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Abstract

Many architecture-centric analysis and design methods have been created in the past 10 years 
at the Software Engineering Institute, beginning with the Software Architecture Analysis 
Method (SAAM). The SAAM inspired the creation of other methods, namely the Architecture 
Tradeoff Analysis MethodSM, the Quality Attribute Workshop, the Cost-Benefit Analysis 
Method, Active Reviews for Intermediate Designs, and the Attribute-Driven Design method.

As these methods become more widespread, more widely adopted, and integrated into the 
software development life cycle, organizations inevitably will want to tailor them. Conse-
quently, organizations that wish to include quality-attribute-based requirements, explicit archi-
tecture design, and architecture analysis in their software development life cycles will be best 
served if they can do so “organically.” The steps and artifacts of the five methods listed above, 
therefore, may require tailoring, blending, and, in some cases, removal when integrated into an 
existing life cycle.

This report examines these methods and activities to understand their commonalities and rela-
tionships to life-cycle changes, and proposes a means of tailoring the activities so that they can 
fit more easily into existing life-cycle models.
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1 Introduction

Many architecture-centric analysis and design methods have been created in the past 10 years, 
beginning with the Software Architecture Analysis Method (SAAM) [Kazman 96], which 
inspired the creation of other methods. The first such method that we created at the Software 
Engineering Institute (SEISM) was the Architecture Tradeoff Analysis MethodSM 
(ATAMSM)1 [Kazman 99]. As we gained experience from the ATAM, we expanded our reper-
toire into more phases of the life cycle with the following methods:

• Quality Attribute Workshop (QAW) [Barbacci 03]

• Cost-Benefit Analysis Method (CBAM) [Kazman 01]

• Active Reviews for Intermediate Designs (ARID) [Clements 00]

• Attribute-Driven Design (ADD) method [Bass 03]

In this report, we examine these methods and their relationship to the software development 
life cycle (SDLC). 

These methods share not only a common heritage, but also a common set of characteristics, 
aside from being architecture-centric. First, they all are scenario driven, with the scenarios 
serving as the “engine” for directing and focusing the methods’ activities. Second, they all are 
directed by operationalized quality attribute models. The SAAM focused on modifiability. The 
ATAM looks at tradeoffs among multiple quality attributes, while the ADD method shapes 
design decisions around quality attribute considerations. The QAW attempts to elicit and doc-
ument quality attribute requirements accurately, particularly in the absence of explicit archi-
tectural documentation. Third, the methods all focus on documenting the rationale behind the 
decisions made; in this way, the rationale serves as a knowledge base on which to base both 
existing and future decisions. Last, they all involve stakeholders so that multiple views of 
quality are elicited, prioritized, and embodied in the architecture.

Each of these methods includes a number of activities that logically belong to different parts of 
the traditional SDLC. Because these methods are designed for stand-alone use, however, the 
activities are embedded within them. The methods are typically run by a consultant, a quality-
assurance group, or a researcher outside the developing organization’s immediate scope. Many 
organizations realize the value of having an outsider investigate their internal documents, even 
when the outsider’s activities mirror many of the activities that already take place within the 
organization. The outsider brings to the table a fresh perspective, objectivity, and a well-honed 

1. SEI, Architecture Tradeoff Analysis Method, and ATAM are service marks of Carnegie Mellon University.
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set of analytical skills, and is (hopefully) untainted by existing “group-think” or by political 
pressure. Although stand-alone methods have merit, they normally are not integrated with 
each other or into an organization’s SDLC.

A typical SDLC, as practiced in relatively mature software development organizations, 
includes (at least) the following activities:

• understanding of business needs and constraints

• elicitation and collection of requirements 

• architecture design

• detailed design2

• implementation

• testing

• deployment

• maintenance

Of course, this list is not exhaustive, and many of these activities can be broken down into sub-
activities (e.g., most include documentation and analysis sub-activities). Also, this list does not 
imply a particular development process—spiral, waterfall, agile, or any other. These items 
simply are distinct activities, with their own inputs, outputs, specialists, sub-activities, analysis 
techniques, and notations that must be undertaken in the development of any substantial soft-
ware-intensive project. For example, architecture design as an activity includes inputs from 
requirements and business needs and constraints, produces outputs in the form of architecture 
documentation, and includes architecture analysis activities.

