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Executive Summary 

Safety, security, and survivability engineering are three very closely related disciplines that 
could greatly benefit from a widespread recognition of their similarities and differences. Yet 
currently, members of these disciplines have inadequate interaction, either with each other or 
with members of other engineering disciplines. 

This inadequate interaction among disciplines is especially true with regard to the 
engineering of safety, security, and survivability requirements upon which the associated 
architectural mechanisms (e.g., safeguards and countermeasures) should be based. Safety, 
security, survivability, and requirements engineers typically use different terminologies and 
processes that emphasize their differences and obscure their similarities. Far too often, the 
result is requirements specifications that are very incomplete with regard to safety, security, 
and survivability requirements. The “requirements” that are specified typically lack necessary 
characteristics such as verifiability and lack of ambiguity.  

Most books and articles about safety, security, and survivability do not adequately describe 
the requirements for specifying minimum, mandatory amounts of these quality factors. That 
is, they do not address the elicitation, analysis, and specification of such requirements, nor do 
they address what such requirements should look like. Instead of discussing how to specify 
the level of safety, security, and survivability that is needed, they discuss accidents and 
attacks, hazards and threats, risks, vulnerabilities, and the architectural mechanisms that are 
used to prevent, detect, or react to these hazards and threats. 

Although safety, security, and survivability requirements are beginning to attract interest, 
they typically lack any kind of theoretical foundation that defines what they are and how they 
relate to other important concepts. Until recently, the emphasis has clearly been on 
architectural mechanisms and the evaluation of the safety, security, and survivability of 
existing systems and architectures. 

This technical note presents a set of related information models that provides the theoretical 
foundation underlying safety, security, and survivability engineering. It starts by summarizing 
the concept of a quality model and its component parts, three of which are the quality factors: 
safety, security, and survivability. Next, the different types of requirements are described, and 
a framework is provided showing how quality goals, policies, requirements, and architectural 
mechanisms are related to the quality factors and subfactors of the quality model. After the 
general model is summarized, three specific models are provided that relate safety, security, 
and survivability concepts, and the close relationships between the three engineering 
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disciplines are described. In addition to the graphical information models, precise definitions 
are provided for each concept. Finally, this technical note summarizes the similarities and 
differences between the models underlying these three types of engineering disciplines and 
suggests ways to take advantage of this commonality. 

Ultimately, this technical note is about showing (and taking advantage of) the great 
similarities between 

• safety (the degree to which accidental harm is prevented, detected, and reacted to) 

• security (the degree to which malicious harm is prevented, detected, and reacted to) 

• survivability (the degree to which both accidental and malicious harm to essential 
services is prevented, detected, and reacted to) 
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Abstract 

This technical note presents a consistent set of information models that identify and define 
the foundational concepts underlying safety, security, and survivability engineering. In 
addition, it shows how quality requirements are related to quality factors, subfactors, criteria, 
and metrics, and it emphasizes the similarities between the concepts that underlie safety, 
security, and survivability engineering. The information models presented in this technical 
note provide a standard terminology and set of concepts that explain the similarities between 
the asset-based, risk-driven methods for identifying and analyzing safety, security, and 
survivability requirements as well as a rationale for the similarity in architectural mechanisms 
that are commonly used to fulfill these requirements. 
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1 Introduction 

1.1 Challenges 
Software-intensive systems are commonplace, and society relies heavily upon them. Software 
is found in automobiles, airplanes, chemical factories, power stations, and numerous other 
systems that are business and mission critical. We trust our lives, our property, and even our 
environment to the successful operation of these technology-based systems. 

However, software-intensive systems are neither perfect nor invulnerable. They commonly 
fail due to software defects, hardware breakdowns, accidental misuse, and deliberate abuse. 
They are also the target of malicious attacks by hackers, disgruntled employees, criminals, 
industrial spies, terrorists, and even agents of foreign governments and their militaries. Yet, 
failure is becoming less and less of an option as we depend on these systems more and more. 
Thus, safety, security, and survivability engineering are becoming essential components of 
systems engineering.  

Safety, security, and survivability engineering are three very closely related disciplines that 
could greatly benefit from a widespread recognition of their similarities and differences. Yet 
currently, members of these disciplines have inadequate interaction, either with each other or 
with members of other engineering disciplines. 

This inadequate interaction among disciplines is especially true with regard to the 
engineering of safety, security, and survivability requirements upon which the associated 
architectural mechanisms (e.g., security practices such as training and procedures, security 
countermeasures such as encryption and firewalls, and safety mechanisms such as 
redundancy and safety components) should be based. Safety, security, survivability, and 
requirements engineers typically use different terminologies [CNSS 03, van der Meulen 00] 
and processes that emphasize their differences and obscure their similarities. Far too often, 
the result is requirements specifications that are very incomplete with regard to safety, 
security, and survivability requirements. The requirements that are specified typically lack 
necessary characteristics such as verifiability and lack of ambiguity.  

However, most books and articles about safety, security, and survivability do not adequately 
describe the requirements for specifying minimum, mandatory amounts of these quality 
factors or adequately address the stakeholders who care about them. Instead, they typically 
concentrate on accidents and attacks, hazards and threats, risks, vulnerabilities, and especially 
the architectural mechanisms that are used to prevent, detect, or react to these hazards and 
threats. In fact, much of the material published in this area does not even mention the 
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engineering of the associated requirements1 [Alberts 03, Herrmann 99, Hughes 95, 
McNamara 03, Peltier 01, Power 00, Schneier 00, Shema 03, Tulloch 03]. The books that do 
mention requirements typically provide only the briefest and highest level overview without 
clearly saying what such requirements are [Anderson 01, Leveson 95, McDermid 91]. But 
without adequate goal- and policy-based requirements, how can we be sure that the safety, 
security, and survivability mechanisms that we choose to protect us will be adequate or 
appropriate? 

Although safety, security, and survivability requirements are beginning to attract interest, 
they typically lack any kind of theoretical foundation that defines what they are and how they 
relate to other important concepts of safety, security, and survivability engineering. Until 
recently, the emphasis has clearly been on architectural mechanisms (such as security 
countermeasures) and the evaluation of the safety, security, and survivability of existing 
systems and architectures. 

The analysis and specification of safety, security, and survivability requirements is inherently 
difficult. Unlike other requirements that specify a required (and desired) capability, these 
requirements specify what is to be prevented (e.g., accidents and attacks due to safety hazards 
and security threats). These requirements deal with assets that must be protected and with the 
risks of harm to these assets that must be managed. These requirements should be appropriate 
and cost effective; there is no value in specifying a requirement that will cost far more to 
implement than the value of the damage to the asset (and any downstream assets that might 
subsequently be harmed). And yet, there is an inherent level of uncertainty because what 
these requirements seek to prevent may or may not ever happen. This situation is especially 
true of safety requirements because some systems (e.g., nuclear power plants, chemical 
factories) are so critical that even a single, rare accident may render the system a complete 
failure. Although other systems (e.g., e-commerce Web sites) are essentially under constant 
attack, harm due to security threats often tends to be less mission critical, and a successful 
attack will not render the system a complete failure. 

Another problem is that the hazards and threats associated with software-intensive systems 
are also constantly changing, making the risks very difficult to quantify. Estimates of risks 
are often actually “guesstimates,” and thus the risks are typically forced to be qualitative 
rather than quantitative. 

This technical note addresses these problems by showing (and recommending that engineers 
take advantage of) the great similarities between 

• safety (the degree to which accidental harm is prevented, detected, and reacted to) 

• security (the degree to which malicious harm is prevented, detected, and reacted to) 

                                                 
1  This seems to be especially true for security books, perhaps because security engineers tend to 

think in terms of security policies rather than security requirements. 
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• survivability (the degree to which both accidental and malicious harm to essential 
services is prevented, detected, and reacted to) 

1.2 Goals 
A major goal of this technical note is to provide the reader with a solid foundation for safety, 
security, and survivability engineering. This technical note presents an overlapping set of 
information models that define the concepts of safety, security, and survivability engineering 
and clarify the relationships between them. When used, the foundation provided by these 
models will also enable stakeholders in safety, security, and survivability engineering to 
better communicate with each other. 

A second goal of this technical note is to use these information models to clarify the 
similarities and differences between the foundational concepts of these three disciplines. The 
similarities between these three disciplines greatly outweigh their differences. These 
similarities are important because they allow engineers to develop relatively uniform 
development processes. These uniform processes can then be used across the traditionally 
separate disciplines of safety, security, and survivability engineering. 

1.3 Motivation 
Often, safety, security, and survivability engineering are not adequately recognized as highly 
related disciplines. Safety is largely about protecting valuable assets (especially people) from 
harm due to accidents. Security is largely about protecting valuable assets (especially 
sensitive data) from harm due to attacks. Survivability is largely about protecting valuable 
assets (essential services) from both accidents and attacks. In all three cases, a primary focus 
is in dangers (hazards and threats) and their associated risks and the system’s vulnerabilities 
to them. All three disciplines often require a risk-driven approach in determining the 
appropriate policies, requirements, and architectural mechanisms. In fact, the similarities 
between these three disciplines have prompted the production of this technical note. 

However, these similarities are seldom recognized, and their relevance to requirements 
engineering is largely unknown in actual practice. One problem is that requirements 
engineers are rarely taught safety engineering, security engineering, or anything about 
survivability, and they rarely have any significant experience in these disciplines. Yet, they 
are often responsible for developing safety, security, and survivability requirements. A good 
place for them to start is to learn the fundamental concepts underlying safety, security, and 
survivability. Similarly, safety and security engineers are rarely taught requirements 
engineering and typically have no experience engineering requirements. They tend to think in 
terms of safety program plans and security policies rather than requirements and 
requirements specifications. In addition, the policies they produce are at a higher level of 
abstraction than requirements and typically lack the characteristics of good requirements such 
as completeness, lack of ambiguity, and verifiability. 
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1.4 Contents 
This technical note presents a set of related information models that provide a theoretical 
foundation underlying safety, security, and survivability engineering. Section 2 summarizes 
the concept of a quality model and its component parts, three of which are the quality factors 
of safety, security, and survivability. Next, Section 3 describes the different types of 
requirements and provides a framework showing how quality goals, policies, requirements, 
and architectural mechanisms are related to the quality factors and associated subfactors of 
the quality model. Section 4 provides three specific models that relate the underlying 
concepts of safety, security, and survivability engineering. In addition to the graphical 
information models, precise definitions are provided for each concept. Section 5 summarizes 
the similarities and differences between the models underlying the three disciplines, and 
Section 6 recommends ways to take advantage of this commonality. 
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2 Quality Model 

Quality means much more than merely meeting functional requirements. Even if an 
application provides all of its required features and fulfills each of its use cases, it can still be 
totally unacceptable if it has insufficient quality attributes (e.g., it has inadequate availability, 
its capacity is too low, its performance is too slow, it is not interoperable with other systems, 
it is not safe to use, it has numerous security vulnerabilities, or it is not considered to be user 
friendly by its end users). Thus, the term “quality” is an abstract term that can mean very 
different things to different stakeholders (including customers, users, management, 
marketing, developers, testers, quality engineers, maintainers, and support personnel). In this 
technical note, the term “quality” is used in its widest sense. Thus, quality includes all quality 
factors and not just the few that are mentioned above.  

