
Common Concepts Underlying

Safety, Security, and

Survivability Engineering

Donald G. Firesmith

December 2003

Acquisition Support Program

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2003-TN-033

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2003 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2003-TN-033 i

Contents

Acknowledgments ...v

Executive Summary...vii

Abstract ...ix

1 Introduction ..1
1.1 Challenges ..1

1.2 Goals ...3

1.3 Motivation..3

1.4 Contents..4

2 Quality Model..5
2.1 Information Model for a Quality Model ...6

2.2 A Taxonomy of Quality Factors and Subfactors8
2.2.1 Development-Oriented Quality Factors9
2.2.2 Usage-Oriented Quality Factors...10

2.3 Safety as a Quality Factor ...13

2.4 Security as a Quality Factor...14

2.5 Survivability as a Quality Factor...17

2.6 Summary...19

3 Requirements Models ..20
3.1 Information Model for Requirements..20

3.2 Quality Requirements and Quality Factors ..23

3.3 Example Quality Requirements ...25

3.4 Summary...26

4 Engineering Models ...27
4.1 Information Model for Safety Engineering..27

4.2 Information Model for Security Engineering ...32

4.3 Information Model for Survivability Engineering35

4.4 Summary...37

ii CMU/SEI-2003-TN-033

5 Similarities and Differences .. 39
5.1 Similarities .. 39

5.1.1 Similarities Common to All Requirements................................ 39
5.1.2 Similarities Common to All Quality Requirements.................... 39
5.1.3 Specific Similarities.. 39

5.2 Differences.. 40
5.2.1 Quality Factor Subclasses and Subfactors 40
5.2.2 Assets ... 41
5.2.3 Accidents vs. Attacks... 42
5.2.4 Hazards vs. Threats .. 43

6 Recommendations and Future Work.. 44
6.1 Specific Recommendations... 44

6.1.1 Use Common Concepts and Terminology 44
6.1.2 Add Defensibility as a New Quality Factor 44
6.1.3 Decompose Defensibility ... 45
6.1.4 Include All Types of Valuable Assets....................................... 46
6.1.5 Incidents.. 47
6.1.6 Dangers... 48
6.1.7 Exploit Commonality in the Information Models 49
6.1.8 Develop a Common Process ... 51
6.1.9 Collocate Requirements .. 52
6.1.10 Engineer Defensibility Requirements and Architecture Early ... 52

6.2 Future Work .. 52

7 Conclusion ... 54

References... 56

CMU/SEI-2003-TN-033 iii

List of Figures

Figure 1: Information Metamodel for Quality Models ..6

Figure 2: Safety as a Quality Factor ...13

Figure 3: Security as a Quality Factor ..14

Figure 4: Decomposition of Security into Quality Subfactors15

Figure 5: Decomposition of Survivability into Quality Subfactors18

Figure 6: Requirements Information Model...21

Figure 7: Relationships from Requirements Model to Quality Model.....................23

Figure 8: Relationships from Quality Requirements to Quality Model24

Figure 9: Information Model for Safety Engineering ...28

Figure 10: Information Model for Security Engineering...33

Figure 11: Information Model for Survivability Engineering.....................................36

Figure 12: Accidents vs. Attacks...42

Figure 13: Hazards vs. Threats ..43

Figure 14: Defensibility as a Kind of Dependability...44

Figure 15: Standard Decomposition of Defensibility into Quality Subfactors...........45

Figure 16: Assets and Harm...47

Figure 17: Incidents (Accidents and Attacks)..48

Figure 18: Dangers (Hazards and Threats) ..49

Figure 19: Information Model for Defensibility Engineering50

iv CMU/SEI-2003-TN-033

CMU/SEI-2003-TN-033 v

Acknowledgments

No non-trivial work springs de novo from its author like Athena from the head of Zeus,
though as Zeus learned, creation is not without both hard work and headaches. Thus, this
technical note is based on the hard work of many others, many of whose papers and books
are listed in the reference section at the end. I would especially like to thank Jonathan Moffett
and Bashar Nuseibeh for their cited paper and Carol Woody for her insightful discussions,
both of which helped trigger the production of this technical note. Thank you for helping me
to get these diagrams off my whiteboard and into print. And for the valuable constructive
criticism that they have provided, I would also like to thank the following people who have
reviewed this technical note:

• Ian F. Alexander (private consultant in requirements engineering, UK)

• Ulf Lundberg Andersson (private consultant, Sweden)

• Peter Capell (Carnegie Mellon Software Engineering Institute [SEISM])

• Gary Chastek (SEI)

• Suzanne Couturiaux (SEI)

• Kirk Dameron (Chaparral Network Storage, Colorado)

• Brian Henderson-Sellers (University of Technology Sydney and COTAR - the Centre of
Object Technology and Research, Australia)

• Raimundas Matulevicius (University of Norway)

• Nancy Mead (SEI)

• Tim Morrow (SEI)

• Bashar Nuseibeh (The Open University, UK)

• Andreas L. Opdahl (University of Norway)

• Bhavani Palyagar (Macquarie University, Australia)

• Mike Phillips (SEI)

• Mary Popeck (SEI)

• Guttorm Sindre (University of Norway)

• Paul Tiplady (TRW Automotive, UK)

• Carol Woody (SEI)

SM SEI is a service mark of Carnegie Mellon University.

vi CMU/SEI-2003-TN-033

CMU/SEI-2003-TN-033 vii

Executive Summary

Safety, security, and survivability engineering are three very closely related disciplines that
could greatly benefit from a widespread recognition of their similarities and differences. Yet
currently, members of these disciplines have inadequate interaction, either with each other or
with members of other engineering disciplines.

This inadequate interaction among disciplines is especially true with regard to the
engineering of safety, security, and survivability requirements upon which the associated
architectural mechanisms (e.g., safeguards and countermeasures) should be based. Safety,
security, survivability, and requirements engineers typically use different terminologies and
processes that emphasize their differences and obscure their similarities. Far too often, the
result is requirements specifications that are very incomplete with regard to safety, security,
and survivability requirements. The “requirements” that are specified typically lack necessary
characteristics such as verifiability and lack of ambiguity.

Most books and articles about safety, security, and survivability do not adequately describe
the requirements for specifying minimum, mandatory amounts of these quality factors. That
is, they do not address the elicitation, analysis, and specification of such requirements, nor do
they address what such requirements should look like. Instead of discussing how to specify
the level of safety, security, and survivability that is needed, they discuss accidents and
attacks, hazards and threats, risks, vulnerabilities, and the architectural mechanisms that are
used to prevent, detect, or react to these hazards and threats.

Although safety, security, and survivability requirements are beginning to attract interest,
they typically lack any kind of theoretical foundation that defines what they are and how they
relate to other important concepts. Until recently, the emphasis has clearly been on
architectural mechanisms and the evaluation of the safety, security, and survivability of
existing systems and architectures.

This technical note presents a set of related information models that provides the theoretical
foundation underlying safety, security, and survivability engineering. It starts by summarizing
the concept of a quality model and its component parts, three of which are the quality factors:
safety, security, and survivability. Next, the different types of requirements are described, and
a framework is provided showing how quality goals, policies, requirements, and architectural
mechanisms are related to the quality factors and subfactors of the quality model. After the
general model is summarized, three specific models are provided that relate safety, security,
and survivability concepts, and the close relationships between the three engineering

viii CMU/SEI-2003-TN-033

disciplines are described. In addition to the graphical information models, precise definitions
are provided for each concept. Finally, this technical note summarizes the similarities and
differences between the models underlying these three types of engineering disciplines and
suggests ways to take advantage of this commonality.

Ultimately, this technical note is about showing (and taking advantage of) the great
similarities between

• safety (the degree to which accidental harm is prevented, detected, and reacted to)

• security (the degree to which malicious harm is prevented, detected, and reacted to)

• survivability (the degree to which both accidental and malicious harm to essential
services is prevented, detected, and reacted to)

CMU/SEI-2003-TN-033 ix

Abstract

This technical note presents a consistent set of information models that identify and define
the foundational concepts underlying safety, security, and survivability engineering. In
addition, it shows how quality requirements are related to quality factors, subfactors, criteria,
and metrics, and it emphasizes the similarities between the concepts that underlie safety,
security, and survivability engineering. The information models presented in this technical
note provide a standard terminology and set of concepts that explain the similarities between
the asset-based, risk-driven methods for identifying and analyzing safety, security, and
survivability requirements as well as a rationale for the similarity in architectural mechanisms
that are commonly used to fulfill these requirements.

x CMU/SEI-2003-TN-033

CMU/SEI-2003-TN-033 1

1 Introduction

1.1 Challenges
Software-intensive systems are commonplace, and society relies heavily upon them. Software
is found in automobiles, airplanes, chemical factories, power stations, and numerous other
systems that are business and mission critical. We trust our lives, our property, and even our
environment to the successful operation of these technology-based systems.

However, software-intensive systems are neither perfect nor invulnerable. They commonly
fail due to software defects, hardware breakdowns, accidental misuse, and deliberate abuse.
They are also the target of malicious attacks by hackers, disgruntled employees, criminals,
industrial spies, terrorists, and even agents of foreign governments and their militaries. Yet,
failure is becoming less and less of an option as we depend on these systems more and more.
Thus, safety, security, and survivability engineering are becoming essential components of
systems engineering.

Safety, security, and survivability engineering are three very closely related disciplines that
could greatly benefit from a widespread recognition of their similarities and differences. Yet
currently, members of these disciplines have inadequate interaction, either with each other or
with members of other engineering disciplines.

This inadequate interaction among disciplines is especially true with regard to the
engineering of safety, security, and survivability requirements upon which the associated
architectural mechanisms (e.g., security practices such as training and procedures, security
countermeasures such as encryption and firewalls, and safety mechanisms such as
redundancy and safety components) should be based. Safety, security, survivability, and
requirements engineers typically use different terminologies [CNSS 03, van der Meulen 00]
and processes that emphasize their differences and obscure their similarities. Far too often,
the result is requirements specifications that are very incomplete with regard to safety,
security, and survivability requirements. The requirements that are specified typically lack
necessary characteristics such as verifiability and lack of ambiguity.

However, most books and articles about safety, security, and survivability do not adequately
describe the requirements for specifying minimum, mandatory amounts of these quality
factors or adequately address the stakeholders who care about them. Instead, they typically
concentrate on accidents and attacks, hazards and threats, risks, vulnerabilities, and especially
the architectural mechanisms that are used to prevent, detect, or react to these hazards and
threats. In fact, much of the material published in this area does not even mention the

2 CMU/SEI-2003-TN-033

engineering of the associated requirements1 [Alberts 03, Herrmann 99, Hughes 95,
McNamara 03, Peltier 01, Power 00, Schneier 00, Shema 03, Tulloch 03]. The books that do
mention requirements typically provide only the briefest and highest level overview without
clearly saying what such requirements are [Anderson 01, Leveson 95, McDermid 91]. But
without adequate goal- and policy-based requirements, how can we be sure that the safety,
security, and survivability mechanisms that we choose to protect us will be adequate or
appropriate?

Although safety, security, and survivability requirements are beginning to attract interest,
they typically lack any kind of theoretical foundation that defines what they are and how they
relate to other important concepts of safety, security, and survivability engineering. Until
recently, the emphasis has clearly been on architectural mechanisms (such as security
countermeasures) and the evaluation of the safety, security, and survivability of existing
systems and architectures.

The analysis and specification of safety, security, and survivability requirements is inherently
difficult. Unlike other requirements that specify a required (and desired) capability, these
requirements specify what is to be prevented (e.g., accidents and attacks due to safety hazards
and security threats). These requirements deal with assets that must be protected and with the
risks of harm to these assets that must be managed. These requirements should be appropriate
and cost effective; there is no value in specifying a requirement that will cost far more to
implement than the value of the damage to the asset (and any downstream assets that might
subsequently be harmed). And yet, there is an inherent level of uncertainty because what
these requirements seek to prevent may or may not ever happen. This situation is especially
true of safety requirements because some systems (e.g., nuclear power plants, chemical
factories) are so critical that even a single, rare accident may render the system a complete
failure. Although other systems (e.g., e-commerce Web sites) are essentially under constant
attack, harm due to security threats often tends to be less mission critical, and a successful
attack will not render the system a complete failure.

Another problem is that the hazards and threats associated with software-intensive systems
are also constantly changing, making the risks very difficult to quantify. Estimates of risks
are often actually “guesstimates,” and thus the risks are typically forced to be qualitative
rather than quantitative.

This technical note addresses these problems by showing (and recommending that engineers
take advantage of) the great similarities between

• safety (the degree to which accidental harm is prevented, detected, and reacted to)

• security (the degree to which malicious harm is prevented, detected, and reacted to)

1 This seems to be especially true for security books, perhaps because security engineers tend to

think in terms of security policies rather than security requirements.

CMU/SEI-2003-TN-033 3

• survivability (the degree to which both accidental and malicious harm to essential
services is prevented, detected, and reacted to)

1.2 Goals
A major goal of this technical note is to provide the reader with a solid foundation for safety,
security, and survivability engineering. This technical note presents an overlapping set of
information models that define the concepts of safety, security, and survivability engineering
and clarify the relationships between them. When used, the foundation provided by these
models will also enable stakeholders in safety, security, and survivability engineering to
better communicate with each other.

A second goal of this technical note is to use these information models to clarify the
similarities and differences between the foundational concepts of these three disciplines. The
similarities between these three disciplines greatly outweigh their differences. These
similarities are important because they allow engineers to develop relatively uniform
development processes. These uniform processes can then be used across the traditionally
separate disciplines of safety, security, and survivability engineering.