As architecture-centric methods become more widespread, more widely adopted, and inte-
grated into an SDLC, organizations inevitably will want to tailor them. Consequently, organi-
zations that wish to include the eliciting and gathering of quality-attribute-based requirements, 
explicit architecture design, and architecture analysis in their life cycles will be best served if 
they can do so “organically.” The steps and artifacts of the five architecture-centric methods 
listed above—QAW, ADD, ATAM, CBAM, and ARID—therefore may need to be tailored, 
blended, and, in some cases, removed entirely when the activities of these methods are inte-
grated into an organization’s existing life cycle.

In this report, we survey the methods’ activities to understand their commonalities and to pro-
pose a means of tailoring the activities so that they can fit more easily into existing SDLC 
models. In Section 2, we briefly describe the five architecture-centric methods without com-
ment, and in Section 3, we discuss their relationship to software development activities. Their 
integration into an SDLC is covered in Section 4, which also involves deconstructing the 

2. We use the term detailed design here because it is a widely accepted term. We are not implying that architecture design
includes no details. The architect definitely must go into detail in some areas (e.g., to specify the properties of components
and their interactions), while detailed design typically involves algorithms, data structures, and realization.
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methods into a collection of common architecture-based activities. We conclude in Section 5 
by summarizing the relationship between life-cycle stages and architecture-based activities. 
Identifying these activities is a first step towards helping organizations tailor and embed the 
methods in their own SDLC, develop an SDLC based on these methods, or make connections 
to other software development processes.



4 CMU/SEI-2003-TN-026



CMU/SEI-2003-TN-026 5

2 Description of the Methods

In this section, we briefly describe the inputs to, outputs from, and the steps of each of the five 
methods. For each method, we present only the steps that actually involve analysis; we do not 
address tasks that concern working with the organization. So, for example, a step called 
“Present the Method” or a step called “Present Results” is not included here.

This report does not provide complete descriptions of any of these methods. For that, see the 
references noted in our discussion of each method. Our sole purpose in this report is to sketch 
each method’s inputs, activities, and outputs so that we can sufficiently understand how well 
they will integrate into an existing SDLC.

2.1 Quality Attribute Workshop (QAW)
The QAW elicits, collects, and organizes software quality attribute requirements [Barbacci 
03]. The vehicle for moving the QAW forward is the scenario. Specifically, the QAW elicits 
and records six-part scenarios, where the parts include the stimulus of the scenario, the source 
of the stimulus, the response, the response measure, the artifact stimulated, and the environ-
ment.

2.1.1 Inputs to the QAW

Inputs include the

• system’s business/mission drivers

• system’s architectural plan

2.1.2 Steps of the QAW

This method includes the following steps:

1. Business/Mission Presentation: A representative of the stakeholder community presents 
the business/mission drivers for the system: its business drivers, key quality attributes, and 
high-level requirements.
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2. Architectural Plan Presentation: Even though a detailed architecture may not exist, high-
level system descriptions, context drawings, or command, control, communications, com-
puter, intelligence, surveillance, and reconnaissance (C4ISR) documentation may. At this 
point in the workshop, a technical stakeholder presents the architectural plans as they 
stand with respect to these early documents.

3. Identification of Architectural Drivers: When the business drivers and architectural plan 
are presented, the QAW facilitators capture what they hear as architectural drivers. These 
include high-level requirements, business concerns and objectives, and quality attributes. 
At the conclusion of the presentation, the SEI facilitators share their list and ask for clarifi-
cations and corrections.

4. Scenario Brainstorming: The facilitators review the parts of a scenario (stimulus, environ-

ment, and response)3 and ensure that each scenario is well formed during the workshop. 
Stakeholders in the workshop express scenarios representing their concerns about the sys-
tem. Scenarios are offered by each stakeholder in a round-robin fashion. During a nominal 
QAW, two round-robin passes are made so that each stakeholder can contribute at least 
two scenarios. The facilitators ensure that representative scenarios exist for each architec-
tural driver.

5. Scenario Consolidation: After the scenario brainstorming, the group consolidates the sce-
narios when possible and prioritizes the remaining ones. If two scenarios are similar, 
stakeholders might split their votes when prioritizing them, causing neither scenario to be 
refined.