Similarly, it is not adequate to specify required quality by merely stating that an application 
shall have high capacity and performance, be safe and secure, and be usable by its end users. 
Such “quality requirements” are typically specified at such a high level of abstraction that 
they are virtually useless because they are incomplete, vague, ambiguous, and impossible to 
verify. Thus, they are high-level goals rather than specific requirements. 

Therefore, we need to decompose the term “quality” into its relevant component factors and 
subfactors. We also need to provide operational definitions for these components of quality so 
that we can create clear, unambiguous, and verifiable requirements. One purpose of this 
technical note is to provide such operational definitions for safety, security, and survivability 
and their requirements. 

To specify quality requirements, we need a way to organize, clarify, and standardize the 
relevant meanings of the term quality when applied to software-intensive systems. Doing this 
will form a proper foundation for identifying, analyzing, and specifying the large number of 
quality requirements that are needed on any significant endeavor. 

A quality model is a model (i.e., a collection of related abstractions or simplifications) that 
models the quality of something [Firesmith 03a]. The quality model does for the concept of 
quality what a map does for a city, state, or country; it captures all of the important 
generalities about quality while ignoring all of the diversionary details. This then is the role 
of a quality model: to make the general term “quality” specific and useful by decomposing it 
into its component concepts and their relationships to one another. A quality model first 
decomposes quality into its component quality factors (aspects, attributes, or characteristics) 
and subfactors (i.e., parts). It then provides specific quality criteria (descriptions) and metrics 
(means of measurement) that can be used to turn these general high-level quality factors into 
detailed and specific measurable descriptions that can be used to specify an aspect of quality 
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or to determine if that aspect of quality actually exists at a level equal or above the minimum 
amount specified in a requirements specification. By mandating a combination of both a 
quality criterion and metric, the likelihood of obtaining a clear, unambiguous, and verifiable 
statement of a quality requirement increases. 

There are many quality models of varying degrees of completeness and usability. Some are 
international standards [ISO 00], some are de facto industry standards [Firesmith 03d], some 
are organization specific [Barbacci 00], and some are published in software engineering 
books [Boehm 76, Chung 93, Chung 00, Davis 93, Keller 90, Loucopoulos 95, Mylopoulos 
92, Roman 85, Sommerville 92, Thayer 90]. This technical note uses the Object Process, 
Environment, and Notation (OPEN) quality model [Firesmith 03d] due to its completeness, 
especially with regard to safety, security, and survivability. 

2.1 Information Model for a Quality Model 
As illustrated in Figure 1, a quality model is a hierarchical model consisting of quality factors 
(also known as quality attributes) containing quality subfactors. The model formalizes the 
concept of quality, and it decomposes quality into a taxonomy of relevant quality factors and 
subfactors. For each of these, it defines associated quality criteria and metrics that provide 
specific measurable descriptions of the quality that is being analyzed or specified.  

Quality Model

Quality Factor Quality Subfactor

Quality Criterion Quality Metric

is
measured

by

is
judged

by

System

describes a

measures

is
measured

by

is
judged

by

 

Figure 1: Information Metamodel for Quality Models 

Figure 1 shows that quality factors and subfactors are the primary ways in which the concept 
of quality is decomposed. However, quality is made specific with regard to systems when it is 
judged by application-specific quality criteria and measured in terms of specific quality 
metrics. 
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Figure 1 is a Unified Modeling Language (UML) class diagram2 that documents a metamodel 
for a quality model (where a metamodel is actually a model of a model). The metamodel for 
the quality model defines the kinds of things that make up any quality model, whereas a 
quality model contains the actual quality factors, subfactors, criteria, and metrics. Thus, for 
example, the metamodel contains the concept “quality factor,” whereas the quality model 
contains specific quality factors such as safety, security, and survivability. 

The concepts documented in Figure 1 can be defined as follows: 

• Quality model is a hierarchical model for formalizing the concept of quality in terms of 
its component quality factors and subfactors.  
As such, the quality model forms a taxonomy of the characteristics that make up quality. 
The components of any taxonomy should be disjoint and cover the entire subject area of 
the taxonomy. Thus, the quality factors of a quality model should be disjoint and cover 
all of quality. Unfortunately, safety, security, and survivability engineering have 
developed and evolved relatively independently of one another; therefore, safety, 
security, and survivability have tended to overlap. Potential commonalities between these 
three may even show that they could benefit from adopting concepts from the others. 
Thus, some definitions of security include accidental harm that more correctly lies within 
safety. Similarly, some definitions of safety are incomplete because they include harm 
only to people and do not include harm to either property or the environment. 

• Quality factor (also known as quality attribute or quality characteristic) is a high-level 
characteristic or attribute of something that captures an aspect of its quality. 
Quality has to do with the degree to which something possesses a combination of 
characteristics, attributes, aspects, or traits that are desirable to its stakeholders. There are 
many different quality factors such as availability, extensibility, performance, reliability, 
reusability, safety, security, and usability. These factors determine whether or not 
something is of sufficiently high quality. Because many of the quality factors end in the 
letters “ility,” they are often referred to as the “ilities.”  Quality factors can be subclassed 
into more specific kinds of quality factors (e.g., reliability is a kind of dependability). 
Quality factors can also be decomposed into their component parts (e.g., privacy is a part 
of security). 

— Quality subfactor is a major component (aggregation) of a quality factor or another 
quality subfactor. 

                                                 
2  This technical note uses simplified UML class diagrams as entity relationship (ER) diagrams to 

capture the information models that define key concepts and the relationships between them. 
Concepts (entities) are signified by rectangles. Aggregation (i.e., whole-part, consists of) 
relationships are signified by arcs with a black diamond on their “whole” ends and nothing on their 
“part” ends. Inheritance (i.e., is-a-kind-of) relationships are signified by arcs with white arrowheads 
on their “superclass” ends and nothing on their “subclass” ends. All other relationships 
(associations) are signified by arcs that are labeled with verb phrases and that have arrowheads on 
their “dependent” ends. By reading in the directions of the arrows, associations can be read as 
sentences by reading the starting-box label, the arc label, followed by the ending-box label.   
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• Quality criterion is a specific description of something that provides evidence either for 
or against the existence of a specific quality factor or subfactor. Quality criteria 
significantly contribute toward making the high-level quality factors detailed enough to 
be unambiguous and verifiable. When quality criteria are adequately specific, they lack 
only the addition of quality metrics to make them sufficiently complete and detailed to 
form the basis for detailed quality requirements. If quality is the trunk of the tree and the 
quality factors and subfactors are the branches and twigs, then quality criteria are the 
leaves. There are many more quality criteria than quality factors and subfactors because 
there are typically numerous criteria per factor. Quality criteria are also more domain-
specific and less reusable than quality factors and subfactors because they are specific 
descriptions of specific applications, components, centers, or business units. To deal with 
the large number of criteria and to make them reusable, quality criteria can often be 
parameterized in the quality models, and specific instances of the parameterized classes 
of criteria can then be used to produce quality requirements [Firesmith 03b]. 

• Quality metric is a metric that quantifies a quality criterion and thus makes it 
measurable, objective, and unambiguous. 
A quality metric is a way of measuring that quantifies a quality criterion. Quality metrics 
thus provide numerical values specifying or estimating the quality of a work product or 
process by measuring the degree to which it possesses a specific quality factor or 
subfactor. 

• System (also known as system-level application) is an integrated collection of data 
components, hardware components, software components, human-role components (also 
known as wetware or personnel), and document components (also known as paperware) 
that collaborate to provide some cohesive set of functionality with specific levels of 
quality.  
Hardware components include firmware components, whereas software components 
include both application-specific software components as well as commercial off-the-
shelf (COTS) components such as operating systems, database systems, and 
infrastructure components. Using a bank as an example, as far as the bank customer is 
concerned, the bank system includes the tellers, the procedures that tellers follow, and the 
training that they need. This inclusion of people and procedures is critical because safety 
and security are both chains that are only as good as their weakest links. These weakest 
links are often not in the hardware and software, but rather in the way they are used and 
supported. 

2.2 A Taxonomy of Quality Factors and Subfactors 
As pointed out in the previous list, a quality factor (also known as quality attribute or quality 
characteristic) is a high-level characteristic or attribute of something that captures an aspect 
of its quality. Note that quality factors and subfactors merely describe desired or existing 
capabilities. As such, they provide a foundation and organization for discussing quality goals, 
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policies, requirements, and the architectural mechanisms for fulfilling these requirements. 
However, they are not themselves goals, policies, requirements, or architectural mechanisms. 

Different books and articles decompose quality factors differently (e.g., qualitative quality 
factors versus quantitative quality factors). However, although it may be difficult to make all 
quality requirements quantitative, it is definitely both possible and useful to do so (e.g., for 
testability). Therefore, this technical note decomposes them into development-oriented and 
usage-oriented quality factors. Such a taxonomy seems to be very intuitive because it 
separates concerns according to their audiences (development oriented for developers and 
maintainers, usage oriented for customers and users).  

The following taxonomy is also relatively complete. Although few projects need to develop 
requirements for all of the quality factors in the following two lists, requirements engineers 
should definitely determine the applicability of all of the different types of quality factors. 
Having a large hierarchical taxonomy of quality factors and subfactors also helps ensure that 
no relevant quality factors are ignored. 

The following taxonomy of quality factors [Firesmith 03d] serves two primary functions: 

• The lists provide a context for safety, security, and survivability. It thus provides a 
hierarchical taxonomy into which safety, security, and survivability must logically fit. 

• By documenting the most important quality factors, the lists make it clear that a complete 
quality model can have a great number of quality factors and quality subfactors. 

2.2.1 Development-Oriented Quality Factors 

Development-oriented quality factors are quality factors that are primarily important 
during development and maintenance rather than usage. Examples of development-oriented 
quality factors and subfactors include the following: 

• Maintainability is the ease with which an application or component can be maintained 
between major releases. Maintainability includes the following quality subfactors: 

— Correctability is the ease with which minor defects can be corrected between major 
releases while the application or component is in use by its users. 

— Extensibility is the ease with which an application or component can be enhanced in 
the future to meet changing requirements or goals. 

• Portability is the ease with which an application or component can be moved from one 
environment to another. 

• Reusability is the ease with which an existing application or component can be reused. 

• Scalability is the ease with which an application or component can be modified to 
expand its existing capacities. 
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• Verifiability is the ease with which an application or component can be verified to meet 
its associated requirements and standards. Verifiability includes the following subfactor: 

— Testability is the ease with which an application or component facilitates the 
creation and execution of successful tests (i.e., tests that would cause failures due to 
any underlying defects). 

2.2.2 Usage-Oriented Quality Factors 

Usage-oriented quality factors are quality factors that are primarily important after 
deployment and during actual usage of an application or component. Examples of usage-
oriented quality factors and subfactors include the following: 

• Auditability is the degree to which sufficient records are kept to support a financial 
audit. 

• Branding is the degree to which a work product (e.g., application, component, or 
document) successfully incorporates the brand of the customer organization’s business 
enterprise. 

