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Abstract

Construction and composition language (CCL) plays several roles in our approach to achiev-
ing automated predictable assembly. CCL is used to produce specifications that contain struc-
tural, behavioral, and analysis-specific information about component technologies, as well as 
components and assemblies in such technologies. These specifications are translated to one or 
more reasoning frameworks that analyze and predict the runtime properties of assemblies. 
CCL processors can also be used to automate many of the constructive activities of compo-
nent-based development through various forms of program generation. Using a common spec-
ification for prediction and construction improves confidence that analysis models match 
implementations. This report presents a snapshot of CCL by examining a small example CCL 
specification.
CMU/SEI-2003-TN-025 v
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1 Introduction

The Predictable Assembly from Certifiable Components (PACC) Initiative at the Software 
Engineering Institute is investigating technology and methods for reliably predicting the run-
time behavior of assemblies of components from their certifiable properties. Our approach to 
achieving predictable assembly is based on the development and use of prediction-enabled 
component technologies (PECTs).

A PECT extends the notion of a component technology with one or more reasoning frame-
works such that assemblies of components (or simply “assemblies”) are predictable with 
respect to those frameworks. When reasoning about components and assemblies, we start with 
their specifications rather than directly with their implementations. These specifications con-
tain structural information (how components are arranged to form assemblies), behavioral 
information (how components interact with each other), and analysis-specific properties (e.g., 
execution times and thread priorities for a performance reasoning framework). The construc-
tion and composition language (CCL) is a language for writing such specifications.

CCL specifications play a central role in using a PECT to make predictions. They are the 
source of all component and assembly information that is needed by reasoning frameworks 
and are used to automate important tasks involved in making predictions, such as

• checking that an assembly conforms to the rules of the component technology 

• checking that an assembly conforms to the rules of the reasoning frameworks that will be 
used to make predictions 

• interpreting the CCL specification to the forms needed by different reasoning frameworks 

CCL specifications also play a role in ensuring that predictions are valid. Since any prediction 
can be only as good as the information on which it is based and such information comes from 
CCL specifications, certifying that the information in a CCL specification is correct is an 
important step. Doing so can be accomplished in different ways, such as

• generating an implementation (or significant parts of an implementation) from a CCL 
specification

• extracting the CCL specification directly from the implementation

• testing an implementation for conformance to the information found in a corresponding 
CCL specification
CMU/SEI-2003-TN-025 1



This report is a snapshot of CCL, illustrating the main concepts of the language by working 
through a simple example. The concepts on which CCL is based (e.g., components, pins, reac-
tions, and interactions) are defined in Volume III: A Technology for Predictable Assembly from 
Certifiable Components [Wallnau 03]. While Vol. III provides essential background material, 
the basic ideas of this report should be reasonably clear to anyone who is familiar with soft-
ware component technology or with the most recent version of the Unified Modeling Lan-
guage—UML2.0.1

1.1 About This Technical Note
Our primary objective for writing this technical note is to provide a snapshot of CCL and how 
it captures information needed to achieve predictable assembly so that we can elicit feedback 
on both the direction the language is taking and its form. As such, the primary audience of this 
report consists of those also working to achieve predictable assembly, who may be users of 
CCL at some point. Familiarity with the evolution of this work, including an earlier version of 
the language (CL), is not necessary, but may provide additional insight into the rationale for 
some features of CCL [Ivers 02, Wallnau 03, Ivers 03].

1.2 Notational Conventions
CCL text is presented in 11 point Courier. CCL keywords are shown in boldface 
Courier. We use italics to refer to a CCL concept rather than to a specific phrase in CCL. 
Terms that are defined in the glossary are underlined. The graphical notation used in this report 
is introduced in Vol. III [Wallnau 03], but should not be mistaken for a rigorously defined 
notation. The semantics of diagrams in this notation are shown in the accompanying CCL 
description of each figure, except for the first, whose corresponding CCL is found in Appen-
dix A. A particularly important convention is the graphical distinction between instances and 
types—boxes with solid lines denote instances, while boxes with dashed lines denote types.