6. Scenario Prioritization: Each stakeholder is allocated a number of votes equal to 30% of 
the total number of scenarios generated after consolidation. Voting occurs in round-robin 
fashion, in two passes. During each pass, stakeholders allocate half of their votes.

7. Scenario Refinement: After scenarios are prioritized, the top four or five are refined in 
more detail and turned into six-part scenarios. This refinement adds a list of organizations, 
business drivers, actors, quality attributes, and questions to the raw scenario. The ques-
tions concentrate on quality attribute aspects of the future architecture and include those 
that an architectural reviewer might ask during a scenario walkthrough at a technical inter-
change meeting.

3. At this point, the scenario contains three parts because it is not refined into six parts until Step 7.
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2.1.3 Outputs of the QAW

Outputs include a list of

• raw scenarios

• consolidated scenarios

• prioritized scenarios

• refined scenarios

2.2 Attribute-Driven Design (ADD)
The ADD method defines a software architecture by basing the design process on the quality 
attributes the software must fulfill [Bass 03]. ADD documents a software architecture in a 
number of views; most commonly, a module decomposition view, a concurrency view, and a 
deployment view. ADD depends on an understanding of the system’s constraints and its func-
tional and quality requirements, represented as six-part scenarios.

2.2.1 Inputs to ADD

Inputs include a

• set of constraints

• list of functional requirements

• list of quality attribute requirements

2.2.2 Steps of ADD

This method includes the following steps:

1. Choose the module to decompose: The module selected initially is usually the whole sys-
tem. All required inputs for this module should be available (constraints and functional 
and quality requirements). 

2. Refine the module according to the following steps:

a. Choose the architectural drivers from the set of concrete quality scenarios and func-
tional requirements. This step determines what is important for this decomposition.

b. Choose an architectural pattern that satisfies the architectural drivers. Create (or 
select) the architectural pattern based on the tactics that can be used to achieve the 
architectural drivers. Identify children modules required to implement the tactics.

c. Instantiate modules and allocate functionality from the use cases using multiple 
views. 



8 CMU/SEI-2003-TN-026

d. Define interfaces of the child modules: The decomposition provides modules and con-
straints on the types of interactions among the modules. Document this information in 
the interface document for each module.

e. Verify and refine use cases and quality scenarios, and make them constraints for the 
child modules. This step verifies that nothing important was forgotten and prepares 
the children modules for further decomposition or implementation.

2.2.3 Output of ADD

The output includes a decomposition of the architecture, documented in at least three views: 
module decomposition, concurrency, and deployment.

2.3 Architecture Tradeoff Analysis Method (ATAM)
The ATAM helps a system’s stakeholder community understand the consequences of architec-
tural decisions on the system’s quality attribute requirements [Kazman 00]. These conse-
quences are documented in a set of risks and tradeoffs that constitute the main output of the 
ATAM. 

2.3.1 Inputs to the ATAM

Inputs include the

• system’s business/mission drivers

• existing architectural documentation

2.3.2 Steps of the ATAM

This method includes the following steps:

1. Present business drivers: A project spokesperson (ideally the project manager or system 
customer) describes which business goals are motivating the development effort and iden-
tifies the primary architectural drivers (e.g., high availability, time to market, or high secu-
rity).

2. Present architecture: The architect describes the architecture, focusing on how it 
addresses the business drivers.

3. Identify architectural approaches: The architect identifies, but does not analyze, architec-
tural approaches.
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4. Generate quality attribute utility tree: The quality factors that make up system “utility” 
(performance, availability, security, modifiability, etc.) are specified down to the level of 
scenarios, annotated with stimuli and responses, and prioritized.

5. Analyze architectural approaches: Based on the high-priority factors identified in the util-
ity tree, the architectural approaches that address those factors are elicited and analyzed 
(e.g., an architectural approach aimed at meeting performance goals will be subjected to a 
performance analysis). Architectural risks, sensitivity points, and tradeoff points are iden-
tified.

6. Brainstorm and prioritize scenarios: A larger set of scenarios is elicited from stakeholders 
and prioritized through a voting process.

7. Analyze architectural approaches: The highest ranked scenarios are treated as test cases—
they are mapped to the architectural approaches previously identified. Additional 
approaches, risks, sensitivity points, and tradeoff points may be identified.