• Capacity is the minimum number of things (e.g., transactions, storage) that can be 
successfully handled. 

• Configurability is the degree to which something can be configured into multiple forms 
(i.e., configurations). Configurability includes the following quality subfactors: 

— Internationalization (also known as globalization and localization) is the degree to 
which something can be or is appropriately configured for use in a global 
environment. 

— Personalization is the degree to which each individual user can be presented with a 
unique user-specific experience. 

— Subsetability is the degree to which something can be released in multiple variants, 
each of which implements a different subset of the functional requirements and 
associated quality requirements. 

— Variability is the degree to which something exists in multiple variants, each having 
the appropriate capabilities. 

• Correctness is the degree to which a work product and its outputs are free from defects 
once the work product is delivered. Correctness includes the following quality subfactors: 

— Accuracy is the magnitude of defects (i.e., the deviation of the actual or average 
measurements from their true value) in quantitative data. 

— Currency is the degree to which data remain current (i.e., up to date, not obsolete). 

— Precision is the dispersion of quantitative data, regardless of its accuracy. 

• Dependability is the degree to which various kinds of users can depend on a work 
product. Dependability includes the following quality factors: 
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— Availability is the degree to which a work product is operational and available for 
use.  
The issue of availability is a difficult one for any quality model that seeks to 
minimize the overlap of quality factors in its taxonomy. When systems and software 
engineers think of availability requirements, they think in terms of non-malicious 
causes of lack of availability. However, a denial-of-service (DoS) attack is clearly a 
security problem. To maintain the disjointed nature of the taxonomy of quality 
factors, the scope of availability will remain non-malicious and DoS will be dealt 
with as a violation of a type of security requirements. 

— Reliability is the degree to which a work product operates without failure under 
given conditions during a given time period. 

— Robustness is the degree to which an executable work product continues to function 
properly under abnormal conditions or circumstances. Robustness includes the 
following quality subfactors: 

– Environmental tolerance is the degree to which an executable work product 
continues to function properly despite existing in an abnormal environment.  

– Error tolerance is the degree to which an executable work product continues to 
function properly despite the presence of erroneous input.  

– Failure tolerance is the degree to which an executable work product continues 
to function properly despite the occurrence of failures, where 

 

-  A failure is the execution of a defect that causes an inconsistency between an 
executable work product’s actual (observed) and expected (specified) 
behavior.   

- A defect may or may not cause a failure depending on whether the defect is 
executed and whether exception handling prevents the failure from 
occurring. 

- A fault (also known as defect, bug) is an underlying flaw in a work product 
(i.e., a work product that is inconsistent with its requirements, policies, goals, 
or the reasonable expectations of its customers or users). Defects are 
typically caused by human errors, and defects have no impact until they 
cause one or more failures. 

 

Failure tolerance includes the following quality subfactor: 

- Fault tolerance is the degree to which an executable work product continues 
to function properly despite the presence or execution of defects.  

— Safety is the degree to which accidental harm is prevented, reduced, and properly 
reacted to. 

— Security is the degree to which malicious harm is prevented, reduced, and properly 
reacted to. 
The term “malicious” is used intentionally to clearly differentiate safety from 
security and thereby avoid an unnecessary overlap in the taxonomy of quality factors. 
Thus, safety deals with accidents, whereas security deals with attacks. However, 
accidents (safety) can result in security vulnerabilities that can be exploited by 
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attacks, at which time their consequences fall within the realm of security. Similarly, 
attacks may cause safety hazards that in turn may cause accidents. 

— Survivability is the degree to which essential, mission-critical services continue to 
be provided in spite of either accidental or malicious harm. 

• Efficiency is the degree to which something effectively uses (i.e., minimizes its 
consumption of) its resources. These resources may include all types of resources such as 
computing (hardware, software, and network), machinery, facilities, and personnel. 

• Interoperability is the degree to which a system or one of its components is properly 
connected to and operates with something else. 

• Operational environment compatibility is the degree to which a system or a 
component can be used and functions correctly under specified conditions of the physical 
environment(s) in which it is intended to operate. 

• Performance is the degree to which timing characteristics are adequate. Performance 
includes the following quality subfactors: 

— Jitter is the precision (i.e., variability) of the time when one or more events occur. 

— Latency is the time it takes to provide a requested service or allow access to a 
resource. 

— Response time is the time it takes to initially respond to a request for a service or to 
access a resource. 

— Scheduleability is the degree to which�events and behaviors can be scheduled and 
then occur at their scheduled times. 

— Throughput is the number of times that a service can be provided within a specified 
unit of time. 

• Utility is the degree to which something can be accessed and used by its various types of 
users. Utility includes (but is not limited to) the following subfactors: 

— Accessibility is the degree to which the user interface of something enables users 
with common or specified (e.g., auditory, visual, physical, or cognitive) disabilities to 
perform their specified tasks. 

— Installability is the ease with which something can be successfully installed in its 
production environment(s). 

— Operability is the degree to which something enables its operators to perform their 
tasks in accordance with the operations manual. 

— Transportability is the ease with which something can be physically moved from 
one location to another. 

— Usability is the ease with which members of a specified set of users are able to use 
something effectively. 
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— Withdrawability is the ease with which an existing problematic version of the 
system or one of its components can be successfully withdrawn and replaced by a 
previously working version. 

The preceding taxonomy makes it clear that safety, security, and survivability are kinds of 
dependability and are therefore usage-oriented quality factors. The preceding lists also 
emphasize the fact that safety, security, and survivability are only three of a great many 
potentially relevant quality factors. 

2.3 Safety as a Quality Factor 
As one of numerous quality factors, safety can be classified into the following subclasses of 
safety: health safety, property safety, and environmental safety. In fact, safety is often defined 
in terms of health, property, and environmental safety. 

The information model illustrated by Figure 2 shows that safety is a kind of dependability 
and thus a kind of quality factor. It is also shows that safety has traditionally been classified 
into health, property, and environmental safety (also kinds of quality factors) based on the 
type of asset that will be harmed if an accident should occur. 

Health
Safety

Property
Safety

Environmental
Safety

Safety
Quality
Factor Dependability

 
Figure 2: Safety as a Quality Factor 

The concepts documented in Figure 2 can be defined as follows: 

• Safety is the degree to which accidental harm is prevented, detected, and properly 
reacted to. 
In common English, people are not considered safe unless they are safe from both 
accidental and malicious harm. Also, security is often defined to include security from 
accidental harm. However, when dealing with systems, safety emphasizes accidental 
harm, and security emphasizes malicious harm. Thus, to have a taxonomy of quality with 
disjoint quality factors, safety will be restricted to accidental harm, and security will be 
restricted to malicious harm. 
The quality factor of safety can be classified into the following subclasses of safety, 
which themselves are also quality factors: 

— Health safety is the degree to which illness, injury, and death are prevented, 
detected, and properly reacted to. 
Health safety involves all people who may reasonably be expected to be harmed by 
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the system during an accident. (For example, health safety for an automotive control 
system may include the driver, passengers, pedestrians, and mechanics. For a 
chemical plant control system, health safety may include operators, maintenance 
engineers, other staff at the plant, and nearby residents.) 

— Property safety is the degree to which accidental damage and destruction of 
property is prevented, detected, and properly reacted to. 

— Environmental safety is the degree to which accidental damage to (and destruction 
of parts of) the environment is prevented, detected, and properly reacted to. 

2.4 Security as a Quality Factor 
The quality factors of safety and security can be viewed as two sides of the same coin. If 
safety can be defined as the degree to which accidental harm is properly managed, then 
security can be defined as the degree to which malicious harm is properly managed. 

The information model illustrated by Figure 3 shows that security is also a kind of 
dependability and thus a kind of quality factor. The information model also shows that 
security has traditionally been classified into such subclasses as communications security, 
data security, emissions security (also known as TEMPEST), personnel security, and physical 
security based largely (as with safety) on the type of asset that will be harmed if an attack 
should occur. 

Security
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Security
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Security

Quality
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Dependability

 

Figure 3: Security as a Quality Factor 

The concepts documented in Figure 3 can be defined as follows: 

• Security is the degree to which malicious3 harm to a valuable asset is prevented, 
detected, and reacted to. Security is the quality factor that signifies the degree to which 

                                                 
3  Some may argue that the term “malicious” is too strong. But what about hacktivists who vandalize 

the Web site of a company that pollutes the environment? What about someone who uses company 
computers to surf the Web in violation of company policy? The first example is a cybercrime, and 
the second is an unauthorized use of property. In both cases, the victims would be justified to 
consider these acts malicious. If the term “malicious” still seems too harsh, consider it to mean the 
combination of unauthorized and intentional harm. 
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valuable assets are protected from significant threats posed by malicious attackers. The 
quality factor of security can be classified into the following subclasses, which are also 
quality factors: 

— Communications security is the degree to which communications are protected 
from attack. 

— Data security is the degree to which stored and manipulated data are protected from 
attack. 

— Emissions security is the degree to which systems do not emit radiation that is 
subject to attack. 

— Personal security is the degree to which personnel are protected from attack. 
— Physical security is the degree to which systems are protected from physical attack. 
 

Figure 4 shows that security can also be decomposed (aggregation) into many different 
quality subfactors. In fact, security has historically been defined more often in terms of its 
most popular subfactors (typically availability, integrity, and privacy) than in terms of its 
subclasses. Note that security is a relatively complex concept and cannot be adequately 
addressed merely in terms of availability, integrity, and privacy. Unfortunately, there is no 
widely accepted, industry-standard decomposition of security into a taxonomy of its 
component quality subfactors, and these quality subfactors do not have industry-standard 
definitions. Perhaps this technical note will help to stimulate the development of a consensus 
concerning the optimal decomposition of security into its quality subfactors. 
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Figure 4: Decomposition of Security into Quality Subfactors 
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The security subfactors illustrated in Figure 4 can be defined as follows: 

• Access control is the degree to which the system limits access to its resources only to its 
authorized externals (e.g., human users, programs, processes, devices, or other systems). 
The following are quality subfactors of the access-control quality subfactor: 

— Identification is the degree to which the system identifies (i.e., recognizes) its 
externals before interacting with them. 

— Authentication is the degree to which the system verifies the claimed identities of its 
externals before interacting with them. Thus, authentication verifies that the claimed 
identity is legitimate and belongs to the claimant. 

— Authorization is the degree to which access and usage privileges of authenticated 
externals are properly granted and enforced. 

• Attack/harm detection is the degree to which attempted or successful attacks (or their 
resulting harm) are detected, recorded, and notified. 

• Availability protection is the degree to which various types of DoS attacks are prevented 
from decreasing the operational availability of the system. This is quite different from the 
traditional availability quality factor, which deals with the operational availability of the 
system when it is not under attack. 

• Integrity is the degree to which components are protected from intentional and 
unauthorized corruption. Integrity includes the following: 

— Data integrity is the degree to which data components (whether stored, processed, or 
transmitted) are protected from intentional corruption (e.g., via unauthorized 
creation, modification, deletion, or replay). 

