilot selects a
display to show engine-operating characteristics, how is the command processed and from
where are the data values obtained? The answers to these types of questions are typically

CMU/SEI-2004-TN-005 7

embedded in textual descriptions throughout the design document. We will explore these
questions in the following analysis sections based on an AADL model of the avionics system.

8 CMU/SEI-2004-TN-005

4 Preemptive Scheduling and Port Communication

In the following discussion, we will focus on a flight manager subsystem executing within
one of the partitions. This subsystem consists of several components that process signal data
in a certain order, with some components operating at 20Hz while other components operate
at lower rates.

The focus of this section is the use of preemptive fixed-priority scheduling to achieve better
resource utilization and a more flexible system design. In addition, port communication
between threads within a partition is used to achieve more modifiable and configurable
system designs while maintaining predictable and efficient execution and communication.

4.1 Shared Data and Fixed Execution Order
In many cases legacy implementations of embedded systems are simply augmented with a
logical thread that performs communication with other partitions via send and receive
routines, sending data from the common data area and placing the received data into the
common data area.

Figure 3: A Cyclic Executive Within a Partition

Communication with other partitions is shown in Figure 3 as a periodic input/output (I/O)
thread. Communication between logical threads within the partition employs a common data
area for two reasons: (1) the legacy code can be used unchanged; (2) this form of
communication is highly efficient as no data is moved or copied between threads.

CMU/SEI-2004-TN-005 9

The execution order of the tasks is determined by the call order in the cyclic executive.
Lower rate tasks are called at a lower frequency. The call order has been carefully crafted to
achieve the desired flow order of signal data through the tasks. Figure 3 shows the call order
visually by placement of the tasks from top left to bottom right.

Data flow information typically has to be inferred from the call order and a description of the
data elements accessed by different components. This information is often located in different
parts of the design document. Figure 4 shows each data element explicitly and indicates
which tasks read from it or write to it. This makes data flows more apparent. For example,
Guidance Processing passes data to Flight Plan Processing and also receives data from Flight
Plan Processing. Given the call order, data is passed to Flight Plan Processing in one
processing step (minor frame) and received in the next processing step.

Figure 4: Data Flow in Form of Read and Write Access

In a cyclic executive, tasks are invoked in sequence and must complete execution before the
end of the minor frame. The execution of one task cannot preempt the execution of other
tasks. As a result, a task always sees data from another task either from the previous minor
frame or from the current minor frame; that is, data communication is deterministic.

4.2 Use of Preemptive Fixed-Priority Scheduling
Preemptive fixed-priority scheduling is offered as a solution for improving resource
utilization of processors and to increase the flexibility of evolving embedded systems while
ensuring that deadlines are met. In particular, if used with RMA, a system design can be
analyzed at design time to determine whether all deadlines will be met despite the fact that
tasks can preempt each other.

A naïve way of introducing preemptive scheduling into this example is to turn each task into
a separate thread (shown as a dashed parallelogram in Figure 5). To ensure the desired flow

10 CMU/SEI-2004-TN-005

of data between components, priorities are assigned to the threads according to the desired
execution order. The result is in priority inversion; that is, a lower rate thread has a higher
priority than a higher rate thread. For example, the lower rate Integrated Navigation task is
given a higher priority than the higher rate Guidance Processing task. This priority inversion
does not occur if all threads can complete their execution in a minor frame; that is, they have
a pre-period deadline corresponding to the highest rate thread. In that case deadline-
monotonic analysis, a variant of RMA, ensures that deadlines will be met. A consequence of
this assumption is that no thread is preempted and thread execution is the same as that of a
static timeline. In other words, assigning priorities to enforce an execution order incurs the
runtime overhead of preemptive scheduling without obtaining the benefits of improved
resource utilization and flexibility.

Figure 5: Preemptive Scheduling with Priority Assignment

A better way is to assign priorities according to task rates (rate-monotonic scheduling). In
that case, tasks can potentially be preempted. For example, the Integrated Navigation task in
the example may be preempted by a new dispatch of the Guidance Processing task. This can
occur if, as a result of a code change, a component execution time increases.

However, preemption of a thread that communicates with other threads through a common
data area introduces two potential problems: communication of consistent data and non-
deterministic transfer of data. For example, the preempted thread may be in the middle of
reading several data elements when it is preempted by a thread that updates those data
elements. As a result, the preempted thread may have read the old value of one data element
and the new value of another data element; that is, it may operate on inconsistent data. This
problem can be addressed by ensuring that a thread reads or writes all data as an
uninterruptible operation or by setting a mutex lock.

CMU/SEI-2004-TN-005 11

Non-deterministic data transfer occurs if a receiving thread sometimes receives old data
values and sometimes receives new data values. This can occur if a lower rate thread
sometimes is preempted by a receiver thread before it writes the new data values, and
sometimes after it writes the new data values. This means that the receiving thread sometimes
receives data within the same minor frame and sometimes it is phase delayed. In some cases,
the recipient is insensitive to such non-determinism. In other cases the recipient compensates
for the non-determinism; for example, to a controller it may look like noise in the sensor data
stream. Finally, the non-determinism could result in undesirable consequences; for example,
if the recipient displays a target position, the non-determinism could cause the displayed
position to oscillate, blurring the display.

4.3 Port-Based Communication
Development of embedded systems applications, whose components interact through port
communication, is becoming accepted practice. The AADL promotes port-based
communication between all application threads, both within and across partitions.
Furthermore, it distinguishes between queued message communication and unqueued state
communication. Finally, the AADL distinguishes between immediate (mid-frame) and
delayed (phase-delayed) communication of state data between periodic threads in a
deterministic manner. Such communication semantics can also be found in real-time OS
standards such as OSEK [OSEK 03]. In this section, we model communication within the
flight manager partition through ports and discuss the issue of efficient communication
implementations.