1.3 Organization of This Technical Note
The remainder of this technical note is organized around the explanation of how CCL is used 
to model an example. This explanation is provided in Section 2, which begins with a rough 
explanation of an example that is incrementally elaborated and specified in CCL in subsequent 
subsections. Although the example is not intended to be a complete exposition of CCL, it 

1. A reasonable question at this point is "if the concepts are similar, why not just use UML?" There are two reasons. First, we
are still investigating our needs, and experimenting with language features to try out different ideas, which would not be at
all practical if constrained by UML and its associated tools. Second, UML is currently evolving, albeit in a useful and relevant
way. While UML 2.0 is not yet official, we see how we could map CCL concepts easily to UML 2.0’s additions for modeling
architectural information. When UML 2.0 is official and tool support is available, we anticipate a smooth migration path to
UML.
2 CMU/SEI-2003-TN-025



introduces most of the important aspects of the language. For some features of CCL not cov-
ered by the example, we have provided self-contained capsule summaries. Section 4 concludes 
the report with a brief discussion of the current state of the language and our thoughts on the 
next steps in its development. 
CMU/SEI-2003-TN-025 3
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2 Example Application Assembly

The main features of CCL are exhibited in the assembly depicted in Figure 1. To summarize 
what is known from the graphic

• The assembly myApp executes in a runtime environment appEnv.

• appEnv provides services appClock and appLog.

• myApp comprises component c3 and partial assembly inner.

• inner interacts through its drip pin with c3 through its toc pin.

• inner and myApp use the same appClock and appLog services provided by 
appEnv.

• c3 interacts with appLog.

A graphical notation is effective at conveying some kinds of design information, though often 
only when the quantity of information is small. The graphic in Figure 1 abstracts all sorts of 
information, such as

• inner uses appClock to initiate the behavior of myApp.

• Events and different kinds of data are exchanged on interactions (on “the wire”).

Figure 1: Example Assembly

Outer myApp()(appEnv)

�
appClock

tic

appLog
��

toc �
tic

talk

c3

inner

drip
�

�

appClock appLog

listen

Outer myApp()(appEnv)

�
appClock

tic��
appClock

tic

appLog
����

toc �
tic

talk

c3

inner

drip
�

�

appClock appLog

listen
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• Interactions conform to well-defined protocols (e.g., to enforce event-queuing policies).

• Components react to stimuli and stimulate other components in well-defined ways.

To specify these and other aspects of a predictable assembly requires richer detail than is con-
veniently expressed with graphic notation alone; this is where the textual CCL fits. The exam-
ple presented in this technical note is meant to give the reader an overall impression of CCL. 
While the language is still under development and some details are likely to change, the major 
concepts of CCL are likely to remain stable.

The example is incrementally explained in five successive steps, each of which is presented in 
some detail in the following sections. The complete CCL specification of the example is pro-
vided in Appendix A.

2.1 Specify the Component
In the vernacular of component-based development, the term “component” is used (at a mini-
mum) to denote both the thing that is executing in some runtime environment and the thing 
that is its archetype. This distinction is sometimes (not always) expressed as component 
instances versus component types. This is what CCL does. In prose, we use the term “compo-
nent” in some contexts to mean component type and in others to mean component instance. In 
CCL, however, the keyword component is used to introduce the specification of a compo-
nent type.

A component in CCL has a structural part and a behavioral part. Figure 2 shows the structural 
part of a component specification: its pin specification. From this specification, we know that 
instances of Comp will accept an interaction request on its asynchronous sink pin toc and 
react by requesting interaction on its source pins tic and talk.

For simplicity we have bypassed several features of CCL:

• There are no initialization parameters on the component type (or on any other instantia-
tions in this example), as indicated by the empty () in Comp().

component Comp(){
sink asynch toc();
source unicast tic();
source unicast talk();

...
}

Figure 2: Structural Aspects of a Component

� �
tic

toc

�
talk

component Comp()

�� �
tic
�

tic
toc

�
talk
�

talk

component Comp()
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• Only asynchronous interaction modes are used (as asynch and unicast).

• The pins do not exchange data, as denoted by the empty () in toc(), tic(), and 
talk().

Figure 3 shows the preamble to the behavioral part of a component: its reaction(s), introduced 
with the CCL keyword react. A reaction specifies the externally visible behavior of a com-
ponent, where “externally visible” means visible on the component’s pins. More specifically, 
the behavior at each pin is specified in terms of two distinct kinds of events: start events, 
which begin interactions on a pin, and end events, which terminate interactions on a pin. Each 
event is denoted by a pin name and a start/end prefix operator, ^/$, respectively. For example, 
^toc represents the start of an interaction on the toc pin. (See Figure 4 for more examples.)

For a component to be well formed, each sink pin must be associated with exactly one reac-
tion. This ensures that the reactive behavior of a component with respect to each sink pin is 
unambiguous. Another well-formedness rule is that each source pin is associated with at least 
one reaction. In this way, several reactions may request interactions with the same external 
resource. These rules are statically enforced by our CCL processor. The pin names in the par-
enthetical list (toc, tic, talk) of the passIt reaction appear to be parameters of the reac-
tion but are in fact declarations of the pins used by the reaction.