— Hardware integrity is the degree to which hardware components are protected from 
intentional corruption (e.g., via unauthorized addition, modification, or theft). 

— Personnel integrity is the degree to which human components are protected from 
intentional corruption (e.g., via bribery or extortion). 

— Software integrity is the degree to which software components are protected from 
intentional corruption (e.g., via unauthorized addition, modification, deletion, or 
theft). 

– Immunity is the degree to which the system protects its software components 
from infection by unauthorized malicious programs (i.e., malware such as 
computer viruses, worms, Trojan horses, time bombs, malicious scripts, and 
spyware). Such protected software components include complete programs, 
partial programs, processes, tasks, and firmware. 

• Nonrepudiation is the degree to which a party to an interaction (e.g., message, 
transaction, transmission of data) is prevented from successfully repudiating (i.e., 
denying) any aspect of the interaction. 
Nonrepudiation covers information such as the identities of the sender and recipient of 
the transaction; the send time, receive time, and dates of the transaction; and any data that 
flowed with the transaction. Nonrepudiation thus assumes data integrity so that a party 
cannot argue that the associated data were corrupted. 
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• Physical protection is the degree to which the system protects itself and its components 
from physical attack. 
Physical attack may mean something as violent as the use of a bomb or the kidnapping or 
blackmailing of personnel. It can also mean something as relatively minor as the 
prevention of the theft of a laptop by means of a cable and lock. 

• Privacy is the degree to which unauthorized parties are prevented from obtaining 
sensitive information. Privacy includes the following subfactors: 

— Anonymity is the degree to which the users’ identities are prevented from 
unauthorized storage or disclosure. 

— Confidentiality is the degree to which sensitive information is not disclosed to 
unauthorized parties (e.g., individuals, programs, processes, devices, or other 
systems). 

• Prosecution is the degree to which the system supports the prosecution of attackers. 

• Recovery is the degree to which the system recovers after a successful attack. 

• Security auditing is the degree to which security personnel are enabled to audit the 
status and use of security mechanisms by analyzing security-related events. 

• System adaptation is the degree to which the system learns from attacks in order to 
adapt its security countermeasures to protect itself from similar attacks in the future. 

2.5 Survivability as a Quality Factor 
Survivability is concerned with essential mission-critical services that must continue to be 
provided in spite of either accidental or malicious harm [Ellison 99, Ellison 03, Knight 00, 
Knight 03, Lipson 99]. Thus, in some sense, survivability can be seen as both a union of 
safety and security (accidental and malicious harm) as well as a subset of them (only 
interested in harm to essential services). 

Survivability is typically not subclassed into lower level kinds of survivability based on the 
type of asset protected because it only deals with essential services; thus, there is only one 
kind of asset to protect. However, like security, survivability is typically decomposed into 
quality subfactors. Specifically, survivability consists of prevention, detection, and reaction 
as illustrated in the class diagram in Figure 5.4 

                                                 
4  The use of a single yoke connected to both a black diamond (aggregation) and white arrowhead 

(inheritance) is not exactly valid UML, but drawing two overlapping yokes would significantly 
clutter the diagram. For example, the quality subfactors (inheritance arrow) prevention, detection, 
and reaction are components (aggregation diamond) of survivability. 
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Figure 5: Decomposition of Survivability into Quality Subfactors 

Survivability and its subfactors can be defined as follows: 

• Survivability is the degree to which essential services continue to be provided in spite of 
either accidental or malicious harm. As noted by H. Lipson and D. Fisher [Lipson 99], 
“Ultimately, it is the mission [of the system] that must survive, not any particular 
component of the system or even the system itself.” The following are the quality 
subfactors of the survivability quality subfactor: 

— Prevention (also known as resistance) is the degree to which hazards and threats are 
resisted so that essential services continue to be provided both during and after 
accidents and attacks. Prevention includes both the elimination of such hazards and 
threats as well as steps taken to minimize the negative outcome should an accident or 
successful attack occur. 

— Detection (also known as recognition) is the degree to which relevant accidents and 
attacks (or the harm they cause) are recognized as they occur so that the system can 
react accordingly to maintain essential services. It also typically involves the 
recording of attacks so that legal evidence exists with which to prosecute attackers. 
Detection may also include the recognition of conditions or events preceding 
accidents (e.g., hardware nearing failure) or detecting attackers collecting 
information during probes prior to attacks. 

— Reaction (also known as recovery) is the degree to which the system responds (e.g., 
recovers) after an accident or attack. This recovery includes the establishment of a 
priority-based recovery approach so that any essential services that may have been 
lost or degraded are recovered before the recovery of any non-essential services that 
were lost or terminated. Although some authors [Mead 03] have stated that recovery 
differentiates survivability from safety and security, reaction including recovery 
should apply not only to essential services but also to harm to any asset. For example, 
security has unfortunately concentrated on prevention and largely ignored how 
systems should detect and react to attacks. 
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2.6 Summary 
The preceding section has documented the concept of a quality model, as well as its 
components and their interrelationships, and has led us to the definitions of the quality factors 
of safety, security, and survivability. With its figures and definitions, this section allows us to 
conclude the following: 

• The quality of a software-intensive system is not a simple concept. To be useful, it must 
be decomposed into quality factors and subfactors, which allow us to speak about the 
different specific aspects of quality. 

• There are many different kinds of quality factors, both development oriented and usage 
oriented. These quality factors will become part of the basis for organizing, identifying, 
and analyzing quality requirements. 

• Safety, security, and survivability are quality factors that can be decomposed into 
standard quality subfactors that capture different fundamental aspects of what it means 
for a software-intensive system to be safe, secure, and survivable. 

• Although safety, security, and survivability are different quality factors with different 
subfactors, they are actually related to each other in that all three involve the degree to 
which harm (whether accidental, malicious, or both) is prevented, detected, and properly 
reacted to. 

• Safety, security, and survivability are different (although very similar) quality factors. A 
system can be safe and yet neither secure nor survivable as long as no person or property 
is harmed when a common attack successfully causes the loss of an essential service 
(e.g., a typical denial-of-service attack). Similarly, a system can be secure without being 
safe or survivable if an accident causes the loss of an essential service. Finally, a system 
can be survivable without being either safe or secure as long as frequent accidents and 
attacks do not cause the loss of an essential service. 

• These quality factors and subfactors that make up the quality model are in turn judged by 
application-specific quality criteria and measured by associated quality metrics. 

• Quality criteria are where the generally reusable quality factors and subfactors become 
very specific and application specific. There are often very many possible quality criteria 
that can be chosen for any given quality factor or subfactor, and these criteria can often 
be parameterized using a standard template with variable parts. 

• Quality metrics describe the actual or required level of some quality factor or subfactor. 

This section has provided a foundation for engineering safety, security, and survivability 
requirements because such requirements are typically a combination of quality criteria and 
metrics for the safety, security, and survivability quality factors. 
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3 Requirements Models 

Proper requirements are critical for creating software-intensive systems that are safe, secure, 
and survivable. However, the related concepts of quality goals, policies, and architectural 
mechanisms are often confused with requirements. This section will clarify the differences 
between these concepts as well as their relationships to the quality models discussed in the 
previous section.  

3.1 Information Model for Requirements 
A complete requirements model must document the major, different kinds of requirements 
(e.g., functional requirements, quality requirements, data requirements, interface 
requirements, and constraints) [Firesmith 02]. It should also document the relationships 
between requirements and such other concepts as goals, policies, and architectural 
mechanisms.  

Figure 6 shows that functional requirements, no matter how critical, are only one kind of 
requirement. Data, quality, and interface requirements as well as constraints must also be 
identified, analyzed, specified, and managed. The diagram also clarifies that safety, security, 
and survivability requirements are quality requirements rather than functional requirements. 
They are also architecturally significant requirements that have a much larger impact on the 
architecture (and application cost and development schedule) than most functional 
requirements. 

Figure 6 is incomplete because it does not show all of the different kinds of quality 
requirements (i.e., those specifying mandatory amounts of other quality factors listed in the 
preceding taxonomy). As such, it is an oversimplification and therefore is not itself a strong 
argument for the similarity between safety, security, and survivability requirements. Note that 
different quality and requirements models may decompose things differently and thereby 
produce different diagrams. 

Although requirements engineers have not traditionally recognized any intermediate model 
element between goals and requirements, the safety and security communities are very 
familiar with safety and security policies and have correctly understood that these critical 
policies are below goals but above requirements in this hierarchy. Therefore, policies are 
included between goals and requirements in our requirements information model. 
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Figure 6: Requirements Information Model 

Similarly, architecture mechanisms as well as architectural constraints are explicitly included 
in Figure 6 because many requirements engineers (as well as many safety and security 
engineers) mistakenly specify architectural mechanism (e.g., safeguards and 
countermeasures) as architectural constraints rather than specifying the true underlying safety 
and security requirements. Instead, they should leave the selection of safety and security 
architectural mechanisms to the architecture, safety, and security teams. 

The concepts documented in Figure 6 are defined as follows: 

• Goal is a statement of the importance of achieving a desired target regarding some 
behavior, datum, characteristic, interface, or constraint. It is above the level of a policy 
and not sufficiently formalized to be verifiable.  

— Quality goal is a goal stating the importance of achieving a desired target regarding 
some quality factor or subfactor. (For example, “Sensitive information must be made 
secure,” or “The confidentiality and integrity of sensitive information must be 
guaranteed.”) 

• Policy is any strategic decision that establishes a desired goal.  

— Quality policy is a policy mandating a desired criterion (or type of criteria) of a 
quality factor or subfactor. 
(For example, “All information about customer credit cards that is entrusted to our 
organization shall be given a combination of technological and procedural security 
measures that together will ensure that all currently known types of attacks will be 
prevented from causing the unauthorized access, modification, or theft of this 
information.”) 
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• Requirement is any mandatory, externally observable, verifiable (e.g., testable), and 
validatable behavior, datum, characteristic, or interface. 
Because we are concerned with the quality of a system or its components, the term 
“requirement” is used to refer to “product requirement.” Thus, this document does not 
cover other types of requirements (e.g., process requirements such as development costs 
and development schedule) that are at the same level of abstraction. 

— Functional requirement is any requirement that specifies a mandatory behavior. 

— Non-functional requirement is any requirement that is not a functional requirement. 
Some authors mistakenly equate non-functional requirements with quality 
requirements. This taxonomy clearly shows that there are non-functional 
requirements that are not quality requirements. Types of non-functional requirements 
including the following: 

– Quality requirement is any requirement that specifies a minimum amount of a 
mandatory quality factor (i.e., characteristic, attribute). There are numerous types 
of quality requirements, including the following: 

- Safety requirement is any requirement that specifies a minimum, 
mandatory amount of safety. 

- Security requirement is any requirement that specifies a minimum, 
mandatory amount of security. 

- Survivability requirement is any requirement that specifies a minimum, 
mandatory amount of survivability. 

– Data requirement is any requirement that specifies a mandatory aspect of a 
datum or data type. 

– Interface requirement is any requirement that specifies a mandatory aspect of 
an external interface or protocol. 

— Constraint is any engineering decision that has been selected to be mandated as a 
requirement. There are several types of constraints, including the following: 

– Architectural constraint is any architectural decision that has been selected to 
be treated as a mandatory constraint (i.e., as a requirement). 