AADL data ports represent unqueued transfer of state data with the following semantics.
From the perspective of application code, AADL ports are data variables. An out data port of
one thread can be connected to an in data port of another thread. For periodic threads the
connection can be declared to be delayed or immediate. In the case of a delayed connection,
the value of a recipient’s in port is set at dispatch time to be the most recent value made
available from the sender’s out port. This is the out port value at the most recent deadline of
the out port thread. In other words, the received data value is phase delayed by the period of
the receiving thread. In the case of an immediate connection, the transfer semantics are those
of mid-frame communication. If both threads are dispatched at the same time, the thread with
the out port executes first. At its completion, the data is transferred to the in port. Although
dispatched at the same time, the execution of the receiving thread is delayed until the
completion of the sending thread. Once a thread executes its in port, values do not change,
even if the thread with the connected out port provides a new data value. This ensures
deterministic data communication between periodic threads.

The AADL-based model of the flight manager is shown in Figure 6. All data communication
is modeled by ports (black triangles) and connections; there is no need for shared data and
coordinating concurrent access through locks. No task priorities have been specified by the

12 CMU/SEI-2004-TN-005

modeler. They are determined according to the scheduling protocol; in the case of rate
monotonic scheduling, according to the thread periods.

Figure 6: Port and Connection Based AADL Model of the Flight Manager

The model indicates which connections are immediate (solid line) and which are delayed
(solid line with crossing double line). Cyclic sequences of immediate connections are not
permitted since they cannot be achieved. Such cycles can be detected by an analysis tool. If
the application developer documented an acceptable phase delay for a task (in a port
property) the degree of actual phase delay can be calculated and compared against the
acceptable value (see Section 7.1).

Note that the periodic I/O task is not represented explicitly in the model. The periodic I/O
task achieves two objectives: (1) it groups several data items together and sends them as a
composite data item (that is, the values of several output ports are sent together); (2) it always
sends the data phase delayed at the start of the next period. In the AADL, these two concerns
are modeled separately. Time-consistent data transfer of multiple out data ports is modeled
by an aggregate data port (shown as hollow triangle), and phase delay as delayed connection.
The application developer now has the choice of transferring the data immediately or
delayed, by choosing the appropriate connection symbol.

The implementation of port-based data communication can be as efficient as the use of a
common data area. An AADL-based tool can determine whether two communicating threads
can preempt each other by examining the life span of the ports involved in a connection for
each thread dispatch. If the life span of the two ports does not overlap, the same memory
location can be used for both the out port and the in port. For example, the immediate
connection semantics ensure that, for two connected threads with the same period, the thread
with the out port executes first and the thread with the in port executes second; moreover, the
first thread does not execute again until the second thread has completed.

CMU/SEI-2004-TN-005 13

A thread takes data from an in data port, performs some computation, and places the result in
an out data port. Normally, the in data port and the out data port are represented by two
separate source code variables. In the AADL, a thread can declare a port to be an in-out port,
represented by a single source code variable. If that is the case, then a sequence of several
threads connected by immediate connections can be optimized to a single source code
variable.

In the case of the flight manager example, there is a sequence of immediate connections that
includes several 20 Hz threads and the 10 Hz Guidance Navigation thread. The semantics of
immediate connections implies that a lower rate thread followed by a higher rate thread in the
communication sequence must complete before the deadline of the higher rate thread for it to
meet its deadline. As we observed in the previous section, this leads to a cyclic executive
execution pattern. We can increase resource utilization by not requiring immediate
connections between the threads—in particular between a lower rate thread and a higher rate
thread. In the context of the AADL-based model, this can be easily analyzed by turning
immediate connections into delayed connections. On one hand, scheduling analysis can
determine any gain in resource utilization. On the other hand, the developers of succeeding
components in the sequence can examine whether their component can accommodate the
additional phase delay. Changing an immediate connection to a delayed connection affects
the life span of ports. A tool can determine whether an overlap in life span has been
introduced that requires the use of separate port variables.

4.4 Observations on the Use of the AADL
The AADL separates runtime architecture design decisions from implementation decisions,
and application component development from architecture design. At the same time, it
precisely specifies temporal properties of both task execution and communication in such a
way that application developers (control engineers) can develop their components against
documented assumptions regarding sampling rates, phase delay of data, and processing rates.
The semantics of AADL periodic thread execution and data port connections ensure
deterministic and consistent data communication. At the same time, implementation of task
dispatching and communication can be delegated to tools. Such tools can generate task
dispatch code and communication code that correctly implement the intended temporal
semantics. In addition, these tools can produce highly efficient implementations by taking
advantage of information and analysis results from the AADL model.

Separation of architecture design from implementation concerns allows a software system
engineer to investigate alternatives that improve the performance characteristics of an
embedded system in cooperation with control engineers. One example is control engineers
analyzing the sensitivity of their controllers to variations in phase delay, while software
system engineers identify improvements in resource utilization. Another example is
sensitivity analysis by control engineers to changes in sampling and execution rates, while

14 CMU/SEI-2004-TN-005

system engineers investigate the impact of rate changes on schedulability and resource
utilization.

CMU/SEI-2004-TN-005 15

5 To Poll or Not to Poll: Event Processing

Many real-time system designs rely on fixed periodic execution schemes to ensure
determinism. However, most application domains are replete with aperiodic behaviors. The
cockpit is full of switches that result in state changes. Furthermore, the MFD provides a
programmable set of ‘soft’ switches and selectors. The sources of these events are pilot
actions such as changing navigation radio channel settings or calling up a new status display
by menu selection. A common technique to service these events is by periodic threads
monitoring state data and taking action when the state changes. This polling technique is used
for two reasons: this is how the service was provided in cyclic executive implementations,
and polling maintains the periodicity of threads to be scheduled. Since events potentially can
arrive at non-deterministic rates, event-based processing can potentially generate a processing
load high enough to result in missed deadlines for periodic sensor data processing tasks.