Reactions may be either threaded or unthreaded (the default). A threaded reaction is intro-
duced by prepending the CCL keyword threaded to react, as shown in Figure 3. Here, 
thread denotes the concept of a unit of concurrency rather than its implementation as, say, a 
Java thread. There are several distinct well-formedness rules governing threaded and 
unthreaded reactions. For example, reenter sink pins may be associated only with 
unthreaded reactions, and each reentrant sink pin must be the only sink pin of its reaction.

The details of reaction behavior are specified in a variant of UML statecharts (based on the 
UML 1.5 statechart semantics [OMG 02]). To statecharts we add an executable action lan-
guage, of which only a portion—generating events—is illustrated. The CCL specification of 

component Comp(){
sink asynch toc();
source unicast tic();
source unicast talk();
threaded react passIt(

toc, tic, talk) {...}
}

Figure 3: Behavioral Aspects of a Component

� �
tic

toc

�
talk

component Comp()

threaded reaction 
passIt

�� �
tic
�

tic
toc

�
talk
�

talk

component Comp()

threaded reaction 
passIt
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component Comp is completed in Figure 4. A summary of the syntax and semantics of state-
charts is presented in the following paragraphs.

A transition may 

• optionally observe an event (CCL keyword trigger)

• optionally define a Boolean guard that is tested to determine whether a transition is eligi-
ble to fire (CCL keyword when) 

• optionally execute one or more actions if the transition fires (CCL keyword action)

A state may specify actions that are executed

• on entry to the state (CCL keyword enter) 

• when an outbound transition from the state fires (CCL keyword exit)

In the example, passIt waits in the ready state until it observes the start interaction event 
^toc. In response, passIt generates the ^tic event to start an interaction with any compo-
nent(s) connected to source pin tic and transitions to the work state. passIt waits in the 
work state until the interaction on tic completes, denoted by observing the $tic event, at 
which time it generates the ^talk event to start an interaction on the source pin talk and 
transitions to the log state. passIt then waits in the log state until the interaction on talk 
completes, denoted by observing the $talk event. In response, passIt generates the $toc 

Figure 4: Statechart Specification of 
Reactions

component Comp(){
sink asynch toc();
source unicast tic();
source unicast talk();
threaded react passIt(

toc, tic, talk) {
start->ready{}
ready->work{

trigger ^toc(); 
action ^tic();

}
work->log{

trigger $tic();
action ^talk();

}
log->ready{

trigger $talk(); 
action $toc();

}
}

}

� �
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�
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work
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^toc()/
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$tic()/
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$talk()/
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tic
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�
talk

ready

work

log

^toc()/
^tic()

$tic()/
^talk()

$talk()/
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component Comp()

threaded react passIt �
tic
�

tic
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�
talk
�

talk
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work

log

^toc()/
^tic()

$tic()/
^talk()

$talk()/
$toc()

component Comp()

threaded react passIt
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event to signal the termination of this 
interaction on toc, and returns to the 
ready state, where it waits for the 
next ^toc event.

Many well-formedness rules are 
defined on reactions. One such rule is 
that transitions in a reaction may only 
observe ^sink events, where sink is the 
name of a sink pin, or $source events, 
where source is the name of a source 
pin. The dual to this rule is that only 
$sink events and ^source events may 
be generated as actions. This rule is 
easy to understand, and thereby 
unlocks the meaning of its dual: a reac-
tion cannot force the component with 
which it is interacting to terminate that 
interaction; therefore a $source cannot 
be generated, only observed. 

2.2 Specify the 
Environment

The runtime environment shares with 
components the “type versus instance” 
distinction. As with components, the 
term “environment” is used for both, but the CCL keyword environment is used to intro-
duce an environment type specification.

The two roles an environment plays in a component technology are reflected in CCL:

1. An environment provides services.

2. An environment provides interaction mechanisms.

Although the example illustrates only the first of these roles, both are discussed here. It is also 
worth noting that CCL specifications of environments, which in some ways are messier than 
those of components and assemblies, are intended to be supplied by the developers of PECTs 
supporting specific runtime environments, and hence to be reusable for multiple assemblies or 
systems.

CCL Capsule: Pin Interaction Modes

Each pin obeys one of CCL’s predefined interaction 
modes. There are two major modes: asynchronous 
and synchronous. Informally, they classify message-
based and procedure-based modes of interaction. 
Modes are further specialized by pins.