– Design constraint is any design decision that has been selected to be treated as a 
mandatory constraint (i.e., as a requirement). 

– Implementation constraint is any implementation decision that has been 
selected to be treated as a mandatory constraint (i.e., as a requirement). Examples 
include the selection of a programming language or a standard way of using the 
programming language (e.g., a “safe” and /or “secure” subset of the language 
constructs). 

• Architectural mechanism is an architectural choice that provides a means for fulfilling 
one or more related requirements. 
This definition does not include only the software architecture. From a system architect’s 
viewpoint, architectural mechanisms may be implemented by one or more of the system’s 
components (including hardware, software, data, personnel, and documentation). Thus, 
architectural mechanisms may include training materials and operating procedures for 
both system-internal and system-external personnel. This systems-level viewpoint 
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recognizes that safety, security, and survivability cannot be achieved using only 
hardware, software, and data. All components of the system (including people, their 
procedures, and the training they receive) must be included to achieve a required level of 
safety, security, and survivability. 

3.2 Quality Requirements and Quality Factors 
At the highest level of abstraction, quality goals can be for either a quality factor or a quality 
subfactor. For example, there may be quality goals concerning safety, security, and 
survivability. Examples of safety goals might be, “The system must be safe” or “The system 
must not injure its users.” Below this level, there may be more detailed quality policies that 
establish the associated quality goal by mandating a system-specific quality criterion (or 
criteria type) for the associated quality factor or subfactor. An example of a safety policy 
might be, “The automated tape library’s moving parts shall not injure the tape technician 
when performing his or her duties. Finally, a specific and verifiable quality requirement 
consists of a combination of a quality criterion with a mandatory minimum level of an 
associated quality metric. Thus, the previous safety policy becomes a safety requirement 
when it is rewritten as follows: “At least 99.99% of the times that the tape technician 
performs the ‘remove tape’ use case, the automated tape library’s moving parts shall not 
move (and thereby potentially cause an injury to the tape technician).”  

Figure 7 relates the concepts of requirements to the concepts of the quality model.5 It also 
provides a convenient way to partition work, with management setting quality goals and 
policy, while the requirements team (with input from the safety and security teams) specifies 
the associated quality requirements. 
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Figure 7: Relationships from Requirements Model to Quality Model 

                                                 
5  The left side of Figure 7 comes from the left side of Figure 6, and the right side of Figure 7 comes 

from Figure 1. 



24  CMU/SEI-2003-TN-033 

As illustrated at the top of Figure 8, quality factors characterize different aspects of the 
system’s quality and quality requirements specify different aspects of the system’s quality by 
specifying levels of the associated quality factors and subfactors. Thus, safety requirements 
specify mandatory levels of safety, security requirements specify mandatory levels of 
security, and survivability requirements specify mandatory levels of survivability. Specifying 
these requirements is done by specifying an associated quality criterion and an associated 
minimum value for a quality metric. This information model thus pulls together parts of 
previous figures. 

Figure 8 shows how the specific quality requirements of this technical note relate to their 
associated quality factors, quality criteria, and quality metrics that are described in the 
previous section.6 
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Figure 8: Relationships from Quality Requirements to Quality Model 

                                                 
6  Figure 8 is composed of bits of Figure 1, Figure 5, and the list of usage-oriented quality factors. 
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3.3 Example Quality Requirements 
 

To make the previous theoretical discussion more specific, consider those quality criteria 
associated with the integrity subfactor of the security quality factor. Quality criteria types 
describing integrity could include the following: 

• Protect Transmissions from Corruption 

• Detect Corruption of Transmitted Data 

• React to Corruption of Transmitted Data 

• Protect Online Stored Data from Corruption 

• Detect Corruption of Online Stored Data 

• React to Corruption of Online Stored Data 

• Ensure Proper Restoration of Data and Software in Case of Corruption 

• Protect Hardware Components from Corruption 

• Protect Software Components from Corruption 

• Protect Personnel Components from Corruption 

An example of a parameterized version of the first quality criteria type above could be stated 
as follows: 

• “The A protects B transmissions over C networks from D corruption by E attacks (or E 
attackers),” in which the preceding parameters can be replaced as follows: 

— A can be replaced with the following: business, center, application, or component. 

— B can be replaced with the following: a specific, personal, business confidential, 
classified, or all. 

— C can be replaced with the following: all, public, or internal. 

— D can be replaced with the following: creation, modification, deletion, replay, or all. 

— E can be replaced with the following: all, sophisticated, or unsophisticated.7 

Thus, a specific integrity quality criterion for protecting transmissions from corruption could 
be written as follows: “The application protects all personal transmissions over all public 
networks from all types of corruption by unsophisticated attacks.” An example of an integrity 
quality criterion for protecting data stored online from corruption might be, “The application 
protects stored customer information including account balances from unauthorized 
modification by sophisticated attacks.” 

                                                 
7  These terms (e.g., unsophisticated attack) must be officially defined in some sort of project 

glossary. There are also other possible decompositions besides the sophistication of the attack 
including known versus unknown attacks (e.g., viruses). 
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Whereas functional requirements tend to be binary and are specified as either all or nothing, 
quality requirements are specified using a scale of measurement. For example, the 
performance quality subfactor of throughput is typically specified in terms of number of 
transactions per unit time, while the quality subfactor of response time is typically specified 
in terms of seconds elapsed. Similarly, the scale of measurement for the integrity example in 
the previous section could be either of the following: 

• average percent of transmissions protected per unit time under given conditions  

• average number of transmissions corrupted per unit time under given conditions 

If a quality criterion for data integrity is, “The application protects personal transmissions 
over all public networks from corruption by unsophisticated attacks,” then the associated 
quality metric might be “average number of corruptions per hour.” By providing a minimum 
acceptable level of this quality metric, we get the following data-integrity requirement: “At 
least 99.9% of the time, the application shall protect personal transmissions over all public 
networks from corruption by one hour of unsophisticated attacks.” 

To make the preceding requirement verifiable, it is necessary to require a percentage of the 
time that transmissions are successful (i.e., the security test fails to corrupt the transmission) 
as well as a specific attack load. This information is intended for testing (verification) 
purposes only and may not correspond to the application’s actual future attack load, which 
most likely will be difficult or impossible to estimate accurately. This attack load needs to 
include the attacker’s level of effort (“one hour”) as well as an indication of the attacker’s 
expertise and resources (“unsophisticated attack”) that would be needed for the attack to be 
successful. 

3.4 Summary 
The preceding section has documented the different kinds of requirements and the way that 
quality requirements are related to their corresponding quality factors and subfactors. With its 
figures and definitions, this section leads to the following conclusions: 

• Quality requirements are closely related to the corresponding components of a quality 
model. 

• Quality requirements are made specific and verifiable by being based on a combination 
of quality criteria and quality metrics. 
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4 Engineering Models 

This section documents the basic fundamental concepts underlying safety, security, and 
survivability engineering in terms of information models (UML class diagrams) and 
associated definitions. Building on the previous models, this section clarifies the similarities 
of and differences between these three disciplines. It also provides the basis for 
recommending their unification under the new umbrella discipline of defensibility 
engineering. 

4.1 Information Model for Safety Engineering 
Safety goals state the importance of achieving a target level of the quality factor safety. 
Safety policies establish safety goals by mandating desired safety criteria. Safety 
requirements (a kind of quality requirement) specify the safety policies by specifying 
mandatory amounts of safety in terms of specific safety criteria with an associated minimum 
acceptable measurement. Safety requirements thus require the elimination or reduction of 
safety risks. These safety risks are due to hazards, which provide an organizational 
framework to similar accidents that can cause harm to valuable system assets. Safety 
requirements in turn are fulfilled by safety architectural mechanisms (safeguards), which are 
intended to prevent or reduce vulnerabilities of the assets to accidental harm. 

These basic concepts and their relationships are illustrated in Figure 9, an information model 
for safety engineering. 
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Figure 9: Information Model for Safety Engineering 

Figure 9 shows how the important concepts from safety engineering (e.g., asset, accident, 
hazard, risk, vulnerability) relate to the important terms from requirements engineering (e.g., 
safety goal, policy, and requirement), quality engineering (e.g., safety), and architecture (e.g., 
safety mechanism). It also explains and justifies the common safety-analysis approach of 
analyzing risks in terms of vulnerabilities, hazards, accidents, and assets. 
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The concepts documented in Figure 9 can be defined as follows: 

• Accident (also known as mishap) is an unplanned and unintended (but not necessarily 
unexpected) event or series of related events resulting in harm to an asset [ESA 97, IEEE 
94, Leveson 95, NASA 97, UK 96].  
Accidents can be classified as follows: 

— Health accidents cause significant harm (e.g., illness, injury, or death) to people. 
Although safety engineering tends to emphasize the protection of people from 
accidental harm, its scope also includes property and the environment. 

— Property accidents result in damage to or destruction of properties. 
The emphasis is on external properties, but system components should not be 
ignored. 

— Environment accidents result in damage to the environment. 

• Asset (with regard to safety engineering) is anything of value that should be protected 
from accidental harm. 
An asset requires protection because it is the potential subject of an accident. Assets can 
be any of the following: 

— People (also known as victims) are human beings who are harmed (i.e., develop 
occupational illnesses, become injured, or are killed) as a result of accidents. People 
can be classified as follows [Perrow 84]: 

- First-party victims are victims who are part of the system. 
Common examples include operators, managers, and maintenance personnel. 

- Second-party victims are victims who are external to the system but who 
intentionally interact with it. 
Common examples include users and suppliers. 

- Third-party victims are victims who are members of the general public who 
are innocent bystanders having no intentional involvement with the system. 

- Fourth-party victims are victims who are members of future generations 
(primarily victims of radiation, toxic chemicals, or pathogens). 
Common examples include unborn fetuses, would-be children that parents 
will not be able to conceive, deformed children, and future generations that 
must live in contaminated environments. 

— Property is any valuable property that may be damaged or destroyed if an accident 
occurs. 
In an automotive-control example, property could include the car itself and anything 
that it might damage while being driven (such as other vehicles, buildings, signage, 
telephone poles, traffic lights, and street lights). 
Property includes the following: 

– External property is personal, commercial, and civic property that exists 
outside the system. 
(Common examples include data, money, and physical property such as 
buildings and facilities.) 
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– System component is any property that is a component of the system (including 
data, hardware, and software components). 

— Environment is the physical environment that may be damaged if an accident 
occurs. Continuing with the automotive-control example, the environment is the 
physical environment that can be harmed by accidents that release fluids (e.g., 
gasoline, coolant, hydraulic fluid) or start a roadside brush fire. 

• Harm (when dealing with safety requirements) is significant damage to or a negative 
impact (i.e., negative outcome) associated with an asset due to an accident. Harm must be 
sufficiently significant to warrant relatively prompt remedial action to prevent such harm 
in the future. 
Harm is due to an accident when dealing with safety engineering, is due to an attack 
when dealing with security engineering, and may be due to both accidents and attacks 
when dealing with survivability engineering. 