In this section, we examine the polling technique for event processing and discuss event-
processing alternatives that can be explicitly modeled in the AADL.

5.1 Event Polling
In the avionics system example, there are a number of tasks whose purpose is to identify
events and take action when they occur. One example is polling for the pilot to change the
channel selection of the navigation radio (NavRadio). This is done by a 20Hz task that
observes the switch and dial state of the physical NavRadio interface. This state change is
then translated into a request sent to the actual NavRadio device that is attached to the 1553
bus. The polling rate is chosen to be high enough that no state change, (e.g., a flip of the
switch) is missed. A second example is the task responding to menu selections on the MFD. A
DM task polls the MFD touch screen state at a rate of 20Hz. This rate was chosen to keep
response latency to a minimum. When a menu selection is detected by the polling DM task,
information is sent to the PCM. The PCM determines which command was selected and
contacts the appropriate subsystem to provide the appropriate page content. Once the content
is received, it is built into a page to be displayed by DM. At that point, the pilot can select the
next menu item.

Polling maintains a deterministic execution pattern with a well-defined reaction latency.
Polling eliminates system overload due to a surge of events. In addition, polling rates can be
adjusted to accommodate minimum state change intervals and to ensure minimum reaction
latency. Polling is also used when input hardware devices do not produce interrupts in the
system.

16 CMU/SEI-2004-TN-005

Polling also raises issues. In the example system, the NavRadio thread executes in the flight
manager partition. The NavRadio task was considered to be less important than some of the
periodic signal data processing tasks; therefore it was assigned a lower priority (see Figure 5).
This resulted in additional priority inversion.

Polling can also result in significant inefficiencies in resource utilization. For example,
consider the 20Hz task monitoring menu actions. If we treat the task as a bona fide 20Hz
periodic thread to determine schedulability of the system, we reserve processor time
corresponding to its worst-case execution time, that is, the execution time it takes to process
an actual event. However, the menu event can only occur at a maximum rate of 4Hz since
processing a menu event involves five inter-partition communication steps. This means that
only 20% of the processor resource allocated to this task is utilized. Similarly, we may have
as many as 50 threads monitoring various switches and dials in the cockpit. However, a pilot
cannot activate all switches simultaneously.

5.2 Event Processing by Sporadic Server
The AADL provides aperiodic and sporadic threads and event or event data port connections
for modeling event-based processing. Aperiodic threads are dispatched by the arrival of
events (e.g., lack a bounded minimum interval between subsequent instances). If the thread
is active on event arrival, the event is queued and the thread is redispatched immediately
upon completion of the previous dispatch execution. Sporadic thread dispatches are also
triggered by event arrival, but the dispatch rate has a specified lower bound. This means that
when events arrive in rapid succession, their processing is paced to a specified maximum rate
and events are temporarily queued to meet the maximum dispatch rate requirement. This
limits the potential resource requirements of event-driven threads.

Schedulability of periodic threads with co-existing event-driven threads can be determined in
two ways: 1) treatment of aperiodic threads as periodic threads, and 2) use of a sporadic
server scheduling scheme. The event-driven threads can be treated as periodic threads with a
period that corresponds to the minimum interarrival time of their events. However, if the
event arrival rate is stochastic with spikes in arrivals, the resulting schedule reserves
resources for event processing as if event spike conditions are the norm. However, in many
cases event processing has a bounded response time requirement that does not represent a
hard deadline.

The sporadic server-scheduling scheme has been introduced and is supported by AADL to
improve resource utilization for event-driven threads. A sporadic server handles aperiodic and
sporadic thread execution [Klein 93]. With respect to co-existing periodic threads, the
sporadic server is treated as another periodic thread and RMA ensures that all deadlines are
met. Aperiodic and sporadic threads only execute when the processor is allocated to the
sporadic server; thus, they do not affect the schedulability assurance of the periodic threads.
The sporadic server has a scheduling policy for servicing these event-driven threads to

CMU/SEI-2004-TN-005 17

minimize response time. A sporadic server can be integrated into the system scheduler or
implemented at the application level. Resource utilization for event-driven threads can be
further improved without affecting the schedulability of co-existing periodic threads by the
use of a slack-stealing scheduling technique [Binns 97].

In the avionics example, we can specify the NavRadio thread to be a sporadic thread. We can
bound its dispatch rate to the shortest time it takes to process a NavRadio command. For
example, querying the current channel setting requires the NavRadio thread to send the
request to the device on the 1553 bus and wait for a response. This command latency can be
determined from a flow specification in the AADL model. Thus, a realistic rate of command
events for NavRadio may be much less than 20Hz. Furthermore, if rate monotonic scheduling
is used the thread priority is determined by the thread period; thus, a potential cause of
priority inversion is eliminated.

A sporadic server can handle event-driven threads that are dispatched by different event
streams. Earlier we made the observation that some event streams cannot occur at the same
time. For example, the pilot can flip only a certain number of switches at any one time.
Furthermore, the operational mode of the system may limit the number of subsystems that are
active at any one time and that require event-driven interaction. Operational modes and active
subsystem configurations are modeled by AADL modes. Based on mode information we can
determine realistic processing load requirements for a sporadic server and scale its resource
allocation accordingly.

5.3 Observations on the Use of the AADL
Polling has been used as an approach to handle event processing in a way that maintains the
predictability of periodic thread execution. High polling rates increase responsiveness to
events, but they reserve unused processor resource to the polling thread, and as a result
reduce the number of threads that can be accommodated on a processor while maintaining
schedulability.

The AADL provides explicit support for modeling event-driven systems through aperiodic
and sporadic threads. It supports scheduling techniques that maintain the schedulability of co-
existing periodic threads. Its modeling support for flow specification and operational modes
permits a system engineer to determine realistic event rates based on operational context and
considerably improve processor utilization.