Sink pins specialize synchronous mode into those 
that enforce mutual exclusion on reactions, denoted 
in CCL as sink mutex, and those that permit con-
current behavior on reactions, in CCL sink reen-
ter. Source pins specialize asynchronous mode into 
unicast and multicast, meaning about what you 
would expect. This graphic shows the iconographic 
conventions we use to depict most of these, for 
source pins r and sink pins s:

Our experience suggests that asynchrony on the 
source side may be specialized in many different 
ways; for example, for different queueing policies. 
Experience also suggests that the interplay of inter-
action modes and concurrency can be confusing at 
first exposure. For example, reentrant sink pins can-
not be associated with threaded reactions because a 
thread of control can process only one request at a 
time, which implies that callers may have to wait until 
previous calls have been completed.

source (unicast or mul-
ticast) and sink 
asynch

source synch and sink 
mutex

�r s�[n]

>r s>
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2.2.1 Specify the Environment Services

Figure 5 specifies that environment E provides two services, Clock and Log. Services are 
nothing more than environment-provided components. Syntactically, their specifications differ 
only by the keyword service. A distinguishing syntactic characterization is provided 
because environment components may have different well-formedness rules than application 
components. As a concrete example of such a difference, services may execute behavior inde-
pendent of the arrival of a stimulus, whereas application components must be purely reactive.2

Because we use the same syntax for services as for components, we need not discuss the 
details of the service specification shown in Figure 6. As earlier, we assume empty initializa-
tion parameters on the service types.

2. The motivation is to localize non-determinism to the environment. This restriction may prove too strong to be imposed gen-
erally.

environment E()

LogClock

environment E()

LogClock

environment E (){
service Clock() {...}
service Log() {...}

}

Figure 5: Structural Aspects of an Environment
10 CMU/SEI-2003-TN-025



2.2.2 Specify Environment-Specific Interaction Mechanisms

Components interact with each other in different ways depending on the mechanism, or con-
nector, used to enable their interactions. A synchronous mechanism (such as a function call) is 
very different from an asynchronous mechanism (such as sending a message); they have dif-
ferent consequences with respect to whether the initiator of the interaction will block until a 
response is received or even whether such a response is permitted. Consequently, when com-
ponents are composed, the behavior of the composition does not depend solely on the behavior 
of the components; the behavior of the interaction mechanism is also relevant.

This means that the behavior of interaction mechanisms, like the behavior of components, 
must be explicitly modeled. As with reactions, we model the behavior of interaction mecha-
nisms using statecharts. This allows us to define the meaning of a composition of components 
in terms of the statecharts for the reactions and those for the interaction mechanisms.

environment E() {
service Clock() {

source unicast tic();
threaded react ticking(tic){

start->sleeping{}
sleeping->pulsing{

trigger after(10); 
action ^tic();

}
pulsing->sleeping{

trigger $tic();
}

}
}
service Log() {

sink asynch listen();
threaded react 

logging(listen) {
start->run{}
run->run{

trigger ^listen(); 
action $listen();

}
}

}
}

Figure 6: Environment Services

�
listen

run

^listen()/$listen()

service Log()

�
tic

sleeping

pulsing

after(10)/^tic()

$tic()

service Clock()

environment E()

LogClock

�
listen

run

^listen()/$listen()

service Log()

�
tic

sleeping

pulsing

after(10)/^tic()

$tic()

service Clock()

environment E()

LogClock
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Modeling an interaction mechanism is not as simple as modeling a reaction, though. A simple 
approach with one statechart for each connection between a source pin and a sink pin is not 
always appropriate. When multiple source pins are connected to the same sink pin, there is 
often some coordination among these interactions, such as a single message queue that holds 
each request until it can be processed; such coordinations must be modeled also. Dividing the 
behavior of an interaction mechanism into two pieces—a source handler and a sink 
handler—allows us to separate interaction behavior into parts that are coordinated in differ-
ent ways. Doing so simplifies composition.3

Each handler is defined with a statechart that describes how the interaction mechanism medi-
ates communication from the point of view of one of the participants. Source handlers typi-
cally describe the conditions that allow the source’s reaction to proceed; for example, whether 
the source reaction is blocked until the interaction is complete or only until the interaction 
request has been queued with a sink handler. Sink handlers typically describe how multiple 
requests for an interaction on the same sink pin are coordinated; for example, whether they are 
queued, and if so, what the queuing policy is.

Handlers differ from other language concepts in that they do not follow the same type/instance 
pattern. While handler types are defined explicitly (as sketched in the CCL fragment below), 
instances are not declared explicitly. Instead, tools algorithmically determine which handlers 
to use for a particular composition. The choice of handler types is based on the types of pins 
involved in an interaction (as indicated by the parenthetical list of pin types supported by each 
handler) and on whether handlers for different pins should be combined. For example, multi-
ple asynchronous sink pins of a component that all use the same message queue should all use 
the same sink handler, which models that queue’s effect on interactions.