2.3.3 Outputs of the ATAM

Outputs include a

• list of architectural approaches

• list of scenarios

• set of attribute-specific questions

• utility tree

• list of risks

• list of non-risks

• list of risk themes

• list of sensitivity points

• list of tradeoffs

2.4 Active Reviews for Intermediate Designs (ARID)
The ARID method blends Active Design Reviews with the ATAM, creating a technique for 
investigating designs that are partially complete [Clements 00]. Like the ATAM, the ARID 
method engages the stakeholders to create a set of scenarios that are used to “test” the design 
for usability—that is, to determine whether the design can be used by the software engineers 
who must work with it. The ARID method helps to find issues and problems that hinder the 
successful use of the design as currently conceived.
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2.4.1 Inputs to ARID

Inputs include

• a list of seed scenarios

• the existing architectural/design documentation

2.4.2 Steps of ARID

This method includes the following steps:

1. Present the design: The lead designer presents an overview of the design and walks 
through the examples. During this time, participants follow the ground rule that no ques-
tions concerning implementation or rationale are allowed, nor are suggestions about alter-
nate designs. The goal is to see if the design is “usable” to the developer, not to find out 
why things were done a certain way or to learn about the secrets behind implementing the 
interfaces. This step results in a summarized list of potential issues that the designer 
should address before the design can be considered complete and ready for production. 

2. Brainstorm and prioritize scenarios: Participants suggest scenarios for using the design to 
solve problems they expect to face. After they gather a rich set of scenarios, they winnow 
them and then vote on individual scenarios. By their votes, the reviewers actually define a 
usable design—if the design performs well under the adopted scenarios, they must agree 
that it has passed the review.

3. Apply the scenarios: Beginning with the scenario that received the most votes, the facilita-
tor asks the reviewers to craft code (or pseudo-code) jointly that uses the design services to 
solve the problem posed by the scenario. This step is repeated until all scenarios are cov-
ered or the time allotted for the review has ended.

2.4.3 Output of ARID

The output includes a list of “issues and problems” preventing successful use of the design.

2.5 Cost-Benefit Analysis Method (CBAM)
The CBAM facilitates architecture-based economic analyses of software-intensive systems 
[Kazman 02], [Kazman 01]. This method helps the system’s stakeholders to choose among 
architectural alternatives for enhancing the system in design or maintenance phases.
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2.5.1 Inputs to the CBAM

The inputs include

• the system’s business/mission drivers

• a list of scenarios

• the existing architectural documentation

2.5.2 Steps of the CBAM

This method includes the following steps:

1. Collate scenarios: Collate the scenarios elicited during the ATAM exercise and give the 
stakeholders the chance to contribute new ones. Prioritize these scenarios based on satisfy-
ing the business goals of the system and choose the top one-third for further study.

2. Refine scenarios: Refine the scenarios, focusing on their stimulus/response measures. 
Elicit the worst, current, desired, and best-case quality-attribute-response level for each 
scenario.

3. Prioritize scenarios: Allocate 100 votes to each stakeholder to be distributed among the 
scenarios, where the stakeholder’s voting is based on considering the desired response 
value for each scenario. Total the votes and choose the top 50% of the scenarios for further 
analysis. Assign a weight of 1.0 to the highest rated scenario. Relative to that scenario, 
assign the other scenarios a weight that becomes the number used in calculating the archi-
tectural strategy’s overall benefit. Make a list of the quality attributes that concern the 
stakeholders.

4. Assign intra-scenario utility: Determine the utility for each quality-attribute-response 
level (worst-case, current, desired, best-case) for the scenarios under study. The quality 
attributes of concern are the ones in the list generated during Step 3.

5. Develop architectural strategies for scenarios and determine their expected quality- 
attribute-response levels: Develop (or capture already developed) architectural strategies 
that address the chosen scenarios and determine the expected quality-attribute-response 
levels that will result from implementing these architectural strategies. Given that an 
architectural strategy may affect multiple scenarios, this calculation must be performed for 
each affected scenario.

6. Determine the utility of the expected quality-attribute-response levels by interpolation: 
Using the elicited utility values (that form a utility curve), determine the utility of the 
expected quality-attribute-response level for the architectural strategy. Determine this util-
ity for each relevant quality attribute enumerated in the previous step.
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7. Calculate the total benefit obtained from an architectural strategy: Subtract the utility 
value of the current level from the expected level and normalize it using the votes elicited 
previously. Sum the benefit of a particular architectural strategy across all scenarios and 
relevant quality attributes.