18 CMU/SEI-2004-TN-005

6 Hidden Timing Side Effects of Partition Scheduling

Partitions are placed in a particular order on the static partition scheduling timeline of a
processor. Partitions may have to be rearranged on the timeline or reassigned to other
processors to accommodate new tasks and partitions and to balance the load across
processors. Such rearrangement of partitions is a delicate undertaking and may have hidden
side effects. This section focuses on the effects of such rearrangements on inter-partition
communications within and across processors.

6.1 Inter-Partition Communication Within a Processor
Let us first examine the issue for inter-partition communication within a processor. We have a
static timeline with partition A executing before partition B for the same time frame, followed
by the execution of partition A in the next time frame, as shown in Figure 7. Partition A has
two threads t1 and t2 that can be executed in either order. Partition B similarly has two tasks
t3 and t4. If a thread t1 in partition A sends data to a thread t3 in partition B, the data is
transferred mid-frame, that is, within the same time frame (T0-T1). If thread t4 sends data to
thread t3, the data arrives at t3 at the next time frame, that is, phase delayed (shown as an
explicitly marked delayed connection). In other words, the partition order determines whether
the flow of data occurs within the same timeframe. This is similar to the task scheduling
scenario in Section 4, where the task order affects flow of data through shared variables.

t1

t2

Partition A

t3

t4

Partition B t4

t0 t1 t2

t1
t2

t3

Partition A Partition B Partition A Partition B

t2
t3 t4

t1

Execution time

Tasks

t1

t2

Partition A

t3

t4

Partition B t4

t0 t1 t2

t1
t2

t3

Partition A Partition B Partition A Partition B

t2
t3 t4

t1

Execution time

Tasks

Figure 7: Partition Schedule and Communication

Modeling inter-partition communication in the AADL helps uncover a potentially undesirable
side effect of rearranging the partition schedule. In the AADL, communication of state data is
modeled by data ports and immediate or delayed connections. In other words, the desired
timing characteristics of a connection are explicitly specified. These are the timing
characteristics assumed by an application developer of a component executing in a task.
These timing characteristics place a constraint on the possible partition orderings on the static
partition execution timeline. Thus, a system engineer rearranging the partition timeline is
made aware of such conflicts within the AADL description.

CMU/SEI-2004-TN-005 19

In the case of an immediate connection, the recipient partition must be placed after the
sending partition. Note that there cannot be immediate connections from any thread in
partition B to any thread in partition A. This can be easily detected through analysis of the
AADL model. In the case of a delayed connection, the AADL semantics ensure that data will
be transferred with a phase delay, independent of the execution ordering of the partitions.
This means that for delayed connections, either the sender partition must be placed after the
recipient partition, or the runtime system must double buffer the data to achieve the delay.
Note that if a design is over-constrained, no partition order can satisfy the specified
communication delay characteristics.

Both the application engineer and the system engineer can contribute to relaxing the
constraints on partition ordering. The application engineer can design the system to use only
delayed inter-partition communication. This is effectively the case in the system design of
Figure 5, where the periodic I/O task performs all inter-partition communication at the
beginning of partition execution. An application developer can also specify that a component
is insensitive to (a certain variation in) phase delay, that is, that the connection could be either
immediate or delayed, if the receiving component can handle variation in phase delay. The
system engineer can provide an implementation of delayed inter-partition communication by
transferring data just before a partition dispatch as part of the runtime system functionality,
thus relieving the application developer from repeatedly implementing the periodic I/O task.

6.2 Inter-Partition Communication Across Processors
If we have a partitioned system that is distributed across multiple processors, the alignment
of the static partition timelines on those processors determines whether communication is
immediate or phase delayed. An AADL model of the application system will specify the
desired communication timing characteristics, thereby placing constraints on the ordering of
tasks on partitions across all processors. Techniques for relaxing the constraints on a partition
apply on the assumption that the system is synchronous, that is, that the processors operate on
a single global clock.

Processors in such a system may be connected via an aperiodic bus with data transferred
immediately (with a well-defined maximum communication time), or via a periodic bus with
data transferred at a rate determined by the bus itself. A periodic bus samples the data stream
to be transferred and introduces a phase delay determined by the bus rate. This means that all
connections that are bound to the bus must be delayed connections. In other words, only
partitions with delayed data port connections can be placed on different processors that are
connected physically by a periodic bus. This can be checked by analyzing the AADL model.

In a time-triggered architecture (TTA), the bus is periodic and drives the scheduling of tasks
on different processors [TTA 03]. Thus, it acts as a global clock that manages any clock drift
of individual processors. In that case, one can attempt to align the schedule of partitions
across processors under AADL’s immediate connection constraints. Again, the AADL model

20 CMU/SEI-2004-TN-005

permits quick identification of over constraints due to immediate connections, for example,
identification of immediate connections between two independent pairs of threads in two
different partitions.

If a distributed system is asynchronous, that is, if each processor operates on a local clock,
clock drift can occur. Two partitions with an immediate connection on different processors
may have overlapping execution times and the ordering may change over time. In other
words, their execution times relative to each other may vary over time, resulting in a varying
sampling phase delay for the recipient. A periodic I/O task solution as discussed in Section 4
does not eliminate the non-determinism in phase delay due to clock drift. However, it does
address the issue of time-consistent transfer of aggregate data, that is, the transfer of data as a
single unit that is consistent with respect to the execution of multiple sending threads in a
given partition. As mentioned earlier, the AADL provides an aggregate data port for this
purpose.

6.3 Observations on the Use of the AADL
The ordering of partitions in a partition schedule can potentially affect the timing
characteristics of connections. AADL models with immediate and delayed connections
explicitly document the desired timing characteristics of data transfer. They act as constraints
on the placement of partitions on their static timeline. This allows us to determine whether a
feasible partition ordering exists. The constraints can be relaxed by the

• AADL runtime system’s supporting delayed connections, independent of partition
scheduling order

• application developer’s investigating the

- impact of a change of immediate connection requirements to delayed connection
requirements

- sensitivity of application components to variation in phase delay

The aggregate data port concept in the AADL contributes to addressing asynchronous
distributed system issues by providing time-consistent data transfer.