Each handler statechart (which would appear where the ellipses are in the above CCL frag-
ment) is actually an incomplete prototype that is algorithmically parameterized and modified 
when instantiated in the context of a particular composition (e.g., replacing generic ^sink 
and $source events with specific events corresponding to the relevant pins, and adding addi-
tional transitions to accommodate multiple pins interacting with the same handler). We regard 
the algorithm by which the CCL processor selects the appropriate handlers, and how it per-

3. The way that CCL handles connectors—separating their models into handler models—differs from the way that many ar-
chitecture description languages (ADLs) treat connectors. The same meaning—the mediation of interaction and protocols
that participants must follow—is retained, but the separation gives us flexibility in composing behavioral models.

Environment E() {
...

sink handler (mutex) {...} 
sink handler (mutex, asynch) {...}
source handler (unicast) {...}

...
}

12 CMU/SEI-2003-TN-025



forms statechart composition, as a matter 
for a CCL back end.4 For further details 
about statechart composition see “Pre-
serving Real Concurrancy” [Ivers 03]. 

The means for capturing these points of 
variability in the definition of handlers 
are not yet fully defined, so complete 
handler models cannot be presented at 
this time. 

2.3 Specify the Inner 
Assembly

Assemblies exhibit the type/instance dis-
tinction, just as components, environ-
ments, and services do. As in the 
previous cases, the keyword assembly 
introduces an assembly type. Also as 
before, the term “assembly” is sometimes 
used to denote both type and instance. 
However, the distinction between type 
and instance is a bit more complicated in 
the case of assemblies. 

Assemblies are specified relative to some 
environment, which supplies the mecha-
nisms that make component interaction 
within an assembly possible. That is, 
component interaction always uses envi-
ronment-supplied interaction mecha-
nisms, or connectors. Environments also 
provide services that may be useful in 
assemblies.

The Inner assembly specification begun in Figure 7 shows the relationship between assem-
blies and environments. The assembly (type) specification is parameterized by exactly one 
environment (type). Since we do not yet have an environment instance, we do not know how 

4. The terms “back end” and “front end” refer to architectural roles played by different components of a traditionally structured
compilation system. A front end typically performs lexical and syntactic (so-called “static semantic”) analysis, while a back
end might generate code for a target platform.

CCL Capsule: Actions

Actions in CCL are expressed for the most 
part in a very restricted subset of ANSI C. 
The choice of C syntax was made with the 
thought of using CCL in conjunction with 
industrial-strength software development 
environments—and for this purpose C/C++ 
is eminently suitable. 

CCL currently supports int and boolean. 
Simple type naming is allowed following the 
C typedef syntax, with restrictions. The 
built-in CCL array type abstracts the details 
of C pointers, which are not supported by 
CCL.

Variable declarations, assignments, and 
expressions are, as in C, minus pointers. 
Event generation is shown with a syntax that 
looks almost like C procedure calls, with the 
difference of a start or end unary operator 
before each event name. The following oper-
ators are supported, with their C-defined pre-
cedence (except for operators not found in 
C, of course).

CCL Operator Precedence

: name scope (highest)

() grouping

[ ] array indexing

+, -, 
!, ^, $

unary plus, minus, negation, 
start, end

*, /, % multiply, divide, modulus

+, - add, subtract

<, <=, 
>, >=

less than, less than or equal, 
greater than, greater than or 
equal

==, != equal, not equal

&&, || logical and, logical or

= assignment
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many Clock or Log service instances will be available. However, the assembly specification 
can introduce assumptions about how many runtime service instances (and of what service 
types) will be available with the CCL keyword assume. In this example, Inner assumes 
that an environment-provided instance of Clock is available, which is denoted as inner-
Clock. An analogous assumption is made about the Log service.

Instantiation syntax is used to declare innerClock and innerLog. In CCL, as in C, 
instances are declared using a “type instance” declarator syntax. The assume clause contains 
what looks like two instantiations, which, from the language user’s perspective, are as good as 
instantiations. Semantically, however, innerClock and innerLog are pseudo instances 
only—they are merely assumptions that must be fulfilled later, when the assembly Inner is 
instantiated.

The service assumptions innerClock and innerLog are expressed in terms of service 
types defined in E. This is allowed because the prologue “assembly Inner () (E)” 
makes environment E visible in the scope of Inner. There must also be a set of components 
visible in the scope of Inner; otherwise, this is going to be a boring assembly. In CCL all 
components and environments are specified in the global namespace,5 allowing us to add two 
instances of component Comp—c1 and c2—to Inner in Figure 8.