8. Choose architectural strategies based on return on investment (ROI) subject to cost and 
schedule constraints: Determine the cost and schedule implications of each architectural 
strategy. Calculate the ROI value for each remaining strategy as a ratio of benefit to cost. 
Rank the architectural strategies according to the ROI value and choose the top ones until 
the budget or schedule is exhausted.

9. Confirm results with intuition: Of the chosen architectural strategies, consider whether 
they seem to align with the organization’s business goals. If not, consider issues that may 
have been overlooked while doing this analysis. If significant issues exist, perform another 
iteration of these steps.

2.5.3 Outputs of the CBAM

Outputs include

• a set of architectural strategies, with associated costs, benefits, and schedule implications

• prioritized architectural strategies, based on ROI

• the risk of each architectural strategy, quantified as variability in cost, benefit, and ROI 
values
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3 Putting the Methods into Context

Recall that we are assuming a life-cycle model that includes the following activities. Note 
again that they are software development activities that do not imply a specific process, order, 
or interleaving.

• understanding of business needs and constraints

• elicitation and collection of requirements

• architecture design

• detailed design

• implementation

• testing

• deployment

• maintenance

We can now think of these activities in terms of the five methods outlined in Section 2. In par-
ticular, we want to understand where the activities in the five methods have their major appli-
cation and impact. Table 1 shows the methods and activities, and notes which artifacts are 
inputs to the method, outputs from the method, or both.

Table 1: Methods and Life-Cycle Stages 

Life-Cycle Stage QAW ADD ATAM CBAM ARID

Business needs and constraints Input Input Input Input

Requirements Input; 
output

Input Input; 
output

Input; 
output

Architecture design Output Input; 
output

Input; 
output

Input

Detailed design Input; 
output

Implementation

Testing

Deployment

Maintenance Input; 
output



14 CMU/SEI-2003-TN-026

Not surprisingly, the methods focus on the life-cycle stages and artifacts that appear earlier in 
a project’s lifetime. The methods have this early focus because they are architecture-centric 
techniques, and an architecture is the blueprint for a system. Once a project is in implementa-
tion, testing, deployment, or maintenance, the architecture has been largely decided on, either 
explicitly or implicitly.4 This principle has one exception: the CBAM may apply to mainte-
nance activities, because in maintenance, making substantial system changes that affect the 
architecture are possible. In Table 1, the “Input; output” annotation for this stage in CBAM 
indicates this possibility.

Since the ATAM was the first of these methods to be developed, and in a stand-alone fashion, 
it was forced to undertake activities that actually belong, in concept, to requirements elicita-
tion, design, or maintenance. To analyze an existing software architecture using the ATAM, 
one needs to understand the business needs that motivate the system, the requirements, the 
existing design decisions, and the anticipated changes to the system during the maintenance 
phase. This duplication of effort is appropriate for a method conducted by an outsider, but is 
inappropriate if the methods are seen as integral to an organization’s normal development pro-
cess. 

The QAW was developed in recognition that some of this effort could be done earlier in the 
life cycle and obviate the need for the early ATAM steps. This work was a form of early tailor-
ing. In Section 4, we look at placing the methods’ activities in the context of an SDLC, which 
is a first step towards identifying other opportunities for tailoring and allowing organizations 
to determine how they want to augment their SDLC with architecture-based activities.

4. Note that after the architecture is defined, documented, and analyzed, it still must be enforced in downstream software de-
velopment activities. Traditional processes must be altered to include architecture-centric activities, such as implementing
the system based on the architecture and ensuring that the implementation (during development and maintenance) con-
forms to the architecture. 
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4 Integrating the Methods with an 
Organization’s Life Cycle

Given the information in Table 1, we can think about placing these methods into a software 
development organization’s own life cycle. While any such method could be included verba-
tim (since, as stated above, these methods were meant to stand alone and be performed by out-
siders), the methods more likely will be tailored when adopted. In this section, therefore, we 
concentrate on each phase of the life cycle and the appropriate steps from the various architec-
ture-centric methods that could augment and improve the enactment of that phase.