CMU/SEI-2004-TN-005 21

7 End-to-End Latency

The avionics system has a number of flows, namely, signal streams that require periodic
processing and aperiodic command processing flows such as changing the NavRadio
channel. A critical requirement for these flows is to meet the maximum latency requirements.
This requires end-to-end latency analysis. This end-to-end latency analysis can be based on

• deadline and worst-case execution time of individual steps in the flow executed by
threads

• worst-case latency specified for the transfer of information from one step to the next

We can separately determine whether

• threads meet their deadline given their worst-case execution times for a given processor
binding

• the bus can schedule the transfer of data for those connections that must communicate via
the bus within their transfer latency limits

In this section we focus on end-to-end latency analysis on the assumption that the thread
execution and data transfer performance properties have been validated.

Worst-case latency of a flow is effectively the cumulative latency along the path of a flow,
that is, latency due to execution (competition for execution resources), communication
(competition for the bus as resource), and sampling or pacing (delay due to dispatch delay
and/or queuing delay). This can be based on the maximum execution latency and maximum
communication latency figures. We can also consider average case end-to-end latency for
those flows where it is acceptable.

7.1 End-to-End Latency Contributors
When determining end-to-end latency we distinguish between flows of unqueued data, such
as signal streams communicated through data ports, and flows of queued data, such as
commands sent as messages through event data ports.

Data streams through data ports can be processed by periodic threads or by event-driven
threads. In the case of periodic threads, the data port connection between two succeeding
processing steps may be immediate or delayed. If we have a sequence of periodic threads
with immediate connections, the maximum latency of this sequence is determined by the
deadline of the last thread in the sequence. Consider Figure 8a, next page. The top illustration

22 CMU/SEI-2004-TN-005

shows the AADL representation of a set of periodic threads interacting by communicating a
data variable from one to the other. For this case, assume that each component is mapped to
its own thread of execution and that the execution time of any task is its worst-case execution
time (WCET).

 �������������������	�
����
�
����	����� 1�� 2�� 3�� m,

 with their request periods of T1 , T2, T3….. Tm ,

 and associated deadlines of d1, d2, d3…dm

 and their execution-times being C1, C2, C3, ….Cm

 the latency (L) can be computed as ∑
=

=
m

n
nCL

1

.

Figure 8b shows the AADL representation for delayed communication, and underneath it is
the graphical representation showing the effects of sampling delay. The end-to-end latency
for a delayed set of connections can be expressed as

 ()∑
=

++=
m

n
nnT dsdL

2
1 ,

 where s is the sampling time.

data written by here is intended to be
used by here

t

Thread
sequence

1 2 m 1 2 m

1

2

mC1

C2

Cm

t

1

2

mC1

C2

Cm

Immediate data connection Delayed data connection

d1 d2 d3 dm d1 d2 d3 dm

1

2

mC1

C2

Cm

t0t0 t1 t1 t2

1
2

data written by here is intended to be
used by here

1
2

data written by here is intended to be
used by here

t

Thread
sequence

11 2 m 11 2 m

1

2

mC1

C2

Cm

t

1

2

mC1

C2

Cm

Immediate data connection Delayed data connection

d1 d2 d3 dm d1 d2 d3 dm

1

2

mC1

C2

Cm

t0t0 t1 t1 t2

1
2

data written by here is intended to be
used by here

1
2

Figure 8: Cumulative Latency in Periodic Tasks for a) Immediate and b) Delayed
 Data Communication

If we have a delayed connection in a flow sequence through periodic threads, the recipient
thread of the delayed connection samples that data stream at its period. It may extend the
latency thus far determined to the next period; that is, it introduces a sampling latency based
on its period. The latency in this case would be computed as follows:

CMU/SEI-2004-TN-005 23

)mod(11
1

nnn

m

n
n dddCL −−

=

−+= ∑

 where dn and dn-1 are the deadlines of the sampling task
 and the task prior to the sampling task.

If we have event-driven threads in the sequence processing unqueued data, they contribute to
the latency with their deadlines. In other words, if a periodic or event-driven thread passes
data to its successor via a data port and triggers the execution of the successor with its
completion, the successor thread has until its deadline to produce its output.

Thus far we have determined the logical end-to-end latency, that is, the end-to-end latency
imposed by the application system architecture. This architecture can be modeled in the
AADL with immediate and delayed connections, as well as flow specifications, to indicate
the flow path from a source component to a destination component. When this architecture is
bound to an execution platform, we may encounter additional contributors to the end-to-end
latency. In Section 6.1 we identified partition ordering as a potential contributor, and in
Section 6.2 we identified the periodic bus as a contributor.

If we have queued communication, we have to take waiting times in the queue into account.
In the AADL, port queues are bounded by a specified size. This allows us to calculate the
worst-case waiting time based on the processing deadline.

For queued communication it is more typical to determine average response times for flow
paths. In that case the flow path can be mapped into a queuing model with statistical arrival
rates and execution times, and averages can be determined through queuing analysis.

Recently, analysis approaches have emerged that limit (to an arbitrary precision) the
probability of threads missing deadlines even if their inter-arrival times and execution times
are stochastic. One such technique is known as real-time queuing theory [Lehoczky 96]. A
small number of missed deadlines may be acceptable to successor steps in a flow path, since
they already are accommodating incomplete data streams, for example, missing sensor
readings due to intermittent problems. Such stream characteristics and the ability to
accommodate them can be recorded in an AADL model through an extended set of
properties.

7.2 Managing End-to-End Latency
When dealing with flows there are two major concerns: adjusting the end-to-end latency to
meet requirements, and understanding the interaction between multiple flows, in particular at
their merge points. In this section we examine both.