5. In fact, the environment E is visible to Inner without the parameterization of Inner by E. The parametrization is used to
check that only services of the specified environment type can appear as assumptions in the assembly. CCL does not cur-
rently support a hierarchical namespace such that components and environments can be grouped together in useful ways,
for example as collections of related components. Such a feature will be needed eventually.

assembly Inner ()(E) {
assume {

E:Clock innerClock(); 
E:Log innerLog();

}
   ...
}

assumptions about service 
instances available at runtime

Figure 7: Assembly Instantiation and Service Assumptions

assembly Inner()(E) 

�
innerClock

tic

�
innerLog

listen

assembly Inner()(E) 

�
innerClock

tic

��
innerLog

listen
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Components must be connected if they are to interact. The CCL ~> operator is used to connect 
a source pin (the left operand) to one or more sink pins (the right operands). Various conform-
ance rules must be satisfied by connections, such as

• The source and sink pins must have compatible interaction types (e.g., unicast 
source and asynch sink are compatible, while unicast source and mutex 
sink are not). 

• Each consume data parameter on the source pin must correspond positionally to a pro-
duce parameter on each sink pin, and the types of these parameters must be compatible 
(see the produce and consume capsule for more information on parameter modes).

• Each produce data parameter on the source pin must correspond positionally to a con-
sume parameter on the sink pin, and the types of these parameters must be compatible.

Interactions must satisfy other such topological conditions as well, for example those imposed 
by a reasoning framework. Specifying well-formedness rules for a reasoning framework may 
also require additional (reasoning framework specific) properties to be supplied about assem-
blies. CCL provides an annotation mechanism for specifying such properties. For example, 
enforcing a priority ceiling emulation on a set of interacting components would require prop-
erty annotations of thread priority. While reasoning framework specific well-formedness rules 
are not discussed further in this example, Figure 9 illustrates the use of the annotation mecha-
nism to assign priorities to the components’ reactions. Figure 9 also continues the illustration 
by specifying interactions among service and component instances.

assembly Inner ()(E) {
assume {

E:Clock innerClock(); 
E:Log innerLog();

}
Comp c1(), c2();//instances
...

}

Figure 8: Component Instantiation Within an Assembly

assembly Inner()(E) 

�
innerClock

tic

�
innerLog

listen�
toc �

�
tic

talk

c1

�
toc �

�
tic

talk

c2

assembly Inner()(E) 

�
innerClock

tic

��
innerLog

listen�
toc �

�
tic

talk

c1��
toc ��

��
tic

talk

c1

�
toc �

�
tic

talk

c2��
toc ��

��
tic

talk

c2
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The last detail that must be specified about assemblies is the visibility of their interactive 
behavior. By default, assemblies have no visible interactive behavior. An assembly A that 
exposes no interactive behavior must execute independently from all other components and 
assemblies not contained in A. If an assembly instance a of type A is to interact with compo-
nent (or assembly) instances not contained in a, we must expose, using the CCL keyword 
expose, the necessary pins (source or sink) of the components contained in a. These exposed 
pins are specified as a comma-separated list of scoped pin names; for example, the name 
c2:tic specifies the pin named tic of component instance c2. 

The effect of Inner exposing the pin c2:tic is to define an alias of c2:tic, called tic, 
in the scope of Inner (i.e., Inner:tic). Renaming using the CCL keyword as followed 
by a name alias is sometimes necessary to preserve the name uniqueness of pins in assembly 
scope. For example, expose {c1.tic, c2.tic} would result in two pins named tic in 
the scope of Inner, which would be illegal. At least one of the exposed pins must be 
renamed; for example, as in expose{c1.tic, c2.tic as drip}.

assembly Inner ()(E) {
assume {

E:Clock innerClock(); 
E:Log innerLog();

}
//instances
Comp c1(), c2();
// properties
annotate c1 {

"passIt:priority", const
int priority = 15}

annotate c2 {
"passIt:priority", const 
int priority = 10}

// interactions
innerClock:tic ~> c1:toc;
c1:tic ~> c2:toc;
c1:talk ~> innerLog:listen;
c2:talk ~> innerLog:listen;
...

}

Figure 9: Component Interaction Within an Assembly

assembly Inner()(E) 

�
innerClock

tic

�
innerLog

listen

�
toc �

�
tic

talk

c1

�
toc

�
talk

c2 �
tic

assembly Inner()(E) 

�
innerClock

tic

��
innerLog

listen

��
toc ��

��
tic

talk

c1

��
toc

��
talk

c2 �
tic
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Figure 10 completes the specification of Inner by exposing interactions on c2:tic, 
renamed to the external world as drip. The remaining behavior is hidden, resulting in the 
graphical representation found in Figure 10.