• Hazard is a situation that increases the likelihood of one or more related accidents [ESA 
97, Leveson 95, NASA 97, UK 96]. 
A hazard thus consists of hazardous states (i.e., a set of one or more incompatible system 
conditions or states, possibly including one or more conditions in the system’s 
environment) together with the accident (type) they may cause. 
Potential hazards should be identified early during requirements engineering or 
architecting, while actual hazards may be identified in existing systems. The following 
are two examples of such potential and actual hazards with their various components 
identified: 
— Potential hazard: The subway doors are opening, open, or closing while the subway 

is moving (hazardous conditions), which may result in passengers and/or their 
property (assets) falling out (accident) and being injured, killed, or damaged (harm). 

— Actual hazard: Riders and/or their property within the doorway when the subway 
doors are closing (hazardous conditions) may result in the passengers and their 
property (assets) being crushed (accident) and thus injured, killed, or damaged 
(harm). 

Examples of primarily internal hazardous conditions include dangerous conditions 
involving hazardous chemicals, high voltages, and robotic-controlled moving machinery. 
A more specific example would be a moving elevator with open doors, two incompatible 
states of an elevator. Examples of primarily external hazardous conditions include fires 
and such natural disasters as earthquakes, floods, hurricanes, and tornadoes.8 

• Safety is the quality factor signifying the degree to which accidental harm is prevented, 
detected, and properly reacted to. 

• Safety goal is a quality goal that states the importance of achieving a target level of 
safety or one of its subfactors. 

• Safety policy is a quality policy that mandates a system-specific quality criterion for 
safety or one of its subfactors. 

                                                 
8  Safety engineering is clearly related to disaster management. 
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• Safety mechanism (also known as a safeguard or safety tactic) is an architectural 
mechanism (i.e., strategic decision) that helps fulfill one or more safety requirements 
and/or reduces one or more safety vulnerabilities. 

• Safety requirement is a quality requirement that specifies a required amount of safety 
(typically a subfactor of safety) in terms of a system-specific criterion and a minimum 
mandatory level of an associated quality metric that is necessary to meet one or more 
safety policies. 
System-specific criteria can also involve the system’s environment, the infrastructure in 
which it exists, and any assumptions about the system. 

• Safety risk is the potential risk of harm to an asset due to accidents. 
Safety risk is defined as the sum (over all relevant hazards) of the products of the 
following two terms: (1) the largest negative impact of the harm to the asset (i.e., its 
criticality, severity, or damage) times (2) the likelihood that the hazard will result in an 
accident [Leveson 95]. 
Using the basic theory of conditional probability, the likelihood that a hazard results in an 
accident causing harm can be calculated/estimated as the product of the following terms: 
(1) the likelihood that the hazard exists, (2) the likelihood that other necessary conditions 
also exist (also known as latency), and (3) the likelihood that the hazard will lead to an 
accident if it and the other necessary conditions exist (also known as danger). 
Potential safety risks should be identified early during requirements engineering or 
architecting, while actual safety risks may be identified in existing systems. The 
following are two examples of such potential and actual safety risks with their various 
components identified: 

— Potential safety risk: Unless one or more safety mechanisms are installed (potential 
vulnerability) to prevent the doors from opening when the subway is moving 
(hazardous conditions), there is an unacceptably high probability (likelihood) that 
passengers and/or their property (assets) will fall out (accident) and be injured, killed, 
or damaged (harm). 

— Actual safety risk: Due to a lack of sensors and associated software (vulnerability) 
to detect persons and their property within the doorway when the subway doors are 
closing (hazardous conditions), there is a significant probability (likelihood) that 
passengers and/or their property (assets) will be crushed (accident) and thus injured, 
killed, or damaged (harm). 

• Safety vulnerability is a weakness in the system that increases the likelihood that an 
accident will occur and cause harm. 
This weakness may be in the architecture, design, implementation, integration, 
deployment, and configuration of the system. Examples of safety vulnerabilities include 
the lack of safety features, the lack of warning mechanisms, or defects that could cause 
failures. 
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4.2 Information Model for Security Engineering 
Security goals state the importance of achieving a target level of the quality factor security. 
Security policies establish security goals by mandating desired security criteria. Security 
requirements (a kind of quality requirement) specify the security policies by specifying 
mandatory amounts of security in terms of specific security criteria with an associated 
minimum acceptable measurement. Security requirements thus require the elimination or 
reduction of security risks. These security risks are due to threat of attack by attackers, which 
are intended to cause harm to valuable system assets. Security requirements, in turn, are 
fulfilled by security architectural mechanisms (countermeasures), which are intended to 
prevent or reduce vulnerabilities of the assets to accidental harm. 

These basic concepts and their relationships are illustrated in Figure 10, an information 
model for security engineering. 
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Figure 10: Information Model for Security Engineering 

Figure 10 shows how the important concepts from security engineering (e.g., asset, attack, 
attacker, threat, risk, security policy, vulnerability) relate to the important terms from 
requirements engineering (e.g., security goal, policy, and requirement), quality engineering 
(e.g., security), and architecture (e.g., security mechanism). It also explains and justifies the 
common security-analysis approach of analyzing risks in terms of vulnerabilities, threats, 
attacks, and assets. Finally, its contents and topology show the clear relationship between 
safety and security engineering. 
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The concepts documented in Figure 10 can be defined as follows: 

• Asset (with regard to security engineering) is anything of value that should be protected 
from malicious harm. 
With regard to security engineering, an asset requires protection because it is the 
potential target of attack. In security engineering, the emphasis tends to be on data assets 
(e.g., integrity and privacy), but security also includes software assets (e.g., integrity) and 
services (e.g., theft and denial of services). Physical security also deals with protecting 
people and other property including hardware and facilities. 

• Service is any function or capability provided by the system. 

• Attack (also known as security breach) is an attacker’s unauthorized attempt to cause 
harm to an asset (i.e., violate the security of the system, bypass security mechanisms). 
An attack may be either successful or unsuccessful. Due to their malicious nature, most 
attacks are cybercrimes, which are crimes (e.g., theft of money or services, fraud, 
espionage, extortion, vandalism, terrorism, child pornography) carried out using 
computer resources. However, some unauthorized misuses of software-intensive systems 
are merely unethical or malfeasant rather than criminal. 

• Attacker (also known as adversary) is an agent (e.g., person or program) that causes an 
attack due to the desire to cause harm to an asset. 

• Harm (when dealing with security requirements) is a negative impact associated with an 
asset due to an attack. Harm is due to an accident when dealing with safety requirements, 
is due to an attack when dealing with security requirements, and may be due to both 
accidents and attacks when dealing with survivability requirements. 

• Threat is a situation that increases the likelihood of one or more related attacks. 
The threat consists of the existence of one or more potential attackers together with a set 
of one or more system conditions or states that provide motivation to the attackers. Thus, 
the threat of theft may result in an actual theft (attack), and threats correspond to attacks 
that are typically classified by attacker motivation (e.g., theft) as opposed to technique 
(e.g., spoofing). In some books and articles, the different but highly related terms 
“attack” and “threat” are sometimes confounded by being used as synonyms [Tulloch 
03]. 

• Security is the degree to which malicious harm to a valuable asset is prevented, detected, 
and properly reacted to. Security is thus the quality factor that signifies the degree to 
which valuable assets are protected from significant threats posed by malicious attackers. 

• Security goal is a quality goal that states the importance of achieving a target level of 
security or one of its subfactors [Lamsweerde 00]. 

• Security policy is a quality policy that mandates a system-specific quality criterion for 
security or one of its subfactors. System-specific quality criteria can also involve the 
system’s environment, the infrastructure in which it exists, and any assumptions about 
the system. 
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• Security mechanism (also known as countermeasure or security tactic) is an architecture 
mechanism (i.e., strategic decision) that helps fulfill one or more security requirements 
and/or reduces one or more security vulnerabilities. 
Security mechanisms can be implemented as some combination of hardware or software 
components, manual procedures, training, etc. It should also be noted that the same 
architectural mechanism (e.g., redundancy) can often be used as a safety, security, and 
survivability mechanism. 

• Security requirement is a quality requirement that specifies a required amount of 
security (actually a quality subfactor of security) in terms of a system-specific criterion 
and a minimum level of an associated quality metric that is necessary to meet one or 
more security policies. 

• Security risk is the potential risk of harm to an asset due to attacks. 
Security risk is the sum (over all relevant threats) of the negative impact of the harm to 
the asset (i.e., its criticality) multiplied by the likelihood of the harm occurring. 
Using the basic theory of conditional probability, the likelihood that harm results from an 
attack can be calculated/estimated as the product of the following terms: (1) the 
likelihood that the threat of attack exists, (2) the likelihood that other necessary 
conditions (e.g., vulnerabilities) also exist, and (3) the likelihood that the threat will lead 
to a successful attack if it and the other necessary conditions exist. The term “likelihood” 
is used rather than probability because the probability is typically not accurately or 
precisely known but rather only grossly estimated (“guesstimated”). 

• Security vulnerability is any weakness in the system that increases the likelihood that a 
successful attack (i.e., one causing harm) will occur. 
Security vulnerability is not restricted to only those vulnerabilities due to programming 
problems. It also includes vulnerabilities in the system’s architecture and design, how the 
system is installed and configured, how its users are trained, etc. The vulnerabilities of a 
system may involve its data components, hardware components, software components, 
human-role components (i.e., wetware or personnel), and document components (i.e., 
paperware). 

4.3 Information Model for Survivability Engineering 
Survivability goals state the importance of achieving a target level of the quality factor 
survivability. Survivability policies establish survivability goals by mandating desired 
survivability criteria. Survivability requirements (a kind of quality requirement) specify the 
survivability policies by specifying mandatory amounts of survivability in terms of specific 
survivability criteria with an associated minimum acceptable measurement. Survivability 
requirements thus require the elimination or reduction of survivability risks. These 
survivability risks are due both to the hazard of accidents and the threat of attacks by 
attackers, which could cause harm to valuable system assets. Survivability requirements, in 
turn, are fulfilled by survivability architectural mechanisms, which are intended to prevent or 
reduce the vulnerabilities of the assets to accident and attack. 
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These basic concepts and their relationships are illustrated in Figure 11, an information model 
for survivability engineering. 
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Figure 11: Information Model for Survivability Engineering 

The similar content and topology of Figures 9, 10, and 11 show the clear and close 
relationships between survivability, safety, and security engineering. Figure 11 also justifies 
the common survivability-analysis approach of analyzing risks in terms of vulnerabilities, 
threats, hazards, and assets. In addition, it clearly shows how survivability is restricted to 
essential services rather than the other types of assets. 
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The additional concepts in Figure 11 that have not been defined in previous subsections 
include the following: 

• Essential service is any mission-critical service that must continue to be provided in 
spite of either accident or attack. 

• Survivability is the degree to which essential mission-critical services continue to be 
provided in spite of accidental and malicious harm. 

• Survivability goal is a quality goal that states the importance of achieving a target level 
of survivability or one of its subfactors. 

• Survivability policy is a quality policy that mandates a system-specific quality criterion 
for survivability or one of its subfactors. 