24 CMU/SEI-2004-TN-005

When actual end-to-end latency does not meet the requirements, a typical response is to ask
application developers to make their code run more efficiently. However, this may be futile
because certain latency contributors are inherent in the system or application architecture and
are insensitive to a reduction in actual execution time by a thread. For example, consider
output that is to be communicated over a periodic bus. Having a source thread execute faster
to output a little earlier will not result in improvement unless the change crosses a period
boundary of the bus sampling. Similarly, a periodic thread receiving data through a data port
connection does not receive the data earlier if the sending thread is also periodic, since the
data transfer semantics in that case are defined by the AADL to be deterministic (see also
Section 4.3).

The representation of an application architecture in the AADL, with timing characteristics for
both threads and connections and an explicit specification of flows, allows us to quickly
identify the key contributors to end-to-end latency. In the previous sections, we have
encouraged the consideration of delayed connections between threads to improve processor
utilization and reduce constraints on partition scheduling order. These are decisions that can
be revisited to reduce end-to-end latency. We may also eliminate sampling latencies if
delayed connections can be turned into immediate connections. We can examine latency
contributors due to the binding of the application system to the execution platform. For
example, we can consider placing processing steps in a critical flow on the same processor.
We can examine latency contributors due to allocation of application components into
partitions. For example, we can consider collocating two sequential processing steps in the
same partition.

A key issue with multiple flows is the interaction of their latency characteristics. If we have a
periodic thread receiving data from an aperiodic thread, the actual completion time of the
sending thread relative to the dispatch of the receiving periodic thread determines which
value is accessible to the receiving thread. Variation in actual completion time may result in
either the old or the new value being accessible; that is, data latency may non-
deterministically vary by a period. This potential non-determinism can be identified through
analysis and recorded as a property in the AADL model. Note that the semantics of
immediate and delayed data port connections have been defined in the AADL such that
neither immediate nor delayed data port communication between periodic threads introduces
latency non-determinism.

Non-determinism in latency can result in potentially undesirable consequences. Section 4.2
discussed the example of an oscillating target position resulting in a blurred display due to the
fact that the amount of phase delay (i.e., latency) varied. In general, whenever two data
streams merge and one data stream has non-deterministic latency, there is a potential
problem. In actual systems, the merge point is often a controller. In that case, any oscillation
observed by the control engineer may be perceived as noise in the sensor data, for which the
control engineer may compensate through adjustments in the controller.

CMU/SEI-2004-TN-005 25

7.3 Observations on the Use of the AADL
An AADL model specifies timing characteristics for both the execution of threads and the
transfer of data between threads. The AADL supports the specification of end-to-end flows as
well as flow specifications through individual components as part of their interface
specification. As a result, the worst-case end-to-end latency of an end-to-end flow specified
for a system can be determined in terms of the expected worst-case latency specified as part
of the flow specification of each subsystem. In particular, this permits end-to-end latency
analysis early in development to identify potential problem spots when subsystem
implementations may not yet be completed. As the implementation of the system is refined,
the latency analysis results can become less conservative to reflect the full implementation.

26 CMU/SEI-2004-TN-005

8 Redundancy in Application Architectures

Many embedded real-time systems have a requirement for high dependability. Dependability
is the ability of a system to continue to produce the desired service to the user when the
system is exposed to undesirable conditions [LaPrie 85]. One method to increase computer
systems’ dependability is through replication of hardware, software, or both. Critical
hardware/software elements (or even complete systems) are replicated, to be brought into
service when required. The AADL contains constructs that allow the developer to clearly
represent and subsequently model the redundant artifacts at various levels of abstraction. In
this section, we focus on the dependability aspects of a system and how general fault-tolerant
approaches can be supported by the AADL.

8.1 Redundancy Described In Design Documents

In Figure 2, multiple instances of hardware and software are shown with little or no
indication as to the intended functional redundancy. This results in speculation about the
intended behavior of the system under fault conditions. Such information tends to be spread
throughout the design document. For example, there are four MFD processors, four DMs,
and four WAMs. Are they one operational unit with three spares, two operational units each
with its own spare, or four fully functional operational units? What is the mechanism by
which failures are detected? What is the mechanism by which failover is achieved? Does
each replicated unit perform failover switching separately, or are groups of replicated tasks
switched together? What data is necessary, if any, for state space preservation? What are the
data sources that feed the redundant entities? Answers to these types of questions could not
be ascertained from the architectural drawings. Reading through software design
documentation uncovered some useful information, but not enough to completely model the
system completely. It is in this setting that the AADL abstractions help guide us to a clear
understanding of the fault-tolerant aspects of the system.

8.2 An Application Architecture Perspective of Redundancy

Analysis of this architecture from a dependability perspective begins with understanding
what is being replicated. Having been provided with architecture drawings that intermix both
hardware and software redundancy issues (Figure 2) one needs to sort out the intentions of
the designers by asking exactly what functionality is to be redundant in the application

CMU/SEI-2004-TN-005 27

system and in the execution platform, and what the events are that cause the redundant
components to become active.

Through detailed review of some of the related system design documents and through
discussion with system engineers, we were able to determine the following important aspects
of the system (see Figure 9):

• In a normal operational mode the four MFDs and their processors are fully functional
units providing services to the pilot and copilot independently. In a solo operational
mode, they act as redundant pairs of systems in that either the pilot or the copilot can
perform flight duties with his/her accessible MFD pair. Each of the MFDs has a
separate DM with its own state. This is represented by four instances of DM.

• The PCM supplies each of the four DMs with page content independently (shown by
separate port connections), while the WAM supplies all four DMs with the same set
of alerts (fan-out from a single port).

• The WAM is a single functional unit with four replicated copies, and the PCM has
two replicated copies (indicated by an appropriate redundancy property shown as 4X
and 2X in the graphical view).