1.3 Motivation
Often, safety, security, and survivability engineering are not adequately recognized as highly
related disciplines. Safety is largely about protecting valuable assets (especially people) from
harm due to accidents. Security is largely about protecting valuable assets (especially
sensitive data) from harm due to attacks. Survivability is largely about protecting valuable
assets (essential services) from both accidents and attacks. In all three cases, a primary focus
is in dangers (hazards and threats) and their associated risks and the system’s vulnerabilities
to them. All three disciplines often require a risk-driven approach in determining the
appropriate policies, requirements, and architectural mechanisms. In fact, the similarities
between these three disciplines have prompted the production of this technical note.

However, these similarities are seldom recognized, and their relevance to requirements
engineering is largely unknown in actual practice. One problem is that requirements
engineers are rarely taught safety engineering, security engineering, or anything about
survivability, and they rarely have any significant experience in these disciplines. Yet, they
are often responsible for developing safety, security, and survivability requirements. A good
place for them to start is to learn the fundamental concepts underlying safety, security, and
survivability. Similarly, safety and security engineers are rarely taught requirements
engineering and typically have no experience engineering requirements. They tend to think in
terms of safety program plans and security policies rather than requirements and
requirements specifications. In addition, the policies they produce are at a higher level of
abstraction than requirements and typically lack the characteristics of good requirements such
as completeness, lack of ambiguity, and verifiability.

4 CMU/SEI-2003-TN-033

1.4 Contents
This technical note presents a set of related information models that provide a theoretical
foundation underlying safety, security, and survivability engineering. Section 2 summarizes
the concept of a quality model and its component parts, three of which are the quality factors
of safety, security, and survivability. Next, Section 3 describes the different types of
requirements and provides a framework showing how quality goals, policies, requirements,
and architectural mechanisms are related to the quality factors and associated subfactors of
the quality model. Section 4 provides three specific models that relate the underlying
concepts of safety, security, and survivability engineering. In addition to the graphical
information models, precise definitions are provided for each concept. Section 5 summarizes
the similarities and differences between the models underlying the three disciplines, and
Section 6 recommends ways to take advantage of this commonality.

CMU/SEI-2003-TN-033 5

2 Quality Model

Quality means much more than merely meeting functional requirements. Even if an
application provides all of its required features and fulfills each of its use cases, it can still be
totally unacceptable if it has insufficient quality attributes (e.g., it has inadequate availability,
its capacity is too low, its performance is too slow, it is not interoperable with other systems,
it is not safe to use, it has numerous security vulnerabilities, or it is not considered to be user
friendly by its end users). Thus, the term “quality” is an abstract term that can mean very
different things to different stakeholders (including customers, users, management,
marketing, developers, testers, quality engineers, maintainers, and support personnel). In this
technical note, the term “quality” is used in its widest sense. Thus, quality includes all quality
factors and not just the few that are mentioned above.

Similarly, it is not adequate to specify required quality by merely stating that an application
shall have high capacity and performance, be safe and secure, and be usable by its end users.
Such “quality requirements” are typically specified at such a high level of abstraction that
they are virtually useless because they are incomplete, vague, ambiguous, and impossible to
verify. Thus, they are high-level goals rather than specific requirements.

Therefore, we need to decompose the term “quality” into its relevant component factors and
subfactors. We also need to provide operational definitions for these components of quality so
that we can create clear, unambiguous, and verifiable requirements. One purpose of this
technical note is to provide such operational definitions for safety, security, and survivability
and their requirements.

To specify quality requirements, we need a way to organize, clarify, and standardize the
relevant meanings of the term quality when applied to software-intensive systems. Doing this
will form a proper foundation for identifying, analyzing, and specifying the large number of
quality requirements that are needed on any significant endeavor.

A quality model is a model (i.e., a collection of related abstractions or simplifications) that
models the quality of something [Firesmith 03a]. The quality model does for the concept of
quality what a map does for a city, state, or country; it captures all of the important
generalities about quality while ignoring all of the diversionary details. This then is the role
of a quality model: to make the general term “quality” specific and useful by decomposing it
into its component concepts and their relationships to one another. A quality model first
decomposes quality into its component quality factors (aspects, attributes, or characteristics)
and subfactors (i.e., parts). It then provides specific quality criteria (descriptions) and metrics
(means of measurement) that can be used to turn these general high-level quality factors into
detailed and specific measurable descriptions that can be used to specify an aspect of quality

6 CMU/SEI-2003-TN-033

or to determine if that aspect of quality actually exists at a level equal or above the minimum
amount specified in a requirements specification. By mandating a combination of both a
quality criterion and metric, the likelihood of obtaining a clear, unambiguous, and verifiable
statement of a quality requirement increases.

There are many quality models of varying degrees of completeness and usability. Some are
international standards [ISO 00], some are de facto industry standards [Firesmith 03d], some
are organization specific [Barbacci 00], and some are published in software engineering
books [Boehm 76, Chung 93, Chung 00, Davis 93, Keller 90, Loucopoulos 95, Mylopoulos
92, Roman 85, Sommerville 92, Thayer 90]. This technical note uses the Object Process,
Environment, and Notation (OPEN) quality model [Firesmith 03d] due to its completeness,
especially with regard to safety, security, and survivability.

2.1 Information Model for a Quality Model
As illustrated in Figure 1, a quality model is a hierarchical model consisting of quality factors
(also known as quality attributes) containing quality subfactors. The model formalizes the
concept of quality, and it decomposes quality into a taxonomy of relevant quality factors and
subfactors. For each of these, it defines associated quality criteria and metrics that provide
specific measurable descriptions of the quality that is being analyzed or specified.

Quality Model

Quality Factor Quality Subfactor

Quality Criterion Quality Metric

is
measured

by

is
judged

by

System

describes a

measures

is
measured

by

is
judged

by

Figure 1: Information Metamodel for Quality Models

Figure 1 shows that quality factors and subfactors are the primary ways in which the concept
of quality is decomposed. However, quality is made specific with regard to systems when it is
judged by application-specific quality criteria and measured in terms of specific quality
metrics.

CMU/SEI-2003-TN-033 7

Figure 1 is a Unified Modeling Language (UML) class diagram2 that documents a metamodel
for a quality model (where a metamodel is actually a model of a model). The metamodel for
the quality model defines the kinds of things that make up any quality model, whereas a
quality model contains the actual quality factors, subfactors, criteria, and metrics. Thus, for
example, the metamodel contains the concept “quality factor,” whereas the quality model
contains specific quality factors such as safety, security, and survivability.

The concepts documented in Figure 1 can be defined as follows:

• Quality model is a hierarchical model for formalizing the concept of quality in terms of
its component quality factors and subfactors.
As such, the quality model forms a taxonomy of the characteristics that make up quality.
The components of any taxonomy should be disjoint and cover the entire subject area of
the taxonomy. Thus, the quality factors of a quality model should be disjoint and cover
all of quality. Unfortunately, safety, security, and survivability engineering have
developed and evolved relatively independently of one another; therefore, safety,
security, and survivability have tended to overlap. Potential commonalities between these
three may even show that they could benefit from adopting concepts from the others.
Thus, some definitions of security include accidental harm that more correctly lies within
safety. Similarly, some definitions of safety are incomplete because they include harm
only to people and do not include harm to either property or the environment.

• Quality factor (also known as quality attribute or quality characteristic) is a high-level
characteristic or attribute of something that captures an aspect of its quality.
Quality has to do with the degree to which something possesses a combination of
characteristics, attributes, aspects, or traits that are desirable to its stakeholders. There are
many different quality factors such as availability, extensibility, performance, reliability,
reusability, safety, security, and usability. These factors determine whether or not
something is of sufficiently high quality. Because many of the quality factors end in the
letters “ility,” they are often referred to as the “ilities.” Quality factors can be subclassed
into more specific kinds of quality factors (e.g., reliability is a kind of dependability).
Quality factors can also be decomposed into their component parts (e.g., privacy is a part
of security).

— Quality subfactor is a major component (aggregation) of a quality factor or another
quality subfactor.

2 This technical note uses simplified UML class diagrams as entity relationship (ER) diagrams to

capture the information models that define key concepts and the relationships between them.
Concepts (entities) are signified by rectangles. Aggregation (i.e., whole-part, consists of)
relationships are signified by arcs with a black diamond on their “whole” ends and nothing on their
“part” ends. Inheritance (i.e., is-a-kind-of) relationships are signified by arcs with white arrowheads
on their “superclass” ends and nothing on their “subclass” ends. All other relationships
(associations) are signified by arcs that are labeled with verb phrases and that have arrowheads on
their “dependent” ends. By reading in the directions of the arrows, associations can be read as
sentences by reading the starting-box label, the arc label, followed by the ending-box label.

8 CMU/SEI-2003-TN-033

• Quality criterion is a specific description of something that provides evidence either for
or against the existence of a specific quality factor or subfactor. Quality criteria
significantly contribute toward making the high-level quality factors detailed enough to
be unambiguous and verifiable. When quality criteria are adequately specific, they lack
only the addition of quality metrics to make them sufficiently complete and detailed to
form the basis for detailed quality requirements. If quality is the trunk of the tree and the
quality factors and subfactors are the branches and twigs, then quality criteria are the
leaves. There are many more quality criteria than quality factors and subfactors because
there are typically numerous criteria per factor. Quality criteria are also more domain-
specific and less reusable than quality factors and subfactors because they are specific
descriptions of specific applications, components, centers, or business units. To deal with
the large number of criteria and to make them reusable, quality criteria can often be
parameterized in the quality models, and specific instances of the parameterized classes
of criteria can then be used to produce quality requirements [Firesmith 03b].

• Quality metric is a metric that quantifies a quality criterion and thus makes it
measurable, objective, and unambiguous.
A quality metric is a way of measuring that quantifies a quality criterion. Quality metrics
thus provide numerical values specifying or estimating the quality of a work product or
process by measuring the degree to which it possesses a specific quality factor or
subfactor.

• System (also known as system-level application) is an integrated collection of data
components, hardware components, software components, human-role components (also
known as wetware or personnel), and document components (also known as paperware)
that collaborate to provide some cohesive set of functionality with specific levels of
quality.
Hardware components include firmware components, whereas software components
include both application-specific software components as well as commercial off-the-
shelf (COTS) components such as operating systems, database systems, and
infrastructure components. Using a bank as an example, as far as the bank customer is
concerned, the bank system includes the tellers, the procedures that tellers follow, and the
training that they need. This inclusion of people and procedures is critical because safety
and security are both chains that are only as good as their weakest links. These weakest
links are often not in the hardware and software, but rather in the way they are used and
supported.

2.2 A Taxonomy of Quality Factors and Subfactors
As pointed out in the previous list, a quality factor (also known as quality attribute or quality
characteristic) is a high-level characteristic or attribute of something that captures an aspect
of its quality. Note that quality factors and subfactors merely describe desired or existing
capabilities. As such, they provide a foundation and organization for discussing quality goals,

CMU/SEI-2003-TN-033 9

policies, requirements, and the architectural mechanisms for fulfilling these requirements.
However, they are not themselves goals, policies, requirements, or architectural mechanisms.

Different books and articles decompose quality factors differently (e.g., qualitative quality
factors versus quantitative quality factors). However, although it may be difficult to make all
quality requirements quantitative, it is definitely both possible and useful to do so (e.g., for
testability). Therefore, this technical note decomposes them into development-oriented and
usage-oriented quality factors. Such a taxonomy seems to be very intuitive because it
separates concerns according to their audiences (development oriented for developers and
maintainers, usage oriented for customers and users).

The following taxonomy is also relatively complete. Although few projects need to develop
requirements for all of the quality factors in the following two lists, requirements engineers
should definitely determine the applicability of all of the different types of quality factors.
Having a large hierarchical taxonomy of quality factors and subfactors also helps ensure that
no relevant quality factors are ignored.

The following taxonomy of quality factors [Firesmith 03d] serves two primary functions:

• The lists provide a context for safety, security, and survivability. It thus provides a
hierarchical taxonomy into which safety, security, and survivability must logically fit.

• By documenting the most important quality factors, the lists make it clear that a complete
quality model can have a great number of quality factors and quality subfactors.

2.2.1 Development-Oriented Quality Factors

Development-oriented quality factors are quality factors that are primarily important
during development and maintenance rather than usage. Examples of development-oriented
quality factors and subfactors include the following:

• Maintainability is the ease with which an application or component can be maintained
between major releases. Maintainability includes the following quality subfactors:

— Correctability is the ease with which minor defects can be corrected between major
releases while the application or component is in use by its users.

— Extensibility is the ease with which an application or component can be enhanced in
the future to meet changing requirements or goals.

• Portability is the ease with which an application or component can be moved from one
environment to another.

• Reusability is the ease with which an existing application or component can be reused.

• Scalability is the ease with which an application or component can be modified to
expand its existing capacities.

10 CMU/SEI-2003-TN-033

• Verifiability is the ease with which an application or component can be verified to meet
its associated requirements and standards. Verifiability includes the following subfactor:

— Testability is the ease with which an application or component facilitates the
creation and execution of successful tests (i.e., tests that would cause failures due to
any underlying defects).

2.2.2 Usage-Oriented Quality Factors

Usage-oriented quality factors are quality factors that are primarily important after
deployment and during actual usage of an application or component. Examples of usage-
oriented quality factors and subfactors include the following:

• Auditability is the degree to which sufficient records are kept to support a financial
audit.

• Branding is the degree to which a work product (e.g., application, component, or
document) successfully incorporates the brand of the customer organization’s business
enterprise.

• Capacity is the minimum number of things (e.g., transactions, storage) that can be
successfully handled.

• Configurability is the degree to which something can be configured into multiple forms
(i.e., configurations). Configurability includes the following quality subfactors:

— Internationalization (also known as globalization and localization) is the degree to
which something can be or is appropriately configured for use in a global
environment.