2.4 Specify the Outer Assembly
The specification of the Outer assembly uses the assembly specification syntax presented in 
Section 2.3, but introduces a new syntax to deal with assembly instantiation. (We have already 
seen the instantiation of components, without complication, in Figure 8.) The complete speci-
fication for the Outer assembly is provided in Figure 11. The part of CCL that deals with 
assembly instantiation is highlighted. 

assembly Inner ()(E) {
assume {
E:Clock innerClock(); 
E:Log innerLog();
}
//instances
Comp c1(), c2();
// interactions
innerClock:tic ~> c1:toc;
c1:tic ~> c2:toc;
c1:talk ~> innerLog:listen;
c2:talk ~> innerLog:listen;
expose {c2:tic as drip}

}

assembly Inner()(E) 

innerClock innerLog

�
drip

assembly Inner()(E) 

innerClock innerLog

�
drip

Figure 10: Abstracting Interaction 
Details
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There are two points to note in the instantiation of Inner as inner.

1. In Figure 7, Inner made assumptions about its environment. It is the responsibility of the 
instantiating context to satisfy these assumptions. That responsibility is discharged in the 
elaboration clause {...} that follows assembly instantiation. Within the braces—{}—of 
this elaboration, the syntax LHS = RHS is interpreted as “the service assumption on the 
left- hand side (LHS) is satisfied by the service instance on the right-hand side (RHS).”6 
Note that in this example, Inner assumptions are satisfied by Outer assumptions, 
which is perfectly legal.

2. Although its meaning will not become clear until Outer is itself instantiated, Inner is 
instantiated (as what was referred to in Volume III) as a partial assembly. Concretely, this 
means that the instances of components contained by inner will execute in the instance 
of the runtime environment of the instantiating assembly (in this case, Outer). In this 
example, we have bypassed the complicating situations where inner executes in a differ-
ent runtime instance e of environment E, or where inner executes in a runtime instance 

e’ of some other environment E′, where E ≠ E′.

6. The use of “=” is misleading here, since what is occurring is not quite assignment. An alternative syntax would be LHS sat-
isfies RHS, where, in this case, RHS would be the assumption of the instantiated assembly, and LHS would be a service
instance provided by the instantiating (assembly) context.

assembly Outer ()(E) {
assume {

E:Clock outerClock(); 
E:Log outerLog(); 

}
// instances
Comp c3();
Inner inner(){

Inner:innerClock = outerClock;
Inner:innerLog = outerLog;

};
// interactions
inner:drip ~> c3:toc;
c3:talk ~> outerLog:listen;
expose {}

}

Figure 11: Elaboration of Assembly Instances

assembly Outer()(E) 

�

�
toc

�
�

tic

talk

c3 �
outerLog

inner

�
drip

outerClock outerLog

outerClock

listen

assembly Outer()(E) 

��

��
toc

�
�

tic

talk

c3 �
outerLog

inner

�
drip

outerClock outerLog

outerClock

listen
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2.5 Instantiate the Application myApp
The instantiation of partial assembly inner shows how assemblies can be used to model hier-
archical composition. An alter-
native form of instantiation is 
used to define a complete run-
time view of an assembly.

That view specifies a set of 
component instances, execut-
ing in one or more environ-
ment instances.7 In CCL this 
specification involves two 
steps:

1. Instantiate an environment 
E as e to serve as the run-
time environment for one 
or more assembly 
instances.

2. Instantiate an assembly A 
as a, in e to serve as the 
application; e must satisfy 
the assumptions imposed 
by A.

2.5.1 Instantiate Environment E as e

Recall that services are defined in environments; or, for emphasis, environment types provide 
a scope for service types. In CCL, the instantiation of an environment and its services is joined 
in one syntactic statement, as in the following CCL fragment (building on the earlier specifica-
tion of environment E):

7. Currently, component topology is fixed at instantiation time and is thereafter immutable. This is a reasonable assumption for
many, but not all systems. Also, the association of component instance with environment instance is immutable: in particular,
there is no “mobility” of component instances to different environment instances. These and other important context assump-
tions of CCL can be made explicit only with a more comprehensive and formal treatment of CCL.