• The mission-oriented subsystems are dual redundant; their redundancy is managed in
groups of three (shown by grouping them into a system marked with 2X). The FD is
managed as a dual redundant unit by itself.

• All subsystems supply the WAM with alerts and the PCM with page content to be
prepared for display. This is described by using the port group construct (shown as
half circles), which reduces the amount of connection clutter at higher levels of the
system architecture hierarchy.

Figure 9: AADL Representation of Avionics System Redundancy

28 CMU/SEI-2004-TN-005

8.3 Modeling the Redundancy Protocol
Redundancy for fault tolerance involves the replication of hardware, software, or both. Where
and what to replicate, the fault-detection mechanisms, and the control mechanisms to invoke
the redundant entities are fundamental issues addressed within systems design. There are
some common architectural approaches to redundancy. One approach is standby sparing (also
referred to as dynamic redundancy, peer standby). In this fault-tolerant approach, one system
is operating (e.g., in control) and the other units are spares, identically replicated and in some
form of standby (e.g., hot, cold), ready to be switched into service when an unrecoverable
error occurs. This is the design intention of the example that has been discussed thus far.
Given that there are copies of software, this question follows: What is the operational
scenario for failover? Detecting that a system in control has failed is a key problem with a
number of known solutions (periodic tests, self-checks, watchdog timer, etc.). These
techniques rely on events or data state changes that can be translated into an event to enable
the switch to the spare. When the fault detection and switch over is carried out in the
controlling (i.e., active) system and control is passed to a designated (passive) spare, this
approach is termed master-slave. At a high level of abstraction, one is interested in the events
that trigger execution of the spare.

We use the AADL mode concept to model alternative fault-tolerant system configurations.
Figure 10 shows the replicated subsystem PCM as PCM.rep1 and PCM.rep2 contained in
PCM, which takes on the role of SS1 (Figure 9). In master mode (shown on the left),
PCM.rep1 is active, receives input, and provides output. PCM.rep2 (the slave copy) is not
active and does not receive input nor produce output (shown in grey). In Slave mode (shown
on the right), the opposite is the case.

Figure 10: Standby Sparing, Active Master-Passive Slave

Figure 11 illustrates a hot-standby master-slave pattern of a stateful application component.
In this case both copies of the component are supplied with input and both process the data.
However, the output of only one copy is made available to the component output. The state of
the component is modeled with the data component construct and is shown as exchanged
between the components. This exchange can be specified to occur while operating in a mode,
or on a mode transition. The figure also shows an Observer thread that receives the output
from both copies and decides whether to operate in master or slave mode. The data is
specified to be received by the observer thread at the next period. If a mode switch is
necessary, it requests any necessary mode change by raising an appropriate event through the
respective event out port (shown as a double arrow head). This event is routed to the

CMU/SEI-2004-TN-005 29

appropriate mode transition in the mode state transition diagram. If the event arrives at an
outgoing transition of the current mode, a mode switch is initiated.

Figure 11: Hot Standby Master-Slave Mode Logic

Note that in Figure 9 we have abstracted the notions of application component redundancy
into a set of properties. They indicate the degree of redundancy, the form of redundancy, and
the desired redundancy protocol. Examples of the form of redundancy are replication as
shown in the example, functional redundancy in the form of N-version programming
[Avizienis 85], and analytic redundancy through functionally differing variants [Seto 98]. In
this section we have shown how the chosen redundancy protocol can be modeled in the
AADL.

8.4 A Runtime View of Fault-Tolerant Systems

Functional and analytic redundancy to address software faults can be achieved by executing
the different copies on the same processor. However, addressing hardware faults by
replication requires different copies to be located on different processors and memories. The
AADL provides a set of properties that specify binding constraints of application components
to execution platform components. These constraints can be in the form of limiting binding to
certain processor or memory types and they can specify whether two components can be
collocated.

In our sample system, the binding constraints specify that DM should be bound to a display
processor for it to have local physical access to the display device. Similarly, the constraints
specify that the 1553 subsystem must be located on a mission processor to have local
physical access to the 1553 bus. To achieve effective fault tolerance we also specify that the
redundant copies of the various replicated systems cannot be collocated. In the case of the
two groups of mission-oriented subsystems, this constraint is specified for the aggregate
system.

30 CMU/SEI-2004-TN-005

The AADL standard provides an error model extension that supports the description of a
stochastic concurrent process reliability model through fault event rates. This model is
transformed into a Markov chain for reliability analysis.

8.5 Observations on the Use of the AADL
The AADL allows the aggregation of application and execution platform components into a
system hierarchy. Properties can be associated with components to specify the degree and
form of desired redundancy. Redundancy protocols can be modeled in the AADL utilizing
modes, mode transitions, and routing of events that reflect detected faults to appropriate
mode transitions. Binding constraints address collocation restrictions of replicated
components. Error models support stochastic modeling of fault occurrences for reliability
analysis.

CMU/SEI-2004-TN-005 31

9 Summary

In this technical note, we have analyzed an existing avionics system to show use of the SAE
AADL, an emerging international standard for modeling the system architecture of embedded
real-time systems. The AADL focuses on modeling task and communication architectures by
modeling application system architectures as threads, processes, and aggregates thereof, and
by modeling their interactions as port connections, synchronous subprogram calls, or
concurrency-controlled access to shared data. An application system architecture is then
mapped onto an execution platform to support analysis of runtime system properties such as
schedulability and reliability.

In the process of applying the AADL in the analysis of an existing avionics system, we were
led to modeling the system so that implementation decisions were separated from architecture
decisions. In particular, we were able to model the system interactions purely in the form of
port communication, although the actual system is implemented with communication through
shared variables. The use of the AADL abstractions allowed us to quickly identify potential
issues with the shared variable communication solution within partitions.