— Personalization is the degree to which each individual user can be presented with a
unique user-specific experience.

— Subsetability is the degree to which something can be released in multiple variants,
each of which implements a different subset of the functional requirements and
associated quality requirements.

— Variability is the degree to which something exists in multiple variants, each having
the appropriate capabilities.

• Correctness is the degree to which a work product and its outputs are free from defects
once the work product is delivered. Correctness includes the following quality subfactors:

— Accuracy is the magnitude of defects (i.e., the deviation of the actual or average
measurements from their true value) in quantitative data.

— Currency is the degree to which data remain current (i.e., up to date, not obsolete).

— Precision is the dispersion of quantitative data, regardless of its accuracy.

• Dependability is the degree to which various kinds of users can depend on a work
product. Dependability includes the following quality factors:

CMU/SEI-2003-TN-033 11

— Availability is the degree to which a work product is operational and available for
use.
The issue of availability is a difficult one for any quality model that seeks to
minimize the overlap of quality factors in its taxonomy. When systems and software
engineers think of availability requirements, they think in terms of non-malicious
causes of lack of availability. However, a denial-of-service (DoS) attack is clearly a
security problem. To maintain the disjointed nature of the taxonomy of quality
factors, the scope of availability will remain non-malicious and DoS will be dealt
with as a violation of a type of security requirements.

— Reliability is the degree to which a work product operates without failure under
given conditions during a given time period.

— Robustness is the degree to which an executable work product continues to function
properly under abnormal conditions or circumstances. Robustness includes the
following quality subfactors:

– Environmental tolerance is the degree to which an executable work product
continues to function properly despite existing in an abnormal environment.

– Error tolerance is the degree to which an executable work product continues to
function properly despite the presence of erroneous input.

– Failure tolerance is the degree to which an executable work product continues
to function properly despite the occurrence of failures, where

- A failure is the execution of a defect that causes an inconsistency between an
executable work product’s actual (observed) and expected (specified)
behavior.

- A defect may or may not cause a failure depending on whether the defect is
executed and whether exception handling prevents the failure from
occurring.

- A fault (also known as defect, bug) is an underlying flaw in a work product
(i.e., a work product that is inconsistent with its requirements, policies, goals,
or the reasonable expectations of its customers or users). Defects are
typically caused by human errors, and defects have no impact until they
cause one or more failures.

Failure tolerance includes the following quality subfactor:

- Fault tolerance is the degree to which an executable work product continues
to function properly despite the presence or execution of defects.

— Safety is the degree to which accidental harm is prevented, reduced, and properly
reacted to.

— Security is the degree to which malicious harm is prevented, reduced, and properly
reacted to.
The term “malicious” is used intentionally to clearly differentiate safety from
security and thereby avoid an unnecessary overlap in the taxonomy of quality factors.
Thus, safety deals with accidents, whereas security deals with attacks. However,
accidents (safety) can result in security vulnerabilities that can be exploited by

12 CMU/SEI-2003-TN-033

attacks, at which time their consequences fall within the realm of security. Similarly,
attacks may cause safety hazards that in turn may cause accidents.

— Survivability is the degree to which essential, mission-critical services continue to
be provided in spite of either accidental or malicious harm.

• Efficiency is the degree to which something effectively uses (i.e., minimizes its
consumption of) its resources. These resources may include all types of resources such as
computing (hardware, software, and network), machinery, facilities, and personnel.

• Interoperability is the degree to which a system or one of its components is properly
connected to and operates with something else.

• Operational environment compatibility is the degree to which a system or a
component can be used and functions correctly under specified conditions of the physical
environment(s) in which it is intended to operate.

• Performance is the degree to which timing characteristics are adequate. Performance
includes the following quality subfactors:

— Jitter is the precision (i.e., variability) of the time when one or more events occur.

— Latency is the time it takes to provide a requested service or allow access to a
resource.

— Response time is the time it takes to initially respond to a request for a service or to
access a resource.

— Scheduleability is the degree to which�events and behaviors can be scheduled and
then occur at their scheduled times.

— Throughput is the number of times that a service can be provided within a specified
unit of time.

• Utility is the degree to which something can be accessed and used by its various types of
users. Utility includes (but is not limited to) the following subfactors:

— Accessibility is the degree to which the user interface of something enables users
with common or specified (e.g., auditory, visual, physical, or cognitive) disabilities to
perform their specified tasks.

— Installability is the ease with which something can be successfully installed in its
production environment(s).

— Operability is the degree to which something enables its operators to perform their
tasks in accordance with the operations manual.

— Transportability is the ease with which something can be physically moved from
one location to another.

— Usability is the ease with which members of a specified set of users are able to use
something effectively.

CMU/SEI-2003-TN-033 13

— Withdrawability is the ease with which an existing problematic version of the
system or one of its components can be successfully withdrawn and replaced by a
previously working version.

The preceding taxonomy makes it clear that safety, security, and survivability are kinds of
dependability and are therefore usage-oriented quality factors. The preceding lists also
emphasize the fact that safety, security, and survivability are only three of a great many
potentially relevant quality factors.

2.3 Safety as a Quality Factor
As one of numerous quality factors, safety can be classified into the following subclasses of
safety: health safety, property safety, and environmental safety. In fact, safety is often defined
in terms of health, property, and environmental safety.

The information model illustrated by Figure 2 shows that safety is a kind of dependability
and thus a kind of quality factor. It is also shows that safety has traditionally been classified
into health, property, and environmental safety (also kinds of quality factors) based on the
type of asset that will be harmed if an accident should occur.

Health
Safety

Property
Safety

Environmental
Safety

Safety
Quality
Factor Dependability

Figure 2: Safety as a Quality Factor

The concepts documented in Figure 2 can be defined as follows:

• Safety is the degree to which accidental harm is prevented, detected, and properly
reacted to.
In common English, people are not considered safe unless they are safe from both
accidental and malicious harm. Also, security is often defined to include security from
accidental harm. However, when dealing with systems, safety emphasizes accidental
harm, and security emphasizes malicious harm. Thus, to have a taxonomy of quality with
disjoint quality factors, safety will be restricted to accidental harm, and security will be
restricted to malicious harm.
The quality factor of safety can be classified into the following subclasses of safety,
which themselves are also quality factors:

— Health safety is the degree to which illness, injury, and death are prevented,
detected, and properly reacted to.
Health safety involves all people who may reasonably be expected to be harmed by

14 CMU/SEI-2003-TN-033

the system during an accident. (For example, health safety for an automotive control
system may include the driver, passengers, pedestrians, and mechanics. For a
chemical plant control system, health safety may include operators, maintenance
engineers, other staff at the plant, and nearby residents.)

— Property safety is the degree to which accidental damage and destruction of
property is prevented, detected, and properly reacted to.

— Environmental safety is the degree to which accidental damage to (and destruction
of parts of) the environment is prevented, detected, and properly reacted to.

2.4 Security as a Quality Factor
The quality factors of safety and security can be viewed as two sides of the same coin. If
safety can be defined as the degree to which accidental harm is properly managed, then
security can be defined as the degree to which malicious harm is properly managed.

The information model illustrated by Figure 3 shows that security is also a kind of
dependability and thus a kind of quality factor. The information model also shows that
security has traditionally been classified into such subclasses as communications security,
data security, emissions security (also known as TEMPEST), personnel security, and physical
security based largely (as with safety) on the type of asset that will be harmed if an attack
should occur.

Security

Communications
Security

Data
Security

Emissions
Security

(TEMPEST)

Physical
Security

Personnel
Security

Quality
Factor

Dependability

Figure 3: Security as a Quality Factor

The concepts documented in Figure 3 can be defined as follows:

• Security is the degree to which malicious3 harm to a valuable asset is prevented,
detected, and reacted to. Security is the quality factor that signifies the degree to which

3 Some may argue that the term “malicious” is too strong. But what about hacktivists who vandalize

the Web site of a company that pollutes the environment? What about someone who uses company
computers to surf the Web in violation of company policy? The first example is a cybercrime, and
the second is an unauthorized use of property. In both cases, the victims would be justified to
consider these acts malicious. If the term “malicious” still seems too harsh, consider it to mean the
combination of unauthorized and intentional harm.

CMU/SEI-2003-TN-033 15

valuable assets are protected from significant threats posed by malicious attackers. The
quality factor of security can be classified into the following subclasses, which are also
quality factors:

— Communications security is the degree to which communications are protected
from attack.

— Data security is the degree to which stored and manipulated data are protected from
attack.

— Emissions security is the degree to which systems do not emit radiation that is
subject to attack.

— Personal security is the degree to which personnel are protected from attack.
— Physical security is the degree to which systems are protected from physical attack.

Figure 4 shows that security can also be decomposed (aggregation) into many different
quality subfactors. In fact, security has historically been defined more often in terms of its
most popular subfactors (typically availability, integrity, and privacy) than in terms of its
subclasses. Note that security is a relatively complex concept and cannot be adequately
addressed merely in terms of availability, integrity, and privacy. Unfortunately, there is no
widely accepted, industry-standard decomposition of security into a taxonomy of its
component quality subfactors, and these quality subfactors do not have industry-standard
definitions. Perhaps this technical note will help to stimulate the development of a consensus
concerning the optimal decomposition of security into its quality subfactors.

Identification

Authentication

Authorization

Integrity

Privacy

Nonrepudiation
Immunity

Security

Quality Subfactor

Quality Factor

Security Auditing

Attack/Harm Detection

Physical Protection

Access Control

Data Integrity

Hardware Integrity

Software Integrity

Personnel Integrity

Anonymity

Confidentiality

Recovery

Prosecution

Availability Protection

System Adaptation

Figure 4: Decomposition of Security into Quality Subfactors

16 CMU/SEI-2003-TN-033

The security subfactors illustrated in Figure 4 can be defined as follows:

• Access control is the degree to which the system limits access to its resources only to its
authorized externals (e.g., human users, programs, processes, devices, or other systems).
The following are quality subfactors of the access-control quality subfactor:

— Identification is the degree to which the system identifies (i.e., recognizes) its
externals before interacting with them.

— Authentication is the degree to which the system verifies the claimed identities of its
externals before interacting with them. Thus, authentication verifies that the claimed
identity is legitimate and belongs to the claimant.

— Authorization is the degree to which access and usage privileges of authenticated
externals are properly granted and enforced.

• Attack/harm detection is the degree to which attempted or successful attacks (or their
resulting harm) are detected, recorded, and notified.

• Availability protection is the degree to which various types of DoS attacks are prevented
from decreasing the operational availability of the system. This is quite different from the
traditional availability quality factor, which deals with the operational availability of the
system when it is not under attack.

• Integrity is the degree to which components are protected from intentional and
unauthorized corruption. Integrity includes the following:

— Data integrity is the degree to which data components (whether stored, processed, or
transmitted) are protected from intentional corruption (e.g., via unauthorized
creation, modification, deletion, or replay).

— Hardware integrity is the degree to which hardware components are protected from
intentional corruption (e.g., via unauthorized addition, modification, or theft).

— Personnel integrity is the degree to which human components are protected from
intentional corruption (e.g., via bribery or extortion).

— Software integrity is the degree to which software components are protected from
intentional corruption (e.g., via unauthorized addition, modification, deletion, or
theft).

– Immunity is the degree to which the system protects its software components
from infection by unauthorized malicious programs (i.e., malware such as
computer viruses, worms, Trojan horses, time bombs, malicious scripts, and
spyware). Such protected software components include complete programs,
partial programs, processes, tasks, and firmware.

• Nonrepudiation is the degree to which a party to an interaction (e.g., message,
transaction, transmission of data) is prevented from successfully repudiating (i.e.,
denying) any aspect of the interaction.
Nonrepudiation covers information such as the identities of the sender and recipient of
the transaction; the send time, receive time, and dates of the transaction; and any data that
flowed with the transaction. Nonrepudiation thus assumes data integrity so that a party
cannot argue that the associated data were corrupted.

CMU/SEI-2003-TN-033 17

• Physical protection is the degree to which the system protects itself and its components
from physical attack.
Physical attack may mean something as violent as the use of a bomb or the kidnapping or
blackmailing of personnel. It can also mean something as relatively minor as the
prevention of the theft of a laptop by means of a cable and lock.

• Privacy is the degree to which unauthorized parties are prevented from obtaining
sensitive information. Privacy includes the following subfactors:

— Anonymity is the degree to which the users’ identities are prevented from
unauthorized storage or disclosure.

— Confidentiality is the degree to which sensitive information is not disclosed to
unauthorized parties (e.g., individuals, programs, processes, devices, or other
systems).

• Prosecution is the degree to which the system supports the prosecution of attackers.

• Recovery is the degree to which the system recovers after a successful attack.

• Security auditing is the degree to which security personnel are enabled to audit the
status and use of security mechanisms by analyzing security-related events.

• System adaptation is the degree to which the system learns from attacks in order to
adapt its security countermeasures to protect itself from similar attacks in the future.

2.5 Survivability as a Quality Factor
Survivability is concerned with essential mission-critical services that must continue to be
provided in spite of either accidental or malicious harm [Ellison 99, Ellison 03, Knight 00,
Knight 03, Lipson 99]. Thus, in some sense, survivability can be seen as both a union of
safety and security (accidental and malicious harm) as well as a subset of them (only
interested in harm to essential services).

Survivability is typically not subclassed into lower level kinds of survivability based on the
type of asset protected because it only deals with essential services; thus, there is only one
kind of asset to protect. However, like security, survivability is typically decomposed into
quality subfactors. Specifically, survivability consists of prevention, detection, and reaction
as illustrated in the class diagram in Figure 5.4

4 The use of a single yoke connected to both a black diamond (aggregation) and white arrowhead

(inheritance) is not exactly valid UML, but drawing two overlapping yokes would significantly
clutter the diagram. For example, the quality subfactors (inheritance arrow) prevention, detection,
and reaction are components (aggregation diamond) of survivability.