• Survivability mechanism is an architecture mechanism (i.e., strategic decision) that 
helps fulfill one or more survivability requirements and/or reduces one or more 
survivability vulnerabilities. 

• Survivability requirement is a quality requirement that specifies a required amount of 
survivability in terms of a system-specific criterion and a minimum level of an associated 
quality metric that is necessary to meet one or more survivability policies. 
Survivability requirements typically require the identification of essential mission-critical 
services (possibly as a function of system state and time) that must be provided without 
interruption, the identification of acceptable degraded modes of operation, the 
prioritization of the remaining alternative services, and the establishment of the time 
required for full service to be restored. 

• Survivability risk is the potential risk of harm to an asset due to the sum (over all 
relevant hazards and threats) of the negative impact of the harm to the asset (i.e., its 
criticality) multiplied by the likelihood of the harm occurring. 

• Survivability vulnerability is a weakness in the system that increases the likelihood that 
an accident or a successful attack will occur and stop an essential service from being 
provided. 

4.4 Summary 
The preceding section has documented the important concepts underlying safety, security, 
and survivability engineering. With its figures and definitions, this section leads to the 
following conclusions: 

• The information models of safety, security, and survivability engineering are remarkably 
similar in both content and topology. 

• Because of this consistency, safety, security, and survivability requirements can be 
elicited and analyzed in terms of a risk-oriented, asset-based approach that takes into 
account the associated hazards and threats from which these assets must be protected. 



38  CMU/SEI-2003-TN-033 

• Survivability engineering is nearly (but not quite) the combination of safety and security 
engineering. The primary difference lies in the type of asset to be protected (in this case, 
critical services that need to be maintained). 
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5 Similarities and Differences 

As shown in the previous section, safety, security, and survivability engineering are very 
similar. This section summarizes these similarities as well as the differences and will provide 
a basis for the specific recommendations made in Section 6. 

5.1 Similarities 
As illustrated in Figures 9, 10, and 11, the information models for safety, security, and 
survivability have many similarities in contents and topology [Leveson 95]. The following 
subsections discuss these similarities in more detail.  

5.1.1 Similarities Common to All Requirements 

As pointed out in Figure 6, all quality requirements can be placed into the following 
hierarchical chain: 

1. goals that drive policies 
2. policies that drive requirements 
3. requirements that drive architectural mechanisms 
4. architectural mechanisms that fulfill requirements 

This hierarchy applies to all quality factors and does not signify anything special about safety, 
security, and survivability engineering. 

5.1.2 Similarities Common to All Quality Requirements 

As pointed out in Figure 8, all quality requirements are related to quality factors. The 
relationships between requirements and quality factors also do not signify anything special 
about safety, security, and survivability. 

5.1.3 Specific Similarities 

Whereas the previous similarities were general, the following similarities are specific to 
safety, security, and survivability engineering. On Figures 9, 10, and 11, these similarities 
include the following: 

All three disciplines 

— require the prevention or reduction of risks associated with hazards and/or threats 

— require the recognition and response to associated accidents and attacks 
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— exist to prevent, detect, or react to harm that may occur to some asset 

— address potential vulnerabilities of assets to harm 

5.2 Differences 
The following subsections discuss the essential and accidental differences between the 
information models underlying safety, security, and survivability engineering.  

5.2.1 Quality Factor Subclasses and Subfactors 

Safety, security, and survivability are quality factors that differ in that they currently have 
quite different subclasses and quality subfactors: 

• Different subclasses: Safety and security have different subclasses, whereas 
survivability does not seem to have subclasses. The subclasses of safety and security are 
both essentially based on the types of assets to which harm can occur. 

— Safety subclasses 

– health safety 

– property safety 

– environmental safety 

— Security subclasses 

– communications security 

– data security 

– emissions security (TEMPEST) 

– personnel security 

– physical security 

• Different subfactors: Security and survivability have different subfactors, whereas 
safety does not seem to have subfactors. The subfactors of security and survivability do 
not seem closely related.  

— Security subfactors 

– access control 

- identification 

- authentication 

- authorization 

– attack/harm detection 

– availability protection 

– integrity 

- data integrity 

- hardware integrity 
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- personnel integrity 

- software integrity 

- immunity 

– nonrepudiation 

– physical protection 

– privacy 

- anonymity 

- confidentiality 

– security auditing  

– system adaptability 

— Survivability subfactors 

– prevention 

– detection 

– reaction 

Other than the historical accident that these three disciplines have been developed largely 
independently of one another and that all three have been largely driven by the architectural 
mechanisms that have been used to fulfill them, there seems to be little reason why the 
preceding three decompositions should be so different. Although prevention is preferable to 
cure, it is clear that prevention has been strongly emphasized in all three disciplines, while 
detection and especially response have been highly under-emphasized. Thus, most of the 
quality subfactors of security can be placed under the banner of prevention. 

5.2.2 Assets 

Safety, security, and survivability tend to emphasize the protection of different kinds of 
valuable assets from different kinds of harm. 

• Safety emphasizes protecting people from harm, although it also can and should protect 
property and the environment from harm. 

• Security emphasizes protecting property (data) and services (e.g., denial of service) from 
harm, although it also can and should protect people (e.g., physical protection) and other 
kinds of property (e.g., hardware theft, facility sabotage, and software integrity from 
viruses). 

• Survivability is currently restricted to protecting essential services from harm. Yet, the 
meaning of “essential” is sometimes neither absolute nor constant. There may be multiple 
valid sets of services with a sequence of priorities that may change as external 
circumstances change [Knight 00, Knight 03]. Also, the safety and security of other 
assets may directly affect the system’s ability to provide essential services and therefore 
fulfill its primary mission.  

Nevertheless, these differences are somewhat minimized when safety and security properly 
address all types of valuable assets. However, protecting the environment from malicious 
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harm does not seem to be within the current scope of security, although acts of eco-terrorism 
and international terrorism could well change that. 

5.2.3 Accidents vs. Attacks 

Because of the separation of scope of safety and security into accidental and malicious harm, 
safety and security deal with different (though related) types of incidents, and survivability 
deals with both kinds of incidents. 

• Safety requirements protect assets from harm due to accidents. 

• Security requirements protect assets from harm due to attacks. 

• Survivability requirements protect assets (essential services) from harm due to both 
accidents and attacks. 

As illustrated in Figure 12, the source of relevant harm differs with respect to the different 
kinds of requirements: 

• Safety engineering deals with accidents that are due to human error (e.g., operator or 
user error), technological failures (e.g., failures resulting from defects), and natural 
causes such as science (e.g., the physics of electricity, the chemistry of explosives), 
engineering (e.g., normal “wear and tear”), or “acts of God” (e.g., natural disasters). 

• Security engineering deals with attacks that are mounted by attackers (e.g., people, 
organizations, software tools). 

• Survivability engineering deals with harm due to both accidents and attacks. 
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Figure 12: Accidents vs. Attacks 
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5.2.4 Hazards vs. Threats 

Because of the separation of scope of safety and security into accidental and malicious harm, 
safety and security deal with different types of dangers, and survivability deals with both. 
Figure 13 illustrates the following relationships: 

• Safety requirements protect assets from harm due to hazards. 

• Security requirements protect assets from harm due to threats. 

• Survivability requirements protect assets (essential services) from harm due to both 
hazards and threats. 
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Figure 13: Hazards vs. Threats 
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6 Recommendations and Future Work 

6.1 Specific Recommendations 
The following recommendations are based on the preceding observations concerning 
similarities and differences among the fundamental concepts underlying safety, security, and 
survivability engineering. 

6.1.1 Use Common Concepts and Terminology 

Where appropriate and practical, use common concepts and terminology when performing or 
describing safety, security, and survivability engineering [Mead 03]. For example, this 
common terminology should include such common concepts as asset, harm, accident, attack, 
hazard, threat, risk, vulnerability, requirement, policy, and goal. Add new concepts to clarify 
the relationships between highly similar terms (such as accident, attack or hazard, and threat). 
Clearly define these concepts so that their similarities and differences are obvious. Then, 
codify these definitions in standards, books, and training materials. 

6.1.2 Add Defensibility as a New Quality Factor 

As illustrated in Figure 14, create a new abstract quality factor called defensibility that is a 
subclass of dependability and which, in turn, is subclassed into the three quality factors of 
safety, security, and survivability. Defensibility can act as a focal point for common concepts 
and related processes (e.g., asset-based risk analysis) that can be inherited by its three 
subclasses. 

Safety

Security

Survivability

Defensibility
Quality Factor Dependability

Availability

Reliability

Robustness
 

 

Figure 14: Defensibility as a Kind of Dependability 

There is a trend to combine safety and security engineering into integrity assurance [ISO 96, 
Jarzombek 03]. However, integrity has a very specific meaning within security engineering 
(i.e., the integrity subfactor of security), so the term “integrity” is too specific and the more 



CMU/SEI-2003-TN-033 45 

general term “defensibility” is a more appropriate term for the combination of safety, 
security, and survivability. 

6.1.3 Decompose Defensibility 

Decompose defensibility (and therefore safety, security, and survivability) into a standard set 
of quality subfactors: asset protection, incident detection, incident reaction, and system 
adaptation. These quality subfactors can then be decomposed into a standard set of lower 
level quality subfactors that are essentially common to safety, security, and survivability. 

By explicitly decomposing safety, security, and survivability into asset protection, incident 
detection, incident reaction, and system adaptation as illustrated in Figure 15, we obtain the 
following benefits: 

• This decomposition provides welcome standardization across the three kinds of 
defensibility. 

• In light of the historic emphasis on asset protection, this decomposition helps to ensure 
that the other three subfactors are not forgotten and that a complete set of defensibility 
requirements are produced. 

• This decomposition enables the different kinds of defensibility to have their own 
additional factor-specific subfactors (e.g., availability protection, integrity, privacy, etc., 
as subfactors of asset protection). 

• This decomposition can be extended with new subfactors as they are identified. 

Figure 15 illustrates this standard decomposition. 
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Figure 15: Standard Decomposition of Defensibility into Quality Subfactors 
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The subfactors illustrated in Figure 15 can be defined as follows: 

• Asset protection (also known as prevention and resistance) is the degree to which assets 
are protected from accidents and attacks. 
Asset protection includes both the elimination of hazards and threats as well as steps to 
minimize the negative outcome should an accident or successful attack occur. Asset 
protection can be decomposed into various quality-factor-specific subfactors such as 
access control (identification, authentication, and authorization), availability protection, 
integrity, nonrepudiation, physical protection, and privacy.  

• Incident detection (also known as recognition) is the degree to which relevant accidents 
and attacks (or the harm they cause) are recognized as they occur so that the system can 
react accordingly (e.g., to maintain essential services, to degrade gracefully). 
Incident detection typically involves incident identification and logging. For example, the 
recording of attacks can provide legal evidence with which to prosecute attackers. It may 
also include the recognition of conditions or events preceding accidents (e.g., hardware 
nearing failure) or the detection of attackers collecting information during probes prior to 
attacks. 