4.1 Business Needs and Constraints
Although this topic is not often included in descriptions of SDLC models, it has a profound 
impact on project outcomes and on any architecture-centric approach to system building. For 
this reason, we strongly believe that an organization should include it explicitly in any SDLC 
discussion. Software development projects usually are created in response to business needs 
and are promoted by a stakeholder or a group of stakeholders within an organization. The busi-
ness needs influence many of the system’s functions as well as its quality attribute require-
ments. The business needs also might imply other architectural constraints, such as requiring 
interoperability among systems, adhering to standards, and maintaining consistency with other 
user interfaces. 

The business needs and constraints must be captured in a document or presentation that details 
the business issues, the origin of each issue, any rationale behind it, and the expected benefits. 
(For an example, refer to Evaluating Software Architectures: Methods and Case Studies 
[Clements 02].) The document also might capture any history of the project, the business envi-
ronment, the stakeholder community, and any business or technical constraints. This document 
then serves as the foundation for a plethora of decisions that occur later in a project’s lifetime. 
For example, scenarios and design decisions can be traced back to business decisions. Design 
tradeoffs inevitably will occur and they, too, must be motivated by business priorities. And 
when development priorities are being established, the cost-benefit analysis that directs the 
future of the project must be linked explicitly back to the business goals.

The business goals constitute an important input and starting point for all the architecture-cen-
tric methods shown in Table 1, except for ARID, which focuses on analyzing the usability of 
the design from a programmer’s perspective. 
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4.2 Requirements
Requirements elicitation, validation, documentation, and analysis traditionally have focused 
more on specifying what a system should do (the functional requirements) than on how the 
system should function (the nonfunctional, or quality, requirements). The IEEE Standard 830-
1998 for software requirements specifications, for example, mentions performance, reliability, 
availability, maintainability, portability, and security as attributes to be considered, but the 
focus is clearly on functional aspects of the system [IEEE 98].

The architecture-centric techniques that we discussed in Section 2, by contrast, focus almost 
entirely on quality attributes and quality attribute requirements. Why? Because an architecture 
is the single greatest determining factor in the achievement of a complex system’s quality 
attributes. (Bass and associates discuss this point in detail [Bass 03].) A system can achieve 
the same functionality using a myriad of different architectures; the changes occur in the qual-
ity attributes among those architectures. For example, systems are often rearchitected, not to 
change their functionality, but rather to change their quality attributes: to make them faster, 
more portable, or more modifiable. In short, quality attribute requirements drive the architec-
ture of successful complex systems.

In current SDLCs, functional requirements are described in a variety of ways, most commonly 
employing use cases. Use cases describe an interaction between the system and its environ-
ment. Quality requirements cannot be adequately captured with just use cases. To address this 
shortcoming, the architecture-centric methods described in this report employ six-part scenar-
ios, as introduced in Section 2.1. A six-part scenario captures

• a stimulus—some condition that is affecting the system

• a response—the system activity that results from the stimulus

• a stimulus source—the entity that generated the stimulus

• an environment—the condition under which the stimulus occurred

• a stimulated artifact —the system artifact that was directly affected by the stimulus

• a response measure—the measure by which the system’s response is evaluated

The architecture-centric methods elicit and capture quality attribute scenarios in a variety of 
ways—namely, by using general scenarios, utility trees, and scenario brainstorming. 

General scenarios are quality-attribute-specific templates for creating six-part scenarios [Bass 
01]. For each quality attribute, a general scenario lists the possible values for each of the six 
parts. Specific scenarios are then created by selecting values for each of the six parts, and by 
adding system- and context-specific details. General scenarios provide a system-independent 
checklist for quality attribute requirements and thus ensure that these requirements are covered 
completely in the elicited scenarios.
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The utility tree uses top-down elicitation to capture quality requirements by successively refin-
ing the top-most system quality goal (utility) into more and more specific quality goals, such 
as performance, modifiability, and availability. The leaves of the utility tree are scenarios, 
which are specific instances of the quality attribute that is their parent in the tree. (Such leaf-
node scenarios might, of course, be created using general scenarios.) Figure 1 shows a portion 
of a utility tree taken from an application of the ATAM. The utility tree is useful in dealing 
with a group of stakeholders who have different interests in the system’s success and different 
backgrounds. It helps to resolve the “vocabulary” problem, where different stakeholders use 
different terms for similar concerns, and it helps to prioritize the relative importance of differ-
ent qualities. 