18 CMU/SEI-2003-TN-033

Quality Subfactor

Quality Factor

Survivability

Reaction

Prevention

Detection

Figure 5: Decomposition of Survivability into Quality Subfactors

Survivability and its subfactors can be defined as follows:

• Survivability is the degree to which essential services continue to be provided in spite of
either accidental or malicious harm. As noted by H. Lipson and D. Fisher [Lipson 99],
“Ultimately, it is the mission [of the system] that must survive, not any particular
component of the system or even the system itself.” The following are the quality
subfactors of the survivability quality subfactor:

— Prevention (also known as resistance) is the degree to which hazards and threats are
resisted so that essential services continue to be provided both during and after
accidents and attacks. Prevention includes both the elimination of such hazards and
threats as well as steps taken to minimize the negative outcome should an accident or
successful attack occur.

— Detection (also known as recognition) is the degree to which relevant accidents and
attacks (or the harm they cause) are recognized as they occur so that the system can
react accordingly to maintain essential services. It also typically involves the
recording of attacks so that legal evidence exists with which to prosecute attackers.
Detection may also include the recognition of conditions or events preceding
accidents (e.g., hardware nearing failure) or detecting attackers collecting
information during probes prior to attacks.

— Reaction (also known as recovery) is the degree to which the system responds (e.g.,
recovers) after an accident or attack. This recovery includes the establishment of a
priority-based recovery approach so that any essential services that may have been
lost or degraded are recovered before the recovery of any non-essential services that
were lost or terminated. Although some authors [Mead 03] have stated that recovery
differentiates survivability from safety and security, reaction including recovery
should apply not only to essential services but also to harm to any asset. For example,
security has unfortunately concentrated on prevention and largely ignored how
systems should detect and react to attacks.

CMU/SEI-2003-TN-033 19

2.6 Summary
The preceding section has documented the concept of a quality model, as well as its
components and their interrelationships, and has led us to the definitions of the quality factors
of safety, security, and survivability. With its figures and definitions, this section allows us to
conclude the following:

• The quality of a software-intensive system is not a simple concept. To be useful, it must
be decomposed into quality factors and subfactors, which allow us to speak about the
different specific aspects of quality.

• There are many different kinds of quality factors, both development oriented and usage
oriented. These quality factors will become part of the basis for organizing, identifying,
and analyzing quality requirements.

• Safety, security, and survivability are quality factors that can be decomposed into
standard quality subfactors that capture different fundamental aspects of what it means
for a software-intensive system to be safe, secure, and survivable.

• Although safety, security, and survivability are different quality factors with different
subfactors, they are actually related to each other in that all three involve the degree to
which harm (whether accidental, malicious, or both) is prevented, detected, and properly
reacted to.

• Safety, security, and survivability are different (although very similar) quality factors. A
system can be safe and yet neither secure nor survivable as long as no person or property
is harmed when a common attack successfully causes the loss of an essential service
(e.g., a typical denial-of-service attack). Similarly, a system can be secure without being
safe or survivable if an accident causes the loss of an essential service. Finally, a system
can be survivable without being either safe or secure as long as frequent accidents and
attacks do not cause the loss of an essential service.

• These quality factors and subfactors that make up the quality model are in turn judged by
application-specific quality criteria and measured by associated quality metrics.

• Quality criteria are where the generally reusable quality factors and subfactors become
very specific and application specific. There are often very many possible quality criteria
that can be chosen for any given quality factor or subfactor, and these criteria can often
be parameterized using a standard template with variable parts.

• Quality metrics describe the actual or required level of some quality factor or subfactor.

This section has provided a foundation for engineering safety, security, and survivability
requirements because such requirements are typically a combination of quality criteria and
metrics for the safety, security, and survivability quality factors.

20 CMU/SEI-2003-TN-033

3 Requirements Models

Proper requirements are critical for creating software-intensive systems that are safe, secure,
and survivable. However, the related concepts of quality goals, policies, and architectural
mechanisms are often confused with requirements. This section will clarify the differences
between these concepts as well as their relationships to the quality models discussed in the
previous section.

3.1 Information Model for Requirements
A complete requirements model must document the major, different kinds of requirements
(e.g., functional requirements, quality requirements, data requirements, interface
requirements, and constraints) [Firesmith 02]. It should also document the relationships
between requirements and such other concepts as goals, policies, and architectural
mechanisms.

Figure 6 shows that functional requirements, no matter how critical, are only one kind of
requirement. Data, quality, and interface requirements as well as constraints must also be
identified, analyzed, specified, and managed. The diagram also clarifies that safety, security,
and survivability requirements are quality requirements rather than functional requirements.
They are also architecturally significant requirements that have a much larger impact on the
architecture (and application cost and development schedule) than most functional
requirements.

Figure 6 is incomplete because it does not show all of the different kinds of quality
requirements (i.e., those specifying mandatory amounts of other quality factors listed in the
preceding taxonomy). As such, it is an oversimplification and therefore is not itself a strong
argument for the similarity between safety, security, and survivability requirements. Note that
different quality and requirements models may decompose things differently and thereby
produce different diagrams.

Although requirements engineers have not traditionally recognized any intermediate model
element between goals and requirements, the safety and security communities are very
familiar with safety and security policies and have correctly understood that these critical
policies are below goals but above requirements in this hierarchy. Therefore, policies are
included between goals and requirements in our requirements information model.

CMU/SEI-2003-TN-033 21

Quality Requirement

Goal

Requirement

Safety
Requirement

Security
Requirement

Data
Requirement

Interface
Requirement

Constraint

specifies

fulfills
Survivability
Requirement

Policy

establishes

Architectural
Mechanism

Functional
Requirement

Non-Functional
Requirement

Quality Goal

Quality Policy

Quality Factor

states the importance
of achieving a target

mandates a desired
criterion of a

specifies a
mandatory

amount of a

Architectural Constraint

Design Constraint

Implementation Constraint

requires an

Figure 6: Requirements Information Model

Similarly, architecture mechanisms as well as architectural constraints are explicitly included
in Figure 6 because many requirements engineers (as well as many safety and security
engineers) mistakenly specify architectural mechanism (e.g., safeguards and
countermeasures) as architectural constraints rather than specifying the true underlying safety
and security requirements. Instead, they should leave the selection of safety and security
architectural mechanisms to the architecture, safety, and security teams.

The concepts documented in Figure 6 are defined as follows:

• Goal is a statement of the importance of achieving a desired target regarding some
behavior, datum, characteristic, interface, or constraint. It is above the level of a policy
and not sufficiently formalized to be verifiable.

— Quality goal is a goal stating the importance of achieving a desired target regarding
some quality factor or subfactor. (For example, “Sensitive information must be made
secure,” or “The confidentiality and integrity of sensitive information must be
guaranteed.”)

• Policy is any strategic decision that establishes a desired goal.

— Quality policy is a policy mandating a desired criterion (or type of criteria) of a
quality factor or subfactor.
(For example, “All information about customer credit cards that is entrusted to our
organization shall be given a combination of technological and procedural security
measures that together will ensure that all currently known types of attacks will be
prevented from causing the unauthorized access, modification, or theft of this
information.”)

22 CMU/SEI-2003-TN-033

• Requirement is any mandatory, externally observable, verifiable (e.g., testable), and
validatable behavior, datum, characteristic, or interface.
Because we are concerned with the quality of a system or its components, the term
“requirement” is used to refer to “product requirement.” Thus, this document does not
cover other types of requirements (e.g., process requirements such as development costs
and development schedule) that are at the same level of abstraction.

— Functional requirement is any requirement that specifies a mandatory behavior.

— Non-functional requirement is any requirement that is not a functional requirement.
Some authors mistakenly equate non-functional requirements with quality
requirements. This taxonomy clearly shows that there are non-functional
requirements that are not quality requirements. Types of non-functional requirements
including the following:

– Quality requirement is any requirement that specifies a minimum amount of a
mandatory quality factor (i.e., characteristic, attribute). There are numerous types
of quality requirements, including the following:

- Safety requirement is any requirement that specifies a minimum,
mandatory amount of safety.

- Security requirement is any requirement that specifies a minimum,
mandatory amount of security.

- Survivability requirement is any requirement that specifies a minimum,
mandatory amount of survivability.

– Data requirement is any requirement that specifies a mandatory aspect of a
datum or data type.

– Interface requirement is any requirement that specifies a mandatory aspect of
an external interface or protocol.

— Constraint is any engineering decision that has been selected to be mandated as a
requirement. There are several types of constraints, including the following:

– Architectural constraint is any architectural decision that has been selected to
be treated as a mandatory constraint (i.e., as a requirement).

– Design constraint is any design decision that has been selected to be treated as a
mandatory constraint (i.e., as a requirement).

– Implementation constraint is any implementation decision that has been
selected to be treated as a mandatory constraint (i.e., as a requirement). Examples
include the selection of a programming language or a standard way of using the
programming language (e.g., a “safe” and /or “secure” subset of the language
constructs).

• Architectural mechanism is an architectural choice that provides a means for fulfilling
one or more related requirements.
This definition does not include only the software architecture. From a system architect’s
viewpoint, architectural mechanisms may be implemented by one or more of the system’s
components (including hardware, software, data, personnel, and documentation). Thus,
architectural mechanisms may include training materials and operating procedures for
both system-internal and system-external personnel. This systems-level viewpoint

CMU/SEI-2003-TN-033 23

recognizes that safety, security, and survivability cannot be achieved using only
hardware, software, and data. All components of the system (including people, their
procedures, and the training they receive) must be included to achieve a required level of
safety, security, and survivability.

3.2 Quality Requirements and Quality Factors
At the highest level of abstraction, quality goals can be for either a quality factor or a quality
subfactor. For example, there may be quality goals concerning safety, security, and
survivability. Examples of safety goals might be, “The system must be safe” or “The system
must not injure its users.” Below this level, there may be more detailed quality policies that
establish the associated quality goal by mandating a system-specific quality criterion (or
criteria type) for the associated quality factor or subfactor. An example of a safety policy
might be, “The automated tape library’s moving parts shall not injure the tape technician
when performing his or her duties. Finally, a specific and verifiable quality requirement
consists of a combination of a quality criterion with a mandatory minimum level of an
associated quality metric. Thus, the previous safety policy becomes a safety requirement
when it is rewritten as follows: “At least 99.99% of the times that the tape technician
performs the ‘remove tape’ use case, the automated tape library’s moving parts shall not
move (and thereby potentially cause an injury to the tape technician).”

Figure 7 relates the concepts of requirements to the concepts of the quality model.5 It also
provides a convenient way to partition work, with management setting quality goals and
policy, while the requirements team (with input from the safety and security teams) specifies
the associated quality requirements.

Quality Goal

Quality Policy

specifies

establishes

Quality Factor

Quality Subfactor

Quality Requirement

Quality Criterion

Quality Metric

measures

states importance
of achieving

mandates
desired is judged

by

is measured
by

Figure 7: Relationships from Requirements Model to Quality Model

5 The left side of Figure 7 comes from the left side of Figure 6, and the right side of Figure 7 comes

from Figure 1.

24 CMU/SEI-2003-TN-033

As illustrated at the top of Figure 8, quality factors characterize different aspects of the
system’s quality and quality requirements specify different aspects of the system’s quality by
specifying levels of the associated quality factors and subfactors. Thus, safety requirements
specify mandatory levels of safety, security requirements specify mandatory levels of
security, and survivability requirements specify mandatory levels of survivability. Specifying
these requirements is done by specifying an associated quality criterion and an associated
minimum value for a quality metric. This information model thus pulls together parts of
previous figures.

Figure 8 shows how the specific quality requirements of this technical note relate to their
associated quality factors, quality criteria, and quality metrics that are described in the
previous section.6

Safety Security

Quality Requirement

Quality Criterion Quality Metric

Quality Factor

specifies
a minimum
value of a

specifies
a

has acharacterizes
a

System

specifies
the quality

of a

characterizes
the quality of

a

specifies
levels of

Survivability

Security RequirementSafety Requirement Survivability
Requirement

Quality SubfactorDependability

Dependability Requirement

Figure 8: Relationships from Quality Requirements to Quality Model

6 Figure 8 is composed of bits of Figure 1, Figure 5, and the list of usage-oriented quality factors.

CMU/SEI-2003-TN-033 25

3.3 Example Quality Requirements

To make the previous theoretical discussion more specific, consider those quality criteria
associated with the integrity subfactor of the security quality factor. Quality criteria types
describing integrity could include the following:

• Protect Transmissions from Corruption

• Detect Corruption of Transmitted Data

• React to Corruption of Transmitted Data

• Protect Online Stored Data from Corruption

• Detect Corruption of Online Stored Data

• React to Corruption of Online Stored Data

• Ensure Proper Restoration of Data and Software in Case of Corruption

• Protect Hardware Components from Corruption

• Protect Software Components from Corruption

• Protect Personnel Components from Corruption

An example of a parameterized version of the first quality criteria type above could be stated
as follows:

• “The A protects B transmissions over C networks from D corruption by E attacks (or E
attackers),” in which the preceding parameters can be replaced as follows:

— A can be replaced with the following: business, center, application, or component.

— B can be replaced with the following: a specific, personal, business confidential,
classified, or all.

— C can be replaced with the following: all, public, or internal.

— D can be replaced with the following: creation, modification, deletion, replay, or all.

— E can be replaced with the following: all, sophisticated, or unsophisticated.7

Thus, a specific integrity quality criterion for protecting transmissions from corruption could
be written as follows: “The application protects all personal transmissions over all public
networks from all types of corruption by unsophisticated attacks.” An example of an integrity
quality criterion for protecting data stored online from corruption might be, “The application
protects stored customer information including account balances from unauthorized
modification by sophisticated attacks.”