• Incident reaction (also known as recovery) is the degree to which the system responds 
(e.g., recovers) after an accident or attack.  
Incident reaction can involve incident analysis and reporting, service degradation and 
restoration, as well as the prosecution of people causing accidents and attackers mounting 
attacks. Service restoration typically involves the establishment of priority-based 
recovery approaches so that any essential services that may have been lost or degraded 
are recovered before the recovery of any non-essential services that were lost or 
terminated. 

• System adaptation is the degree to which the system adapts itself (based on current 
accidents and attacks) so that in the future it may better protect its assets, detect incidents, 
and react to them. System adaptation my involve trend analysis for incidents as well as 
the improvement of safeguards and countermeasures. 

6.1.4 Include All Types of Valuable Assets 

As illustrated in Figure 16, ensure that all relevant assets are considered when developing 
defensibility (e.g., safety, security, and survivability) requirements. Consider each kind of 
asset, not just the most popular type (e.g., people for safety and data for security). These 
concepts now have the following definitions: 

• Asset is anything of value that should be protected from harm. 

• Harm is significant damage to or negative impact (i.e., negative outcome) associated 
with a valuable asset that is due to an incident. Harm can be decomposed according to the 
type of asset harmed (e.g., harm to people includes such things as injury, illness, death, or 
victimization by a cybercrime) or the type of incident (e.g., harm due to attack may 
include exposure of sensitive information). Harm must be sufficiently significant to 
warrant relatively prompt remedial action to prevent such harm in the future. 
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Figure 16: Assets and Harm 

6.1.5 Incidents 

Accidents and attacks are obviously related in that they both cause harm to valuable assets, 
which must be protected from them. As illustrated in Figure 17, create a new concept, 
“incident,” to act as an abstract superclass for both accident and attack. The resulting 
concepts in this inheritance hierarchy now have the following definitions: 

• Incident is any event or cohesive collection of related events that may cause harm to a 
valuable asset. 

— Safety incident is any incident that is unplanned and unintended, although not 
necessarily unexpected (i.e., accidental). 
– Accident (also known as mishap) is any safety incident that causes harm. 

– Near miss is any safety incident that does not cause harm. 
— Attack (also known as security breach) is any incident that is both intentional and 

unauthorized (i.e., malicious). Thus, an attack is a malicious attempt mounted by an 
attacker to violate the security of the system, bypass the system’s security 
mechanisms, and cause harm to an asset. 
– Successful attack is any attack that causes harm. 

– Unsuccessful attack is any attack that does not cause harm. 

As illustrated in Figure 17, safety and security have similar generalization subtrees with 
“safety incident” corresponding to “attack,” “accident” corresponding to “successful attack,” 
and “near miss” corresponding to “unsuccessful attack.” Note also from the above definitions 
that all events associated with an incident are not necessarily part of that incident. For 
example, typically a series of events occurs that move a system into a hazardous state (more 
correctly a set of incompatible states) prior to the occurrence of an accident. Similarly, a 
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series of exploratory or probing events often occur prior to and leading up to an actual attack 
[Allen 01]. 
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Figure 17: Incidents (Accidents and Attacks) 

6.1.6 Dangers 

As with accidents and attacks, hazards and threats are also obviously related in that both 
involve incidents that cause harm to valuable assets. Create a new concept, danger, to act as 
an abstract superclass for both hazard and threat. As illustrated in Figure 18, these concepts 
now have the following definitions: 

• Danger (also known as obstacle) is a situation (i.e., a set of one or more incompatible 
conditions or states of the system, possibly including one or more conditions in the 
system’s environment) that increases the likelihood of one or more related incidents. As 
such, dangers are ways of organizing related categories of incidents. 

— Hazard is a danger that may result in one or more related accidents. 
— Threat is a danger that may result in one or more related attacks. 
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Figure 18: Dangers (Hazards and Threats) 

6.1.7 Exploit Commonality in the Information Models 

As illustrated in Figure 19, commonality existing in the preceding diagrams can be combined 
to form a single information model for defensibility. Save effort by taking advantage of the 
commonality between the models underlying safety, security, and survivability when it comes 
to identifying and analyzing the 

— assets to protect from harm 

— harm that can come to these assets 

— incidents (e.g., accidents and attacks) that can cause harm 

— dangers (e.g., hazards and threats) 

— risks to the assets 

— vulnerabilities of the assets 

— mechanisms that will protect the assets and fulfill the requirements 
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Figure 19: Information Model for Defensibility Engineering 
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6.1.8 Develop a Common Process 

The similarities of the information models in Figures 9, 10, and 11 provide justification for 
the recommendation in many books and articles that safety and security requirements be 
engineered based on the associated risks of dangers to valuable assets [Alberts 03, Firesmith 
03c, Herrmann 99, Moffett 03, NASA 97, Peltier 01, UK 96]. If the requirements are too 
strong for the risks, then excess money and time are wasted on architectural mechanisms that 
are more powerful than needed. If the requirements are too weak for the risks, then dangers 
will not be adequately prevented, detected, and/or reacted to. Also, because all three types of 
defensibility involve largely the same assets and their related dangers and risks, it makes 
sense to engineer these quality factors simultaneously as a group to avoid wasting redundant 
effort. Therefore, use the commonality of these information models as a foundation on which 
to build a single, common, asset-based, risk-driven danger (hazard/threat) analysis approach 
for safety, security, and survivability engineering. For example, the following steps form one 
such process when performed iteratively, incrementally, and in parallel with the other 
activities and tasks: 

1. Integrate defensibility engineering with the rest of the engineering process. 

2. Develop a defensibility program plan that includes safety, security, and survivability. 

3. Identify and prioritize the valuable assets that are in danger and thus may be 
harmed. 

4. Set the defensibility goals and policies to protect these assets. 

5. Determine the negative impacts that could occur to these valuable assets if the 
dangers were to cause incidents (accidents and attacks). 

6. Identify and profile potential attackers as well as system-external causes of 
accidents (fires, floods, etc.). 

7. Identify, categorize, and prioritize the dangers (threats and hazards) that may harm 
these valuable assets. Identify and analyze their potential causes. 

8. Estimate the associated risks to these valuable assets and prioritize them based on 
the extent of the negative impact that can occur and the likelihood of the danger’s 
occurrence. 

9. In priority risk order, select the relevant quality subfactors of the protection, 
detection, and reaction quality subfactors of the safety, security, and/or survivability 
quality factors. For example, select authentication or data integrity when dealing 
with security. 

10. Determine one or more system-specific quality criteria to determine the existence of 
the associated quality subfactor. 

11. Select the associated quality metric for each criterion and determine a minimum 
required level of that quality metric. 
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12. Identify, analyze, and specify defensibility requirements as combinations of the 
quality criterion with a minimum level of the associated quality metric. Perform 
tradeoffs between these requirements and other potentially conflicting requirements. 

13. Architect mechanisms (safeguards and countermeasures) to fulfill these 
requirements. 

14. Design and implement these architectural mechanisms. 

15. Identify, analyze, and fix any remaining vulnerabilities. 

16. Perform verification (e.g., security testing). 

17. Obtain certification and/or accreditation. 

18. Store evidence of defensibility actions. 

19. Analyze and record incidents. 

6.1.9 Collocate Requirements 

Store the resulting defensibility requirements in the appropriate part of the quality 
requirements section of the system requirements specification. Do not store them in three 
separate documents that may or may not be used as input to the system architecture and 
design. For example, do not rely on the security policy document to store the security 
requirements; requirements are not policy, and collocating the security requirements with the 
security policies decreases the likelihood that they will drive the architecture and be tested for 
consistency with the other requirements. 

6.1.10 Engineer Defensibility Requirements and Architecture Early 

Do not wait until the rest of the architecture exists and components have been determined 
before engineering the safety, security, and survivability requirements and associated 
architectural mechanisms. By then, the other requirements will largely be completed, and the 
resulting defensibility requirements will not have driven the architecture and will not have 
been checked for consistency with the other requirements. It is difficult, costly, and time 
consuming to try to add safety, security, and survivability to an existing architecture. 

6.2 Future Work 
Clarifying terminology is important but by itself is insufficient. Clarifying the terminology 
regarding safety, security, and survivability is primarily important because it provides a solid 
foundation on which to engineer safety, security, and survivability. It also provides a solid 
foundation on which to perform research concerning these three engineering disciplines, 
especially if one is to try to take advantage of their commonality. 
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The contents of this technical note will form the foundation of an SEI internal research and 
development (IR&D) effort to identify ways of reusing safety, security, and survivability 
requirements as well as recommended processes for eliciting and analyzing such 
requirements.  

Other future work could include the following: 

• Better identify quality subfactors for safety and survivability to the same level of 
decomposition as has been done for security. 

• Determine the best way that these quality subfactors can be allocated to prevention, 
detection, and reaction, given that some of the quality factors seem to fit under more than 
one of these three categories. 

• Perform further research to determine the best way of dealing with availability (normal 
versus accidental loss versus malicious loss via DoS attacks) to minimize overlap 
between quality factors. 

• Determine the overlap of defensibility architectural mechanisms. 
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7 Conclusion 

As can be seen from the foundational models documented in this technical note, safety, 
security, and survivability are very closely related. Safety deals with accidental harm due to 
accidents that are typically caused by human errors from carelessness, hardware failures, or 
“acts of God,” whereas security deals with malicious harm due to attacks by human or 
automated attackers. Survivability deals with both accidental and malicious harm if the harm 
is sufficient to adversely affect essential services. All three quality factors are based on the 
protection of valuable assets from harm, although each has historically emphasized different 
kinds of assets. Safety thus involves the prevention or reduction of hazards, security involves 
the prevention or reduction of threats, and survivability involves the prevention or reduction 
of both hazards and threats. All three involve the analysis and management of risks based on 
potential negative outcomes and the probability of their occurrence. All three also involve 
requirements to prevent, reduce, or mandate the proper response or adaptation of the system 
to the occurrence of these risks. These requirements are typically fulfilled by appropriate 
architectural mechanisms (e.g., safeguards, security practices and countermeasures, 
survivability mechanisms) that address potential and actual vulnerabilities. 

Safety, security, and survivability requirements can be defined as quality requirements for the 
quality factors of safety, security, and survivability, respectively. As such, they can be 
organized into associated quality subfactors. They can also be decomposed into two parts: a 
quality criterion (a specific description that provides evidence either for or against the 
existence of a specific quality factor or subfactor) and a quality metric (a minimum level 
based on an associated scale of measurement). In all three cases, the quality criterion 
typically involves the asset being protected and the danger (e.g., hazard or threat) from which 
it is being protected. 

This technical note has provided a relatively formal foundation for safety, security, and 
survivability engineering by defining an information model for 

• a quality model and its component parts 

• requirements with emphasis on quality requirements for safety, security, and survivability 

• safety, security, and survivability 

This technical note has identified the essential foundational concepts underlying safety, 
security, and survivability engineering, provided rigorous definitions for them, illustrated the 
important relationships between them, and provided a series of recommendations based on 
the commonality between safety, security, and survivability. In so doing, I hope that this 
technical note will clarify and standardize the terminology associated with safety, security, 
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and survivability and will thereby simplify and improve the engineering of complex systems 
by improving the consideration of their safety, security, and survivability.  
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