The AADL model and its support for characterizing timing for both threads and connections
allowed us to establish a framework for negotiating tradeoffs in resource demand between the
application developer (typically, a control engineer) and the system engineer who is
responsible for integrating the application components into an operational system. The
characterization of connections as immediate and delayed also allowed us to identify issues
with respect to partition ordering on the static partition scheduling timeline and permitted us
to perform end-to-end latency analysis effectively.

Finally, the use of the AADL modeling capability allowed us to describe the redundancy
aspects of the system architecture and to address fault tolerance concisely. By focusing on
separation of concerns, we were able to describe the application system perspective, the
realization of the chosen redundancy protocol, and the mapping onto the execution platform
as three views.

32 CMU/SEI-2004-TN-005

CMU/SEI-2004-TN-005 33

References

URLs are accurate as of the publication date of this document.

[SAE AADL 03] Society of Automotive Engineers (SAE) Avionics Systems Division (ASD)
AS-2C Subcommittee. Avionics Architecture Description Language
Standard, Draft v0.99. Warrendale, PA: SAE, May 2004.

[SAE AADL 04] Society of Automotive Engineers. “The SAE Architecture Analysis &
Design Language Standard Information Website.” http://www.aadl.info/
(2004).

[ARINC 653] Aeronautical Radio Inc. “Avionics Application Software Standard
Interface,” ARINC Specification 653. Annapolis, MD: Airlines Electronic
Engineering Committee, 1997.

[Avizienis 85] Avizienis, A. “The N-Version Approach to Fault Tolerant Software.” IEEE
Transactions on Software Engineering, SE-11,12 (1985):1491-1501.

[Binns 97] Binns, Pam. “Incremental Rate Monotonic Scheduling for Improved
Control System Performance.” 3rd IEEE Real-Time Technology and
Applications Symposium. Montreal Canada, June 9-11, 1997. New York,
NY: IEEE Publishing, 1997.

[Feiler 00] Feiler, Peter; Lewis, Bruce; &Vestal, Steve. Improving Predictability in
Embedded Real-time Systems (CMU/SEI-2000-SR-01, ADA387262).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2000. http://www.sei.cmu.edu/publications/documents
/00.reports/00sr011.html

[Feiler 03] Feiler, Peter; Lewis, Bruce; & Vestal, Steve. “The SAE AADL Standard: A
Basis for Model-Based Architecture-Driven Embedded Systems
Engineering.” Workshop on Model-Driven Embedded Systems, Real-Time
Application Systems (RTAS) Conference. Washington, D.C., May 2003.
See publications at http://www.aadl.info.

34 CMU/SEI-2004-TN-005

[Klein 93] Klein, Mark H.; Ralya, Thomas; Pollak, Bill; Obenza, Ray; & Gonzalez
Harbour, Michael. A Practitioner’s Handbook for Real-Time Analysis:
Guide to Rate Monotonic Analysis for Real-Time Systems. New York, NY:
Kluwer Academic Publishers, 1993.

[LaPrie 85] LaPrie, J.-C. “Dependable Computing and Fault Tolerance: Concepts and
Terminology,” 2-11. Proceedings of the 15th International Symposium on
Fault-Tolerant Computing (FTCS-15). Ann Arbor, Michigan, 1985. New
York, NY: IEEE Publishing, 1985.

[Lehoczky 96] Lehoczky, J.P. “Realtime Queueing Theory,” Proceedings of the 17th
IEEE Realtime Systems Symposium. Washington, D.C., Dec 4-6, 1996.
New York, NY: IEEE Computer Society, 1996.

[OSEK 03] OSEK. Open Systems And The Corresponding Interfaces For Automotive
Electronics. http://www.osek-vdx.org/ (2003).

[Seto 98] Seto, D.; Krogh, B.; Sha, L.; & Chutinan, A. “The Simplex Architecture
for Safe On-Line Control System Upgrades,” 3504-3508. Proceedings of
the 1998 American Control Conference. Philadelphia, PA, June 24-26,
1998. Evanston, IL: American Automatic Control Council, 1998.

[TTA 03] TTA: Time-Triggered Architecture. http://www.tttech.com/ (commercial
product) http://www.vmars.tuwien.ac.at/projects/tta/ (university research)
(2003).

CMU/SEI-2004-TN-005 35

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

June 2004

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Embedded System Architecture Analysis Using SAE AADL

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Peter H. Feiler, David P. Gluch, John J. Hudak, Bruce A. Lewis
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2004-TN-005

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The emerging Society of Automotive Engineers Architecture Analysis and Design Language (AADL) standard
is an architecture modeling language for real-time, fault-tolerant, scalable, embedded, multiprocessor
systems. It enables the development and predictable integration of highly evolvable systems as well as
analysis of existing systems. It supports early and repeated analyses of a system’s architecture with respect
to performance-critical properties through an extendable notation, a tool framework, and precisely defined
semantics.

This report discusses the role and benefits of using the AADL in the process of analyzing an existing avionics
system. The AADL is used to describe architecture patterns in the system being analyzed and to identify
potentially systemic issues in the system. Findings related to timing, scheduling, and fault tolerance and the
benefits of the use of the AADL are examined. The report also highlights the benefits of working with
architecture abstractions that are reflected in the AADL notation, in particular the separation of architecture
design decisions from implementation decisions. Such a lightweight architecture analysis is typically followed
by a full-scale AADL model of the system with required and actual timing, performance, and reliability figures,
and its analysis to determine whether the requirements are met.

14. SUBJECT TERMS

AADL standard, real-time, embedded systems, design-time analyses,
schedulability analysis

15. NUMBER OF PAGES

41

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Embedded System Architecture Analysis Using SAE AADL
	Contents
	List of Figures
	Abstract
	1 Introduction
	2 AADL Overview
	3 The Avionics System
	4 Preemptive Scheduling and Port Communication
	5 To Poll or Not to Poll: Event Processing
	6 Hidden Timing Side Effects of Partition Scheduling
	7 End-to-End Latency
	8 Redundancy in Application Architectures
	9 Summary
	References