7 These terms (e.g., unsophisticated attack) must be officially defined in some sort of project

glossary. There are also other possible decompositions besides the sophistication of the attack
including known versus unknown attacks (e.g., viruses).

26 CMU/SEI-2003-TN-033

Whereas functional requirements tend to be binary and are specified as either all or nothing,
quality requirements are specified using a scale of measurement. For example, the
performance quality subfactor of throughput is typically specified in terms of number of
transactions per unit time, while the quality subfactor of response time is typically specified
in terms of seconds elapsed. Similarly, the scale of measurement for the integrity example in
the previous section could be either of the following:

• average percent of transmissions protected per unit time under given conditions

• average number of transmissions corrupted per unit time under given conditions

If a quality criterion for data integrity is, “The application protects personal transmissions
over all public networks from corruption by unsophisticated attacks,” then the associated
quality metric might be “average number of corruptions per hour.” By providing a minimum
acceptable level of this quality metric, we get the following data-integrity requirement: “At
least 99.9% of the time, the application shall protect personal transmissions over all public
networks from corruption by one hour of unsophisticated attacks.”

To make the preceding requirement verifiable, it is necessary to require a percentage of the
time that transmissions are successful (i.e., the security test fails to corrupt the transmission)
as well as a specific attack load. This information is intended for testing (verification)
purposes only and may not correspond to the application’s actual future attack load, which
most likely will be difficult or impossible to estimate accurately. This attack load needs to
include the attacker’s level of effort (“one hour”) as well as an indication of the attacker’s
expertise and resources (“unsophisticated attack”) that would be needed for the attack to be
successful.

3.4 Summary
The preceding section has documented the different kinds of requirements and the way that
quality requirements are related to their corresponding quality factors and subfactors. With its
figures and definitions, this section leads to the following conclusions:

• Quality requirements are closely related to the corresponding components of a quality
model.

• Quality requirements are made specific and verifiable by being based on a combination
of quality criteria and quality metrics.

CMU/SEI-2003-TN-033 27

4 Engineering Models

This section documents the basic fundamental concepts underlying safety, security, and
survivability engineering in terms of information models (UML class diagrams) and
associated definitions. Building on the previous models, this section clarifies the similarities
of and differences between these three disciplines. It also provides the basis for
recommending their unification under the new umbrella discipline of defensibility
engineering.

4.1 Information Model for Safety Engineering
Safety goals state the importance of achieving a target level of the quality factor safety.
Safety policies establish safety goals by mandating desired safety criteria. Safety
requirements (a kind of quality requirement) specify the safety policies by specifying
mandatory amounts of safety in terms of specific safety criteria with an associated minimum
acceptable measurement. Safety requirements thus require the elimination or reduction of
safety risks. These safety risks are due to hazards, which provide an organizational
framework to similar accidents that can cause harm to valuable system assets. Safety
requirements in turn are fulfilled by safety architectural mechanisms (safeguards), which are
intended to prevent or reduce vulnerabilities of the assets to accidental harm.

These basic concepts and their relationships are illustrated in Figure 9, an information model
for safety engineering.

28 CMU/SEI-2003-TN-033

Asset

Accident

Hazard

Safety Risk

Safety Requirement

Safety Mechanism

Vulnerability

System

Harm

is due to

fulfills

eliminates
or reduces

exists because
of an actual or

potential

causes

exists
to an

is valuable to a

is caused
to an

Safety

Safety Goal

states importance of
achieving a target level of

specifies a
mandatory
amount of

specifies

Safety Policy

establishes mandates desired
criterion of Quality

Factor

exploits

may
result in

requires
elimination or
reduction of

People Property

Data Hardware Software

System
Component

Environment

External
Property

Data Physical
Property

Money

Quality
Requirement

Architectural
Mechanism

Environment

includes
relevant states

of the

includes
relevant states

of the

describes a
quality attribute

of a

Figure 9: Information Model for Safety Engineering

Figure 9 shows how the important concepts from safety engineering (e.g., asset, accident,
hazard, risk, vulnerability) relate to the important terms from requirements engineering (e.g.,
safety goal, policy, and requirement), quality engineering (e.g., safety), and architecture (e.g.,
safety mechanism). It also explains and justifies the common safety-analysis approach of
analyzing risks in terms of vulnerabilities, hazards, accidents, and assets.

CMU/SEI-2003-TN-033 29

The concepts documented in Figure 9 can be defined as follows:

• Accident (also known as mishap) is an unplanned and unintended (but not necessarily
unexpected) event or series of related events resulting in harm to an asset [ESA 97, IEEE
94, Leveson 95, NASA 97, UK 96].
Accidents can be classified as follows:

— Health accidents cause significant harm (e.g., illness, injury, or death) to people.
Although safety engineering tends to emphasize the protection of people from
accidental harm, its scope also includes property and the environment.

— Property accidents result in damage to or destruction of properties.
The emphasis is on external properties, but system components should not be
ignored.

— Environment accidents result in damage to the environment.

• Asset (with regard to safety engineering) is anything of value that should be protected
from accidental harm.
An asset requires protection because it is the potential subject of an accident. Assets can
be any of the following:

— People (also known as victims) are human beings who are harmed (i.e., develop
occupational illnesses, become injured, or are killed) as a result of accidents. People
can be classified as follows [Perrow 84]:

- First-party victims are victims who are part of the system.
Common examples include operators, managers, and maintenance personnel.

- Second-party victims are victims who are external to the system but who
intentionally interact with it.
Common examples include users and suppliers.

- Third-party victims are victims who are members of the general public who
are innocent bystanders having no intentional involvement with the system.

- Fourth-party victims are victims who are members of future generations
(primarily victims of radiation, toxic chemicals, or pathogens).
Common examples include unborn fetuses, would-be children that parents
will not be able to conceive, deformed children, and future generations that
must live in contaminated environments.

— Property is any valuable property that may be damaged or destroyed if an accident
occurs.
In an automotive-control example, property could include the car itself and anything
that it might damage while being driven (such as other vehicles, buildings, signage,
telephone poles, traffic lights, and street lights).
Property includes the following:

– External property is personal, commercial, and civic property that exists
outside the system.
(Common examples include data, money, and physical property such as
buildings and facilities.)

30 CMU/SEI-2003-TN-033

– System component is any property that is a component of the system (including
data, hardware, and software components).

— Environment is the physical environment that may be damaged if an accident
occurs. Continuing with the automotive-control example, the environment is the
physical environment that can be harmed by accidents that release fluids (e.g.,
gasoline, coolant, hydraulic fluid) or start a roadside brush fire.

• Harm (when dealing with safety requirements) is significant damage to or a negative
impact (i.e., negative outcome) associated with an asset due to an accident. Harm must be
sufficiently significant to warrant relatively prompt remedial action to prevent such harm
in the future.
Harm is due to an accident when dealing with safety engineering, is due to an attack
when dealing with security engineering, and may be due to both accidents and attacks
when dealing with survivability engineering.

• Hazard is a situation that increases the likelihood of one or more related accidents [ESA
97, Leveson 95, NASA 97, UK 96].
A hazard thus consists of hazardous states (i.e., a set of one or more incompatible system
conditions or states, possibly including one or more conditions in the system’s
environment) together with the accident (type) they may cause.
Potential hazards should be identified early during requirements engineering or
architecting, while actual hazards may be identified in existing systems. The following
are two examples of such potential and actual hazards with their various components
identified:
— Potential hazard: The subway doors are opening, open, or closing while the subway

is moving (hazardous conditions), which may result in passengers and/or their
property (assets) falling out (accident) and being injured, killed, or damaged (harm).

— Actual hazard: Riders and/or their property within the doorway when the subway
doors are closing (hazardous conditions) may result in the passengers and their
property (assets) being crushed (accident) and thus injured, killed, or damaged
(harm).

Examples of primarily internal hazardous conditions include dangerous conditions
involving hazardous chemicals, high voltages, and robotic-controlled moving machinery.
A more specific example would be a moving elevator with open doors, two incompatible
states of an elevator. Examples of primarily external hazardous conditions include fires
and such natural disasters as earthquakes, floods, hurricanes, and tornadoes.8

• Safety is the quality factor signifying the degree to which accidental harm is prevented,
detected, and properly reacted to.

• Safety goal is a quality goal that states the importance of achieving a target level of
safety or one of its subfactors.

• Safety policy is a quality policy that mandates a system-specific quality criterion for
safety or one of its subfactors.

8 Safety engineering is clearly related to disaster management.

CMU/SEI-2003-TN-033 31

• Safety mechanism (also known as a safeguard or safety tactic) is an architectural
mechanism (i.e., strategic decision) that helps fulfill one or more safety requirements
and/or reduces one or more safety vulnerabilities.

• Safety requirement is a quality requirement that specifies a required amount of safety
(typically a subfactor of safety) in terms of a system-specific criterion and a minimum
mandatory level of an associated quality metric that is necessary to meet one or more
safety policies.
System-specific criteria can also involve the system’s environment, the infrastructure in
which it exists, and any assumptions about the system.

• Safety risk is the potential risk of harm to an asset due to accidents.
Safety risk is defined as the sum (over all relevant hazards) of the products of the
following two terms: (1) the largest negative impact of the harm to the asset (i.e., its
criticality, severity, or damage) times (2) the likelihood that the hazard will result in an
accident [Leveson 95].
Using the basic theory of conditional probability, the likelihood that a hazard results in an
accident causing harm can be calculated/estimated as the product of the following terms:
(1) the likelihood that the hazard exists, (2) the likelihood that other necessary conditions
also exist (also known as latency), and (3) the likelihood that the hazard will lead to an
accident if it and the other necessary conditions exist (also known as danger).
Potential safety risks should be identified early during requirements engineering or
architecting, while actual safety risks may be identified in existing systems. The
following are two examples of such potential and actual safety risks with their various
components identified:

— Potential safety risk: Unless one or more safety mechanisms are installed (potential
vulnerability) to prevent the doors from opening when the subway is moving
(hazardous conditions), there is an unacceptably high probability (likelihood) that
passengers and/or their property (assets) will fall out (accident) and be injured, killed,
or damaged (harm).

— Actual safety risk: Due to a lack of sensors and associated software (vulnerability)
to detect persons and their property within the doorway when the subway doors are
closing (hazardous conditions), there is a significant probability (likelihood) that
passengers and/or their property (assets) will be crushed (accident) and thus injured,
killed, or damaged (harm).

• Safety vulnerability is a weakness in the system that increases the likelihood that an
accident will occur and cause harm.
This weakness may be in the architecture, design, implementation, integration,
deployment, and configuration of the system. Examples of safety vulnerabilities include
the lack of safety features, the lack of warning mechanisms, or defects that could cause
failures.

32 CMU/SEI-2003-TN-033

4.2 Information Model for Security Engineering
Security goals state the importance of achieving a target level of the quality factor security.
Security policies establish security goals by mandating desired security criteria. Security
requirements (a kind of quality requirement) specify the security policies by specifying
mandatory amounts of security in terms of specific security criteria with an associated
minimum acceptable measurement. Security requirements thus require the elimination or
reduction of security risks. These security risks are due to threat of attack by attackers, which
are intended to cause harm to valuable system assets. Security requirements, in turn, are
fulfilled by security architectural mechanisms (countermeasures), which are intended to
prevent or reduce vulnerabilities of the assets to accidental harm.

These basic concepts and their relationships are illustrated in Figure 10, an information
model for security engineering.

CMU/SEI-2003-TN-033 33

Attack

Attacker

Threat

Security Risk

Security Requirement

Security Mechanism

Vulnerability

Harm

causesexists
to an

is caused
to an

is due to

exists because
of an actual
or potential

fulfills

mounts

desires

Security Goal

specifies

Security Policy

establishes

exploits

may
result in

includes the
existence
of relevant

eliminates
or reduces

requires
elimination or
reduction of

Asset System
is valuable to a

People Property Service

Data Hardware Software

System
Component

Environment

External
Property

Data Physical
Property

Money

Security

states importance of
achieving a target level of

specifies a
mandatory
amount of

mandates desired
criterion of Quality

Factor

describes a
quality attribute

of a

Environment

includes
relevant states

of the

Quality
Requirement

Architectural
Mechanism

Figure 10: Information Model for Security Engineering

Figure 10 shows how the important concepts from security engineering (e.g., asset, attack,
attacker, threat, risk, security policy, vulnerability) relate to the important terms from
requirements engineering (e.g., security goal, policy, and requirement), quality engineering
(e.g., security), and architecture (e.g., security mechanism). It also explains and justifies the
common security-analysis approach of analyzing risks in terms of vulnerabilities, threats,
attacks, and assets. Finally, its contents and topology show the clear relationship between
safety and security engineering.

34 CMU/SEI-2003-TN-033

The concepts documented in Figure 10 can be defined as follows:

• Asset (with regard to security engineering) is anything of value that should be protected
from malicious harm.
With regard to security engineering, an asset requires protection because it is the
potential target of attack. In security engineering, the emphasis tends to be on data assets
(e.g., integrity and privacy), but security also includes software assets (e.g., integrity) and
services (e.g., theft and denial of services). Physical security also deals with protecting
people and other property including hardware and facilities.

• Service is any function or capability provided by the system.

• Attack (also known as security breach) is an attacker’s unauthorized attempt to cause
harm to an asset (i.e., violate the security of the system, bypass security mechanisms).
An attack may be either successful or unsuccessful. Due to their malicious nature, most
attacks are cybercrimes, which are crimes (e.g., theft of money or services, fraud,
espionage, extortion, vandalism, terrorism, child pornography) carried out using
computer resources. However, some unauthorized misuses of software-intensive systems
are merely unethical or malfeasant rather than criminal.