Scenarios also are collected via a bottom-up brainstorming process. In this elicitation process, 
each stakeholder is given an opportunity to suggest scenarios in a round-robin fashion, with 
little or no criticism or refinement. Once the group has exhausted its creativity, it prioritizes 
the scenarios via a group-voting procedure, whereby each stakeholder is allocated 0.3 times 
the number of scenarios and may distribute these votes, in any amount, to any of the brain-
stormed scenarios. The results of such exercises appear in several documents [Clements 02], 
[Kazman 02], [Kazman 00]. Scenario brainstorming elicits a wide set of scenarios, builds 
group buy-in to the architecture design process, and acts as a testing mechanism to ensure that 
no stakeholder’s concerns have been inadvertently overlooked.

Irrespective of the approach taken, or if several are taken (as is recommended in the ATAM), 
the process of eliciting and analyzing requirements is augmented with six-part quality attribute 

Figure 1: A Portion of a Utility Tree

Utility

Modifiability

Operability

Reliability

Subscription activates for 2,000 users to send 1 GB of data 
each in normal operation; completes within 20 minutes.

L-7 search receives 100 hits under normal ops; gives 
result in 30 seconds.

Reduce data distribution failures resulting in hung 
distribution requests requiring intervention to 1%.

Eliminate order failures that result in lost orders.

Scalability
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scenarios that are architecturally relevant. These scenarios will inform and direct subsequent 
design and analysis activities.

Integrating architecture-centric methods into an existing SDLC requires explicit elicitation, 
documentation, and analysis of quality attribute scenarios. Requirements serve as the key 
bridge between a system’s business goals and its architecture, and thus are listed as being an 
input for the QAW, ADD, the ATAM, and CBAM in Table 1, and are an output of the QAW, 
ATAM, and CBAM. 

4.3 Architecture Design
Architecture design often is done implicitly in existing SDLCs. Most development processes 
do not make it an explicit activity, with defined milestones, scheduled reviews, and regular 
documentation. As a result, the architecture design of a system is frequently emergent. To 
encourage a more disciplined approach to this design, organizations must make it a regular 
part of their SDLC. 

From the perspective of our architecture-centric methods, such action requires an organization 
to employ an explicit architecture design activity such as the ADD method [Bass 03]. This 
activity has several consequences for a development project:

• An architecture design must be created. The process of creating an architecture is com-
plex, involving the satisfaction of many competing demands. The ADD method addresses 
this complexity in part by using prepackaged architectural patterns [Buschmann 96] and 
tactics [Bachmann 03].

• The architecture must be properly documented. The ADD method recommends that the 
architecture be documented in at least three views: module decomposition, concurrency, 
and deployment. The book titled Documenting Software Architecture: Views and Beyond 
provides guidelines for documenting these views [Clements 03].

The architecture must be analyzed for suitability with respect to the quality attributes and the 
business goals from which these quality attributes are derived. Such an analysis might follow 
the ATAM, CBAM, or some other technique. 

Each of these bulleted points is relevant to Table 1. In this table, we show the architecture 
design as an output of ADD, an input to ARID, and both an input to and an output from the 
ATAM and CBAM. From a life-cycle perspective, however, each of these points typically rep-
resents a new activity in an organization’s SDLC, one that was not part of the organization’s 
previous way of building systems. Thus the “architecture-aware” SDLC must be expanded to 
include these activities, as required, in the organization’s standard development process.
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For example, the ATAM has been used many times on existing systems to assess the fitness of 
the architecture for both its current envisaged use and its future use. During an ATAM evalua-
tion, scenarios are collected in three categories:

• anticipated uses of the systems (use case scenarios)

• anticipated changes to the systems (growth scenarios)

• unanticipated stresses to the systems (exploratory scenarios)

These scenarios are used to understand and analyze the architecture. Any architecture-aware 
SDLC should collect these scenarios on an ongoing basis and periodically analyze the archi-
tecture to understand its response to these scenarios. In this way, architectural defects can be 
found as a normal part of the design process. 