• Attacker (also known as adversary) is an agent (e.g., person or program) that causes an
attack due to the desire to cause harm to an asset.

• Harm (when dealing with security requirements) is a negative impact associated with an
asset due to an attack. Harm is due to an accident when dealing with safety requirements,
is due to an attack when dealing with security requirements, and may be due to both
accidents and attacks when dealing with survivability requirements.

• Threat is a situation that increases the likelihood of one or more related attacks.
The threat consists of the existence of one or more potential attackers together with a set
of one or more system conditions or states that provide motivation to the attackers. Thus,
the threat of theft may result in an actual theft (attack), and threats correspond to attacks
that are typically classified by attacker motivation (e.g., theft) as opposed to technique
(e.g., spoofing). In some books and articles, the different but highly related terms
“attack” and “threat” are sometimes confounded by being used as synonyms [Tulloch
03].

• Security is the degree to which malicious harm to a valuable asset is prevented, detected,
and properly reacted to. Security is thus the quality factor that signifies the degree to
which valuable assets are protected from significant threats posed by malicious attackers.

• Security goal is a quality goal that states the importance of achieving a target level of
security or one of its subfactors [Lamsweerde 00].

• Security policy is a quality policy that mandates a system-specific quality criterion for
security or one of its subfactors. System-specific quality criteria can also involve the
system’s environment, the infrastructure in which it exists, and any assumptions about
the system.

CMU/SEI-2003-TN-033 35

• Security mechanism (also known as countermeasure or security tactic) is an architecture
mechanism (i.e., strategic decision) that helps fulfill one or more security requirements
and/or reduces one or more security vulnerabilities.
Security mechanisms can be implemented as some combination of hardware or software
components, manual procedures, training, etc. It should also be noted that the same
architectural mechanism (e.g., redundancy) can often be used as a safety, security, and
survivability mechanism.

• Security requirement is a quality requirement that specifies a required amount of
security (actually a quality subfactor of security) in terms of a system-specific criterion
and a minimum level of an associated quality metric that is necessary to meet one or
more security policies.

• Security risk is the potential risk of harm to an asset due to attacks.
Security risk is the sum (over all relevant threats) of the negative impact of the harm to
the asset (i.e., its criticality) multiplied by the likelihood of the harm occurring.
Using the basic theory of conditional probability, the likelihood that harm results from an
attack can be calculated/estimated as the product of the following terms: (1) the
likelihood that the threat of attack exists, (2) the likelihood that other necessary
conditions (e.g., vulnerabilities) also exist, and (3) the likelihood that the threat will lead
to a successful attack if it and the other necessary conditions exist. The term “likelihood”
is used rather than probability because the probability is typically not accurately or
precisely known but rather only grossly estimated (“guesstimated”).

• Security vulnerability is any weakness in the system that increases the likelihood that a
successful attack (i.e., one causing harm) will occur.
Security vulnerability is not restricted to only those vulnerabilities due to programming
problems. It also includes vulnerabilities in the system’s architecture and design, how the
system is installed and configured, how its users are trained, etc. The vulnerabilities of a
system may involve its data components, hardware components, software components,
human-role components (i.e., wetware or personnel), and document components (i.e.,
paperware).

4.3 Information Model for Survivability Engineering
Survivability goals state the importance of achieving a target level of the quality factor
survivability. Survivability policies establish survivability goals by mandating desired
survivability criteria. Survivability requirements (a kind of quality requirement) specify the
survivability policies by specifying mandatory amounts of survivability in terms of specific
survivability criteria with an associated minimum acceptable measurement. Survivability
requirements thus require the elimination or reduction of survivability risks. These
survivability risks are due both to the hazard of accidents and the threat of attacks by
attackers, which could cause harm to valuable system assets. Survivability requirements, in
turn, are fulfilled by survivability architectural mechanisms, which are intended to prevent or
reduce the vulnerabilities of the assets to accident and attack.

36 CMU/SEI-2003-TN-033

These basic concepts and their relationships are illustrated in Figure 11, an information model
for survivability engineering.

Asset

Accident

Hazard

Survivability Risk

Survivability Requirement

Survivability Mechanism

Vulnerability

System

Harm

is due to

requires
elimination or
reduction of

fulfills

exists because
of an actual
or potential

is valuable to a

is caused
to an

Attack

Threat

Survivability Goal

causes

may
result in

specifies

Essential Service

Service

Survivability Policy

establishes

exploits

exists
to an

eliminates
or reduces

Survivability

states importance of
achieving a target level of

specifies a
mandatory
amount of

mandates desired
criterion of

Quality
Factor

describes a
quality attribute

of a

is due to

may
result in

causesexploits

Quality
Requirement

Architectural
Mechanism

Figure 11: Information Model for Survivability Engineering

The similar content and topology of Figures 9, 10, and 11 show the clear and close
relationships between survivability, safety, and security engineering. Figure 11 also justifies
the common survivability-analysis approach of analyzing risks in terms of vulnerabilities,
threats, hazards, and assets. In addition, it clearly shows how survivability is restricted to
essential services rather than the other types of assets.

CMU/SEI-2003-TN-033 37

The additional concepts in Figure 11 that have not been defined in previous subsections
include the following:

• Essential service is any mission-critical service that must continue to be provided in
spite of either accident or attack.

• Survivability is the degree to which essential mission-critical services continue to be
provided in spite of accidental and malicious harm.

• Survivability goal is a quality goal that states the importance of achieving a target level
of survivability or one of its subfactors.

• Survivability policy is a quality policy that mandates a system-specific quality criterion
for survivability or one of its subfactors.

• Survivability mechanism is an architecture mechanism (i.e., strategic decision) that
helps fulfill one or more survivability requirements and/or reduces one or more
survivability vulnerabilities.

• Survivability requirement is a quality requirement that specifies a required amount of
survivability in terms of a system-specific criterion and a minimum level of an associated
quality metric that is necessary to meet one or more survivability policies.
Survivability requirements typically require the identification of essential mission-critical
services (possibly as a function of system state and time) that must be provided without
interruption, the identification of acceptable degraded modes of operation, the
prioritization of the remaining alternative services, and the establishment of the time
required for full service to be restored.

• Survivability risk is the potential risk of harm to an asset due to the sum (over all
relevant hazards and threats) of the negative impact of the harm to the asset (i.e., its
criticality) multiplied by the likelihood of the harm occurring.

• Survivability vulnerability is a weakness in the system that increases the likelihood that
an accident or a successful attack will occur and stop an essential service from being
provided.

4.4 Summary
The preceding section has documented the important concepts underlying safety, security,
and survivability engineering. With its figures and definitions, this section leads to the
following conclusions:

• The information models of safety, security, and survivability engineering are remarkably
similar in both content and topology.

• Because of this consistency, safety, security, and survivability requirements can be
elicited and analyzed in terms of a risk-oriented, asset-based approach that takes into
account the associated hazards and threats from which these assets must be protected.

38 CMU/SEI-2003-TN-033

• Survivability engineering is nearly (but not quite) the combination of safety and security
engineering. The primary difference lies in the type of asset to be protected (in this case,
critical services that need to be maintained).

CMU/SEI-2003-TN-033 39

5 Similarities and Differences

As shown in the previous section, safety, security, and survivability engineering are very
similar. This section summarizes these similarities as well as the differences and will provide
a basis for the specific recommendations made in Section 6.

5.1 Similarities
As illustrated in Figures 9, 10, and 11, the information models for safety, security, and
survivability have many similarities in contents and topology [Leveson 95]. The following
subsections discuss these similarities in more detail.

5.1.1 Similarities Common to All Requirements

As pointed out in Figure 6, all quality requirements can be placed into the following
hierarchical chain:

1. goals that drive policies
2. policies that drive requirements
3. requirements that drive architectural mechanisms
4. architectural mechanisms that fulfill requirements

This hierarchy applies to all quality factors and does not signify anything special about safety,
security, and survivability engineering.

5.1.2 Similarities Common to All Quality Requirements

As pointed out in Figure 8, all quality requirements are related to quality factors. The
relationships between requirements and quality factors also do not signify anything special
about safety, security, and survivability.

5.1.3 Specific Similarities

Whereas the previous similarities were general, the following similarities are specific to
safety, security, and survivability engineering. On Figures 9, 10, and 11, these similarities
include the following:

All three disciplines

— require the prevention or reduction of risks associated with hazards and/or threats

— require the recognition and response to associated accidents and attacks

40 CMU/SEI-2003-TN-033

— exist to prevent, detect, or react to harm that may occur to some asset

— address potential vulnerabilities of assets to harm

5.2 Differences
The following subsections discuss the essential and accidental differences between the
information models underlying safety, security, and survivability engineering.

5.2.1 Quality Factor Subclasses and Subfactors

Safety, security, and survivability are quality factors that differ in that they currently have
quite different subclasses and quality subfactors:

• Different subclasses: Safety and security have different subclasses, whereas
survivability does not seem to have subclasses. The subclasses of safety and security are
both essentially based on the types of assets to which harm can occur.

— Safety subclasses

– health safety

– property safety

– environmental safety

— Security subclasses

– communications security

– data security

– emissions security (TEMPEST)

– personnel security

– physical security

• Different subfactors: Security and survivability have different subfactors, whereas
safety does not seem to have subfactors. The subfactors of security and survivability do
not seem closely related.

— Security subfactors

– access control

- identification

- authentication

- authorization

– attack/harm detection

– availability protection

– integrity

- data integrity

- hardware integrity

CMU/SEI-2003-TN-033 41

- personnel integrity

- software integrity

- immunity

– nonrepudiation

– physical protection

– privacy

- anonymity

- confidentiality

– security auditing

– system adaptability

— Survivability subfactors

– prevention

– detection

– reaction

Other than the historical accident that these three disciplines have been developed largely
independently of one another and that all three have been largely driven by the architectural
mechanisms that have been used to fulfill them, there seems to be little reason why the
preceding three decompositions should be so different. Although prevention is preferable to
cure, it is clear that prevention has been strongly emphasized in all three disciplines, while
detection and especially response have been highly under-emphasized. Thus, most of the
quality subfactors of security can be placed under the banner of prevention.

5.2.2 Assets

Safety, security, and survivability tend to emphasize the protection of different kinds of
valuable assets from different kinds of harm.

• Safety emphasizes protecting people from harm, although it also can and should protect
property and the environment from harm.

• Security emphasizes protecting property (data) and services (e.g., denial of service) from
harm, although it also can and should protect people (e.g., physical protection) and other
kinds of property (e.g., hardware theft, facility sabotage, and software integrity from
viruses).

• Survivability is currently restricted to protecting essential services from harm. Yet, the
meaning of “essential” is sometimes neither absolute nor constant. There may be multiple
valid sets of services with a sequence of priorities that may change as external
circumstances change [Knight 00, Knight 03]. Also, the safety and security of other
assets may directly affect the system’s ability to provide essential services and therefore
fulfill its primary mission.

Nevertheless, these differences are somewhat minimized when safety and security properly
address all types of valuable assets. However, protecting the environment from malicious

42 CMU/SEI-2003-TN-033

harm does not seem to be within the current scope of security, although acts of eco-terrorism
and international terrorism could well change that.

5.2.3 Accidents vs. Attacks

Because of the separation of scope of safety and security into accidental and malicious harm,
safety and security deal with different (though related) types of incidents, and survivability
deals with both kinds of incidents.

• Safety requirements protect assets from harm due to accidents.

• Security requirements protect assets from harm due to attacks.

• Survivability requirements protect assets (essential services) from harm due to both
accidents and attacks.

As illustrated in Figure 12, the source of relevant harm differs with respect to the different
kinds of requirements:

• Safety engineering deals with accidents that are due to human error (e.g., operator or
user error), technological failures (e.g., failures resulting from defects), and natural
causes such as science (e.g., the physics of electricity, the chemistry of explosives),
engineering (e.g., normal “wear and tear”), or “acts of God” (e.g., natural disasters).

• Security engineering deals with attacks that are mounted by attackers (e.g., people,
organizations, software tools).

• Survivability engineering deals with harm due to both accidents and attacks.

Asset

Harm

Accident Attack

Attacker
Human
Error

Technological
Failure

Natural
Cause

Data
Defect

Hardware
Defect

Software
Defect

Procedural
Defect

mountscauses
causes causes

causes causes

is caused to an

causescauses causes causes

Figure 12: Accidents vs. Attacks

CMU/SEI-2003-TN-033 43

5.2.4 Hazards vs. Threats

Because of the separation of scope of safety and security into accidental and malicious harm,
safety and security deal with different types of dangers, and survivability deals with both.
Figure 13 illustrates the following relationships:

• Safety requirements protect assets from harm due to hazards.

• Security requirements protect assets from harm due to threats.

• Survivability requirements protect assets (essential services) from harm due to both
hazards and threats.

Hazard

Threat

System

Environment

include relevant
states of the

include relevant
states of the

Attacker

includes the
existence
of relevant

Accident

Attack

may result in

may result in

Figure 13: Hazards vs. Threats

44 CMU/SEI-2003-TN-033

6 Recommendations and Future Work

6.1 Specific Recommendations
The following recommendations are based on the preceding observations concerning
similarities and differences among the fundamental concepts underlying safety, security, and
survivability engineering.

6.1.1 Use Common Concepts and Terminology

Where appropriate and practical, use common concepts and terminology when performing or
describing safety, security, and survivability engineering [Mead 03]. For example, this
common terminology should include such common concepts as asset, harm, accident, attack,
hazard, threat, risk, vulnerability, requirement, policy, and goal. Add new concepts to clarify
the relationships between highly similar terms (such as accident, attack or hazard, and threat).
Clearly define these concepts so that their similarities and differences are obvious. Then,
codify these definitions in standards, books, and training materials.