4.4 Detailed Design
During the detailed design phase, an ARID review also can take place, to ensure that the 
implementers can use the detailed design and architecture. Table 1 reflects this activity by 
showing the architecture as an input and the detailed design as both input to and output from 
an ARID execution. An ARID activity accomplishes much the same purpose as usability test-
ing of the graphical user interface (GUI) with end users. Adding this step into the SDLC 
ensures that the architecture and the detailed designs flowing from it are indeed usable by the 
developers to implement their tasks, as defined by the collected scenarios.

4.5 Maintenance
The maintenance phase of a product’s life cycle is typically the longest phase and, in the end, 
the most costly. This phase also carries substantial risk, for if the wrong decisions are made 
when evaluating the product, it will fail to meet its stakeholders’ needs and thereby ultimately 
fail as a system. The architecture-centric methods described in Section 2 can have a substantial 
positive impact on a product’s evolutionary path by lowering the risk of making inappropriate 
architectural decisions. 

As the product grows and evolves, architectural changes inevitably ensue. These changes are 
motivated by new scenarios, representing the stakeholders’ new or changed business goals. 
The organization must therefore redesign and modify the architecture to meet these new goals, 
as exemplified by the new scenarios. The organization may, at this point, invoke the ADD 
method to design appropriate architectural responses to the new challenges. 

The architecture’s fitness to meet its new goals and the architectural changes that result from 
the ADD activity should, of course, be reviewed. To this end, the organization should invoke 
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an architectural analysis activity, such as that embodied in the ATAM, to understand the risks, 
sensitivities, and tradeoffs embodied in the existing and proposed architectures. 

Finally, the organization must make a set of decisions. Every project has a finite budget, and 
typically, all the desired and proposed changes cannot be funded or, even if they could, they 
cannot be implemented simultaneously by the development team. So the organization must 
make choices by prioritizing the proposed architectural strategies. 

To make these choices, the organization can employ some of the CBAM steps. The previously 
collected scenarios can be augmented with a range of response values. Associated with each 
one of these responses is a utility value. Given this information, the organization can estimate 
the expected benefits of all architectural strategies and then determine the costs of these strate-
gies. With costs and benefits understood, the organization can make informed decisions 
among the proposed architectural strategies based on the metric of ROI. 

For this reason, the CBAM is shown with “maintenance” as both an input and an output in 
Table 1, which is an awkward way of saying that maintenance plans and activities can be an 
input to the CBAM and will be tempered by the results of the CBAM.
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5 Summary

In this report, we have shown how architecture-centric methods can influence a wide variety 
of activities throughout the SDLC. These methods have traditionally taken place as stand-
alone activities. The relationships between life-cycle stages and the activities embedded within 
existing architecture-centric methods are summarized in Table 2.

Table 2: Life-Cycle Stages and Architecture-Based Activities

Life-Cycle Stage Architecture-Based Activity

Business needs and 
constraints

• Create a documented set of business goals: issues/environ-
ment, opportunities, rationale, and constraints using a busi-
ness presentation template.

Requirements • Elicit and document six-part quality attribute scenarios using 
general scenarios, utility trees, and scenario brainstorming.

Architecture design • Design the architecture using ADD.

• Document the architecture using multiple views.

• Analyze the architecture using some combination of the 
ATAM, ARID, or CBAM.

Detailed design • Validate the usability of high-risk parts of the detailed design 
using an ARID review.

Implementation

Testing

Deployment

Maintenance • Update the documented set of business goals using a business 
presentation template.

• Collect use case, growth, and exploratory scenarios using 
general scenarios, utility trees, and scenario brainstorming.

• Design the new architectural strategies using ADD.

• Augment the collected scenarios with a range of response and 
associated utility values (creating a utility-response curve); 
determine the costs, expected benefits, and ROI of all archi-
tectural strategies using the CBAM.

• Make decisions among architectural strategies based on ROI, 
using the CBAM results.
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While each of these steps involves additional overhead as compared with the traditional, non- 
architecture-aware SDLC, this additional encumbrance is more than repaid by having an archi-
tecture that is designed, documented, analyzed, and evolved in a disciplined way. The alterna-
tive to adding these steps to the SDLC is for an organization to choose a chaotic approach to 
architecture design. 

Describing these architecture-based activities constitutes a first step towards creating tailor-
able architecture methods. Future work will include examples of integrating architecture-cen-
tric methods, both with each other and into an organization’s SDLC.
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