6.1.2 Add Defensibility as a New Quality Factor

As illustrated in Figure 14, create a new abstract quality factor called defensibility that is a
subclass of dependability and which, in turn, is subclassed into the three quality factors of
safety, security, and survivability. Defensibility can act as a focal point for common concepts
and related processes (e.g., asset-based risk analysis) that can be inherited by its three
subclasses.

Safety

Security

Survivability

Defensibility
Quality Factor Dependability

Availability

Reliability

Robustness

Figure 14: Defensibility as a Kind of Dependability

There is a trend to combine safety and security engineering into integrity assurance [ISO 96,
Jarzombek 03]. However, integrity has a very specific meaning within security engineering
(i.e., the integrity subfactor of security), so the term “integrity” is too specific and the more

CMU/SEI-2003-TN-033 45

general term “defensibility” is a more appropriate term for the combination of safety,
security, and survivability.

6.1.3 Decompose Defensibility

Decompose defensibility (and therefore safety, security, and survivability) into a standard set
of quality subfactors: asset protection, incident detection, incident reaction, and system
adaptation. These quality subfactors can then be decomposed into a standard set of lower
level quality subfactors that are essentially common to safety, security, and survivability.

By explicitly decomposing safety, security, and survivability into asset protection, incident
detection, incident reaction, and system adaptation as illustrated in Figure 15, we obtain the
following benefits:

• This decomposition provides welcome standardization across the three kinds of
defensibility.

• In light of the historic emphasis on asset protection, this decomposition helps to ensure
that the other three subfactors are not forgotten and that a complete set of defensibility
requirements are produced.

• This decomposition enables the different kinds of defensibility to have their own
additional factor-specific subfactors (e.g., availability protection, integrity, privacy, etc.,
as subfactors of asset protection).

• This decomposition can be extended with new subfactors as they are identified.

Figure 15 illustrates this standard decomposition.

Safety

Security

Survivability

Defensibility

Incident Identification

Incident Logging

Incident Analysis

System Adaptation

Trend Analysis

Countermeasure Improvement

Asset Protection

Incident Reaction

Incident Detection

Incident Reporting

Service Degradation

Service Restoration

Prosecution

Factor-Specific Subfactors

Safeguard Improvement

Figure 15: Standard Decomposition of Defensibility into Quality Subfactors

46 CMU/SEI-2003-TN-033

The subfactors illustrated in Figure 15 can be defined as follows:

• Asset protection (also known as prevention and resistance) is the degree to which assets
are protected from accidents and attacks.
Asset protection includes both the elimination of hazards and threats as well as steps to
minimize the negative outcome should an accident or successful attack occur. Asset
protection can be decomposed into various quality-factor-specific subfactors such as
access control (identification, authentication, and authorization), availability protection,
integrity, nonrepudiation, physical protection, and privacy.

• Incident detection (also known as recognition) is the degree to which relevant accidents
and attacks (or the harm they cause) are recognized as they occur so that the system can
react accordingly (e.g., to maintain essential services, to degrade gracefully).
Incident detection typically involves incident identification and logging. For example, the
recording of attacks can provide legal evidence with which to prosecute attackers. It may
also include the recognition of conditions or events preceding accidents (e.g., hardware
nearing failure) or the detection of attackers collecting information during probes prior to
attacks.

• Incident reaction (also known as recovery) is the degree to which the system responds
(e.g., recovers) after an accident or attack.
Incident reaction can involve incident analysis and reporting, service degradation and
restoration, as well as the prosecution of people causing accidents and attackers mounting
attacks. Service restoration typically involves the establishment of priority-based
recovery approaches so that any essential services that may have been lost or degraded
are recovered before the recovery of any non-essential services that were lost or
terminated.

• System adaptation is the degree to which the system adapts itself (based on current
accidents and attacks) so that in the future it may better protect its assets, detect incidents,
and react to them. System adaptation my involve trend analysis for incidents as well as
the improvement of safeguards and countermeasures.

6.1.4 Include All Types of Valuable Assets

As illustrated in Figure 16, ensure that all relevant assets are considered when developing
defensibility (e.g., safety, security, and survivability) requirements. Consider each kind of
asset, not just the most popular type (e.g., people for safety and data for security). These
concepts now have the following definitions:

• Asset is anything of value that should be protected from harm.

• Harm is significant damage to or negative impact (i.e., negative outcome) associated
with a valuable asset that is due to an incident. Harm can be decomposed according to the
type of asset harmed (e.g., harm to people includes such things as injury, illness, death, or
victimization by a cybercrime) or the type of incident (e.g., harm due to attack may
include exposure of sensitive information). Harm must be sufficiently significant to
warrant relatively prompt remedial action to prevent such harm in the future.

CMU/SEI-2003-TN-033 47

Asset System
is valuable to a

People Property Service

Data Hardware Software

System
Component

Environment

Essential
ServiceExternal

Property

Data Physical
Property

Money

Harm

is caused
to an

Figure 16: Assets and Harm

6.1.5 Incidents

Accidents and attacks are obviously related in that they both cause harm to valuable assets,
which must be protected from them. As illustrated in Figure 17, create a new concept,
“incident,” to act as an abstract superclass for both accident and attack. The resulting
concepts in this inheritance hierarchy now have the following definitions:

• Incident is any event or cohesive collection of related events that may cause harm to a
valuable asset.

— Safety incident is any incident that is unplanned and unintended, although not
necessarily unexpected (i.e., accidental).
– Accident (also known as mishap) is any safety incident that causes harm.

– Near miss is any safety incident that does not cause harm.
— Attack (also known as security breach) is any incident that is both intentional and

unauthorized (i.e., malicious). Thus, an attack is a malicious attempt mounted by an
attacker to violate the security of the system, bypass the system’s security
mechanisms, and cause harm to an asset.
– Successful attack is any attack that causes harm.

– Unsuccessful attack is any attack that does not cause harm.

As illustrated in Figure 17, safety and security have similar generalization subtrees with
“safety incident” corresponding to “attack,” “accident” corresponding to “successful attack,”
and “near miss” corresponding to “unsuccessful attack.” Note also from the above definitions
that all events associated with an incident are not necessarily part of that incident. For
example, typically a series of events occurs that move a system into a hazardous state (more
correctly a set of incompatible states) prior to the occurrence of an accident. Similarly, a

48 CMU/SEI-2003-TN-033

series of exploratory or probing events often occur prior to and leading up to an actual attack
[Allen 01].

may cause

Accident

Vulnerability

Harm

Attack (Security Incident)

may
result inDanger

exploits

Incident

Attacker

mounts

Safety Incident

Near Miss
Unsuccessful

Attack
Successful

Attack

Event

does
not

cause

does
not

cause
causescauses

1..*

Figure 17: Incidents (Accidents and Attacks)

6.1.6 Dangers

As with accidents and attacks, hazards and threats are also obviously related in that both
involve incidents that cause harm to valuable assets. Create a new concept, danger, to act as
an abstract superclass for both hazard and threat. As illustrated in Figure 18, these concepts
now have the following definitions:

• Danger (also known as obstacle) is a situation (i.e., a set of one or more incompatible
conditions or states of the system, possibly including one or more conditions in the
system’s environment) that increases the likelihood of one or more related incidents. As
such, dangers are ways of organizing related categories of incidents.

— Hazard is a danger that may result in one or more related accidents.
— Threat is a danger that may result in one or more related attacks.

CMU/SEI-2003-TN-033 49

Hazard

Threat

may
result in

Danger

Incident

System

Environment

include relevant
states of the

include relevant
states of the

Attacker

include the
existence
of relevant

Figure 18: Dangers (Hazards and Threats)

6.1.7 Exploit Commonality in the Information Models

As illustrated in Figure 19, commonality existing in the preceding diagrams can be combined
to form a single information model for defensibility. Save effort by taking advantage of the
commonality between the models underlying safety, security, and survivability when it comes
to identifying and analyzing the

— assets to protect from harm

— harm that can come to these assets

— incidents (e.g., accidents and attacks) that can cause harm

— dangers (e.g., hazards and threats)

— risks to the assets

— vulnerabilities of the assets

— mechanisms that will protect the assets and fulfill the requirements

50 CMU/SEI-2003-TN-033

Asset

Accident

Hazard

Defensibility Risk

Defensibility
Requirement

Defensibility
Mechanism

Vulnerability

System

Harm

is due to

requires
elimination or
reduction offulfills

exists because of an
actual or potential

is valuable to a

is caused
to an

Attack

Threat

Defensibility
Goal

causes

Defensibility

may
result in

Danger

specifies
specifies a
mandatory
amount of Quality Factor

Defensibility
Policy

establishes mandates
desired

criterion of

exploits Incident

exists
to an

states importance of
achieving a target level of

eliminates
or reduces

Safety

Security

Survivability

People Property Service

Data Hardware Software

System
Component

Environment

Essential
ServiceExternal

Property

Data Physical
Property

Money

Architectural
Mechanism

Quality
Requirement

Non-Functional
Requirement

Requirement

describes a
quality attribute

of a

Attacker

mounts

desires

Environment

includes relevant
states of the

includes the
existence of
a relevant

includes relevant states of the
Safeguard

Countermeasure

Figure 19: Information Model for Defensibility Engineering

CMU/SEI-2003-TN-033 51

6.1.8 Develop a Common Process

The similarities of the information models in Figures 9, 10, and 11 provide justification for
the recommendation in many books and articles that safety and security requirements be
engineered based on the associated risks of dangers to valuable assets [Alberts 03, Firesmith
03c, Herrmann 99, Moffett 03, NASA 97, Peltier 01, UK 96]. If the requirements are too
strong for the risks, then excess money and time are wasted on architectural mechanisms that
are more powerful than needed. If the requirements are too weak for the risks, then dangers
will not be adequately prevented, detected, and/or reacted to. Also, because all three types of
defensibility involve largely the same assets and their related dangers and risks, it makes
sense to engineer these quality factors simultaneously as a group to avoid wasting redundant
effort. Therefore, use the commonality of these information models as a foundation on which
to build a single, common, asset-based, risk-driven danger (hazard/threat) analysis approach
for safety, security, and survivability engineering. For example, the following steps form one
such process when performed iteratively, incrementally, and in parallel with the other
activities and tasks:

1. Integrate defensibility engineering with the rest of the engineering process.

2. Develop a defensibility program plan that includes safety, security, and survivability.

3. Identify and prioritize the valuable assets that are in danger and thus may be
harmed.

4. Set the defensibility goals and policies to protect these assets.

5. Determine the negative impacts that could occur to these valuable assets if the
dangers were to cause incidents (accidents and attacks).

6. Identify and profile potential attackers as well as system-external causes of
accidents (fires, floods, etc.).

7. Identify, categorize, and prioritize the dangers (threats and hazards) that may harm
these valuable assets. Identify and analyze their potential causes.

8. Estimate the associated risks to these valuable assets and prioritize them based on
the extent of the negative impact that can occur and the likelihood of the danger’s
occurrence.

9. In priority risk order, select the relevant quality subfactors of the protection,
detection, and reaction quality subfactors of the safety, security, and/or survivability
quality factors. For example, select authentication or data integrity when dealing
with security.

10. Determine one or more system-specific quality criteria to determine the existence of
the associated quality subfactor.

11. Select the associated quality metric for each criterion and determine a minimum
required level of that quality metric.

52 CMU/SEI-2003-TN-033

12. Identify, analyze, and specify defensibility requirements as combinations of the
quality criterion with a minimum level of the associated quality metric. Perform
tradeoffs between these requirements and other potentially conflicting requirements.

13. Architect mechanisms (safeguards and countermeasures) to fulfill these
requirements.

14. Design and implement these architectural mechanisms.

15. Identify, analyze, and fix any remaining vulnerabilities.

16. Perform verification (e.g., security testing).

17. Obtain certification and/or accreditation.

18. Store evidence of defensibility actions.

19. Analyze and record incidents.

6.1.9 Collocate Requirements

Store the resulting defensibility requirements in the appropriate part of the quality
requirements section of the system requirements specification. Do not store them in three
separate documents that may or may not be used as input to the system architecture and
design. For example, do not rely on the security policy document to store the security
requirements; requirements are not policy, and collocating the security requirements with the
security policies decreases the likelihood that they will drive the architecture and be tested for
consistency with the other requirements.

6.1.10 Engineer Defensibility Requirements and Architecture Early

Do not wait until the rest of the architecture exists and components have been determined
before engineering the safety, security, and survivability requirements and associated
architectural mechanisms. By then, the other requirements will largely be completed, and the
resulting defensibility requirements will not have driven the architecture and will not have
been checked for consistency with the other requirements. It is difficult, costly, and time
consuming to try to add safety, security, and survivability to an existing architecture.

6.2 Future Work
Clarifying terminology is important but by itself is insufficient. Clarifying the terminology
regarding safety, security, and survivability is primarily important because it provides a solid
foundation on which to engineer safety, security, and survivability. It also provides a solid
foundation on which to perform research concerning these three engineering disciplines,
especially if one is to try to take advantage of their commonality.

CMU/SEI-2003-TN-033 53

The contents of this technical note will form the foundation of an SEI internal research and
development (IR&D) effort to identify ways of reusing safety, security, and survivability
requirements as well as recommended processes for eliciting and analyzing such
requirements.

Other future work could include the following:

• Better identify quality subfactors for safety and survivability to the same level of
decomposition as has been done for security.

• Determine the best way that these quality subfactors can be allocated to prevention,
detection, and reaction, given that some of the quality factors seem to fit under more than
one of these three categories.

• Perform further research to determine the best way of dealing with availability (normal
versus accidental loss versus malicious loss via DoS attacks) to minimize overlap
between quality factors.

• Determine the overlap of defensibility architectural mechanisms.

54 CMU/SEI-2003-TN-033

7 Conclusion

As can be seen from the foundational models documented in this technical note, safety,
security, and survivability are very closely related. Safety deals with accidental harm due to
accidents that are typically caused by human errors from carelessness, hardware failures, or
“acts of God,” whereas security deals with malicious harm due to attacks by human or
automated attackers. Survivability deals with both accidental and malicious harm if the harm
is sufficient to adversely affect essential services. All three quality factors are based on the
protection of valuable assets from harm, although each has historically emphasized different
kinds of assets. Safety thus involves the prevention or reduction of hazards, security involves
the prevention or reduction of threats, and survivability involves the prevention or reduction
of both hazards and threats. All three involve the analysis and management of risks based on
potential negative outcomes and the probability of their occurrence. All three also involve
requirements to prevent, reduce, or mandate the proper response or adaptation of the system
to the occurrence of these risks. These requirements are typically fulfilled by appropriate
architectural mechanisms (e.g., safeguards, security practices and countermeasures,
survivability mechanisms) that address potential and actual vulnerabilities.

Safety, security, and survivability requirements can be defined as quality requirements for the
quality factors of safety, security, and survivability, respectively. As such, they can be
organized into associated quality subfactors. They can also be decomposed into two parts: a
quality criterion (a specific description that provides evidence either for or against the
existence of a specific quality factor or subfactor) and a quality metric (a minimum level
based on an associated scale of measurement). In all three cases, the quality criterion
typically involves the asset being protected and the danger (e.g., hazard or threat) from which
it is being protected.

This technical note has provided a relatively formal foundation for safety, security, and
survivability engineering by defining an information model for

• a quality model and its component parts

• requirements with emphasis on quality requirements for safety, security, and survivability

• safety, security, and survivability

This technical note has identified the essential foundational concepts underlying safety,
security, and survivability engineering, provided rigorous definitions for them, illustrated the
important relationships between them, and provided a series of recommendations based on
the commonality between safety, security, and survivability. In so doing, I hope that this
technical note will clarify and standardize the terminology associated with safety, security,

CMU/SEI-2003-TN-033 55

and survivability and will thereby simplify and improve the engineering of complex systems
by improving the consideration of their safety, security, and survivability.

56 CMU/SEI-2003-TN-033

References

URLs are valid as of December 2003.

[Alberts 03] Alberts, Christopher & Dorofee, Audrey. Managing Information
Security Risks: The Octave™ Approach. Boston, MA: Addison
Wesley, 2003.

[Allen 01] Allen, Julia H. The CERT Guide to System and Network Security
Practices. Boston, M.A.: Addison Wesley, 2001.

[Anderson 01] Anderson, Ross. Security Engineering: A Guide to Building
Dependable Distributed Systems. New York, NY: Wiley Computer
Publishing, 2001.

[Barbacci 00] Barbacci, Mario R.; Ellison, Robert J.; Weinstock, Charles B.; &
Wood, William G. Quality Attribute Workshop Participant’s
Handbook (CMU/SEI-2000-SR-001). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2000.
<http://www.sei.cmu.edu/publications/documents/00.reports
/00sr001.html>.

[Boehm 76] Boehm, Barry; Brown, J. R.: & Lipow, M. “Quantitative
Evaluation of Software Quality,” 592-605. Proceedings of the 2nd
International Conference on Software Engineering, San Francisco,
CA, Oct. 13-15, 1976. New York, NY: IEEE Computer Society,
1976.

[Chung 93] Chung, Kyungwha Lawrence. Representing and Using Non-
Functional Requirements: A Process-Oriented Approach (DKBS-
TR-93-1, Ph D dissertation). Toronto, Canada: Department of
Computer Science, University of Toronto, 1993.

[Chung 00] Chung, Kyungwha Lawrence; Nixon, Brian A.; Yu, Eric; &
Mylopoulos, John, Non-Functional Requirements in Software
Engineering. Norwell, MA: Kluwer Academic Publishers, 2000.

CMU/SEI-2003-TN-033 57

[CNSS 03] Committee on National Security Systems (CNSS). National
Information Assurance (IA) Glossary (CNSS Instruction No.
4009). Fort Meade, Maryland: Committee on National Security
Systems (CNSS), National Security Agency (NSA), May 2003.

[Davis 93] Davis, Alan M. Software Requirements: Objects, Functions, and
States, Englewood Cliffs, NJ: Prentice Hall, 1993.

[Ellison 99] Ellison, R. J.; Fisher, D. A.; Linger, R. C.; Lipson, H. F.; Longstaff,
T. A.; & Mead, N. R. “Survivable Systems: An Emerging
Discipline,” 93-116. Proceedings of the 11th Canadian Information
Technology Security Symposium (CITSS). Ottawa, Ontario,
Canada, May 10-14, 1999. Ottawa, Ontario, Canada:
Communications Security Establishment, 1999.

[Ellison 03] Ellison, Robert J. & Moore, Andrew P. Trustworthy Refinement
Through Intrusion-Aware Design (TRIAD) (CMU/SEI-2003-TR-
002). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, March 2003.
<http://www.sei.cmu.edu/publications/documents/03.reports
/03tr002.html>.

[ESA 97] European Space Agency (ESA). Glossary of Terms, Rev. 1 (ECSS-
P-001A). The Netherlands: European Space Agency, 1997.

[Firesmith 02] Firesmith, Donald & Henderson-Sellers, Brian. The OPEN Process
Framework. London, England: Addison-Wesley, 2002.

[Firesmith 03a] Firesmith, Donald G. “Using Quality Models to Engineer Quality
Requirements.” Journal of Object Technology (JOT) 2, 5
(September/October 2003): 67-75. Zurich, Switzerland: Swiss
Federal Institute of Technology (ETH).
<http://www.jot.fm/issues/issue_2003_09/column6>.

[Firesmith 03b] Firesmith, Donald G. “Analyzing and Specifying Reusable
Security Requirements,” 7-11. Requirements Engineering 2003
Requirements for High Assurance Systems (RHAS) Workshop
Proceedings, Monterey, CA, Sept. 9, 2003. Washington, D.C.:
IEEE Computer Society, 2003.

58 CMU/SEI-2003-TN-033

[Firesmith 03c] Firesmith, Donald G. “Specifying Reusable Security
Requirements.” Journal of Object Technology (JOT) 3, 1
(January/February 2004): 61-75.
<http://www.jot.fm/issues/issue_2004_01/column6>.

[Firesmith 03d] Firesmith, Donald. Firesmith’s OPEN Process Framework Website
<http://www.donald-firesmith.com> (2003).

[Herrmann 99] Herrmann, Debra. Software Safety and Reliability, Los Alamitos,
CA: IEEE Computer Society, 1999.

[Hughes 95] Hughes, Larry. Actually Useful Internet Security Techniques,
Indianapolis, Indiana: New Riders, 1995.

[IEEE 94] Institute of Electrical and Electronics Engineers (IEEE). IEEE
Standard for Software Safety Plans, IEEE-Std-1228. New York,
NY: IEEE, 1994.

[ISO 96] International Standards Organization (ISO). System and Software
Integrity Levels, ISO/IEC 15026, Quebec, Canada: ISO, 1996.

[ISO 00] International Standards Organization (ISO). Software Engineering
– Product Quality – Part 1: Quality Model, ISO/IEC 9126-1,
Quebec, Canada: ISO, 2000.

[Jarzombek 03] Jarzombek, Joe. “A Framework for Applying Safety and Security
Practices in Acquisition, Development, and Sustainment: Building
upon Standards and Models to Guide Process Improvement and
Appraisal,” Software Safety Summit, Naval Ordinance Safety and
Security Activity, 7 April 2003. <http://www.ih.navy.mil/summit
/Presentations/FrameworkSafety_Security.ppt>.

[Keller 90] Keller, Steven E.; Kahn, Laurence G.; & Panara, Roger B.
“Specifying Software Quality Requirements with Metrics,” 145-
163. Tutorial: System and Software Requirements Engineering,
Los Alamitos, CA: IEEE Computer Society Press, 1990.

CMU/SEI-2003-TN-033 59

[Knight 00] Knight, John C. & Sullivan, Kevin J. On the Definition of
Survivability (Technical Report CS-TR-33-00). Charlottesville,
VA: University of Virginia, Department of Computer Science,
2000.

[Knight 03] Knight, John C.; Strunk, Elisabeth A.; & Sullivan, Kevin J.
“Towards a Rigorous Definition of Information System
Survivability,” 78. Proceedings of DISCEX 2003. Washington,
D.C., April 2003.

[Lamsweerde 00] Lamsweerde, Axel van & Letier, Emmanuel. “Handling Obstacles
in Goal-Oriented Requirements Engineering.” IEEE Transactions
on Software Engineering 26, 10 (October 2000): 978-1005.

[Leveson 95] Leveson, Nancy. Safeware: System Safety and Computers.
Reading, MA: Addison-Wesley, 1995.

[Lipson 99] Lipson, Howard F. & Fisher, David A. “Survivability – A New
Technical and Business Perspective on Security,” 33-39.
Proceedings of the 1999 New Security Paradigms Workshop.
September 22-24, 1999, Caledon Hills, Ontario, Canada. New
York, NY: ACM, 1999.

[Loucopoulos 95] Loucopoulos, P. & Karakostas, V. System Requirements
Engineering. New York, NY: McGraw Hill, 1995.

[McDermid 91] McDermid, John. “Issues in Developing Software for Safety
Critical Systems.” Reliability Engineering and Systems Safety 32,
1-2 (1991): 1-24.

[McNamara 03] McNamara, Joel. Secrets of Computer Espionage: Tactics and
Countermeasures. Indianapolis, IN: Wiley, 2003.

[Mead 03] Mead, Nancy R. Requirements Engineering for Survivable Systems
(CMU/SEI-2003-TN-013). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, September 2003.
<http://www.sei.cmu.edu/publications/documents/03.reports
/03tn013.html>.

60 CMU/SEI-2003-TN-033

[Moffett 03] Moffett, Jonathan D. & Nuseibeh , Bashar A. A Framework for
Security Requirements Engineering (Report YCS 368). United
Kingdom: Department of Computer Science, University of York,
20 August 2003.

[Mylopoulos 92] Mylopoulos, John; Chung, Lawrence; & Nixon, Brian.
“Representing and Using Non-Functional Requirements: A
Process-Oriented Approach.” IEEE Transactions on Software
Engineering, Special Issue on Knowledge Representation and
Reasoning in Software Development 18, 6 (June 1992): 483-497.

[NASA 97] National Aeronautics and Space Administration (NASA). Software
Safety NASA Technical Standard (NASA-STD-8719.13A).
Washington, D.C.: NASA, 1997.

[Peltier 01] Peltier, Thomas R. Information Security Risk Analysis. Boca
Raton, FL: CRC Press, 2001.

[Perrow 84] Perrow, Charles. Normal Accidents: Living with High-Risk
Technologies. New York, NY: Basic Books, 1984.

[Power 00] Power, Richard. Tangled Web: Tales of Digital Crime from the
Shadows of Cyberspace. Indianapolis, IN: QUE, 2000.

[Roman 85] Roman, Gruia-Catalin. “A Taxonomy of Current Issues in
Requirements Engineering.” IEEE Computer 18, 4 (April 1985):
14-23.

[Schneier 00] Schneier, B. Secrets and Lies: Digital Security in a Networked
World. New York, NY: Wiley, 2000.

[Shema 03] Shema, Mike. Hack Notes: Web Security Portable Reference.
Emeryville, CA: McGraw Hill, 2003.

[Sommerville 92] Sommerville, Ian. Software Engineering, fourth edition. Reading,
Ma: Addison-Wesley, 1992.

[Thayer 90] Thayer, R. & Dorfman, M., eds. System and Software Engineering.
Los Alamitos, CA: IEEE Computer Society Press, 1990.

[Tulloch 03] Tulloch, Mitch. Microsoft Encyclopedia of Security. Redmond,
WA: Microsoft, 2003.

CMU/SEI-2003-TN-033 61

[UK 96] Great Britain, Ministry of Defence. Safety Management
Requirements for Defence Systems (UK MoD Def Stan 00-56).
Glasgow, UK: United Kingdom Ministry of Defence, 1996.

[van der Meulen 00] van der Meulen, Meine. Definitions for Hardware and Software
Safety Engineers. London, England: Springer, 2000.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

December 2003

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Common Concepts Underlying Safety, Security, and Survivability
Engineering

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

Donald G. Firesmith
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2003-TN-033

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This technical note presents a consistent set of information models that identify and define the foundational
concepts underlying safety, security, and survivability engineering. In addition, it shows how quality
requirements are related to quality factors, subfactors, criteria, and metrics, and it emphasizes the similarities
between the concepts that underlie safety, security, and survivability engineering. The information models
presented in this technical note provide a standard terminology and set of concepts that explain the
similarities between the asset-based, risk-driven methods for identifying and analyzing safety, security, and
survivability requirements as well as a rationale for the similarity in architectural mechanisms that are
commonly used to fulfill these requirements.

14. SUBJECT TERMS

safety, safety engineering, safety requirements, security, security
engineering, security requirements, survivability, survivability
engineering, survivability requirements, requirements engineering,
quality requirements, quality model, quality criteria

15. NUMBER OF PAGES

70

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Common Concepts Underlying Safety, Security, and Survivability Engineering
	Contents
	List of Figures
	Acknowledgments
	Executive Summary
	Abstract
	1 Introduction
	2 Quality Model
	3 Requirements Models
	4 Engineering Models
	5 Similarities and Differences
	6 Recommendations and Future Work
	7 Conclusion
	References