E appEnv() // appEnv is an instance of E
{ // elaboration

E:Clock appClock();
E:Log appLog(); // appClock, appLog in appEnv’s scope

}; // end elaboration and instantiation

CCL Capsule: produce and consume versus in and out

The meaning of in and out parameters on procedures 
(methods) seems obvious: in parameters are supplied by 
the caller while out parameters are supplied by the callee. 
But CCL uses produce and consume in place of the con-
ventional in and out for pin parameter modes:

sink mutex addOne (
consume int i, produce int i_plus_one);

To understand this decision, consider what the meaning of 
in/out pin parameters for sink and source pins would be 
if used with the typical meaning. For a sink pin, an in 
parameter would be supplied by the caller (another compo-
nent), and therefore would be data coming into the pin’s 
component. For a source pin, however, an in parameter 
would be supplied by the pin’s component and would there-
fore be data going out of the component. In practice, this 
meaning gets a bit confusing.

Instead, we use produce and consume with the perspec-
tive always relative to a pin’s own component. Conse-
quently, a produce parameter on a sink pin is a parameter 
produced by that pin's component, just as a produce 
parameter on a source pin is a parameter produced by that 
pin's component. Both represent data flow out of the com-
ponent, but the first flow is on the conclusion of an interac-
tion, while the second is on the initiation of an interaction.
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As with assembly instantiation, environment instantiation involves an optional elaboration 
clause. Whereas the assumptions of an assembly instance about its runtime environment are 
recorded when it is instantiated, the service instances provided by an environment are recorded 
in its instantiation. In the above fragment, two service instances—appClock and appLog—

are created and permanently associated with environment instance appEnv. Note that app-
Clock and appLog are genuine instantiations, unlike those that appear in assume clauses.

2.5.2 Instantiate Assembly Outer as myApp

To bring the example to a close, component instances and their enabled interactions must be 
associated, once and finally, with their (containing) environment instances. Once again, this is 
achieved in CCL using the instantiation mechanism. This CCL specification fragment does the 
job:

The above instantiation of myApp differs in two fundamental ways from the instantiation of 
inner as a partial assembly in Figure 11. 

1. myApp is permanently associated with its runtime environment, appEnv. More fully, all 
component instances within the scope of myApp, including the component instances 
found in the transitive closure of all partial assemblies contained by myApp, are associ-
ated permanently with appEnv.

2. Service instances of appEnv are used to satisfy the assumptions of Outer. Syntactically, 
this association of assumptions and provisions (or satisfiers) is identical to that used in the 
elaboration clause of partial assemblies. Semantically, this actually satisfies these assump-
tions rather than passing them along. 

At this point we have completed the example, resulting in the iconography of Figure 1, whose 
corresponding complete CCL specification is provided in Appendix A.

Outer myApp()(appEnv) 
{  // elaboration 

Outer:outerClock = appEnv:appClock;
Outer:outerLog = appEnv:appLog;

}; // end elaboration and instantiation
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3 Related Work

CCL builds on previous work in the related areas of module interconnection languages, archi-
tecture description languages (ADLs), coordination languages, and composition languages. A 
number of languages developed in these areas inspired our work and remain of interest. While 
developing CCL has provided us with an opportunity to address some shortcomings of such 
languages and explore new concepts for capturing the information needed to support predict-
able assembly, we can still benefit from reflecting on other work. In particular, now that the 
majority of the concepts behind CCL are well understood, we can reexamine and consider the 
significance of CCL’s differences from these languages.

Some of the more prominent languages that we continue to consider are

• The Avionics Architecture Description Language (AADL): AADL incorporates many fea-
tures from an earlier domain-specific ADL, MetaH [Honeywell 00], that are well suited to 
support some of the prediction technologies with which we are currently working [Feiler 
03].

• Acme: Acme is an architectural interchange language that can also be used as an ADL in 
its own right due to its inclusion of necessary structural concepts and its flexible annota-
tion mechanisms, which allow arbitrary extensions [Garlan 97].

• Darwin: Darwin is an ADL in which behavior is formally specified to support automated 
analysis [Magee 93].

• Koala: Koala combines ideas from the Darwin ADL with a component model for con-
sumer electronics software. It includes a number of features addressing scalability and 
usability concerns motivated by industrial use that reflect needs we must also address [van 
Ommering 02].

• UML 2.0: As mentioned earlier, UML 2.0 will introduce new features that better capture 
architectural information and increase the similarities between UML and CCL. Given 
UML’s widespread adoption, an encouraging transition path for PACC concepts may be to 
create a UML profile that captures the same information as CCL. 
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4 Current State and Next Steps

CCL has been a significant aid in developing our understanding of PECT. For example, we 
have developed a much better understanding of the difference between deploying and instanti-
ating components; in fact, instantiation is the real background subject of this report. To date, 
the development of CCL has been driven as much (or more) by the inquiry into what belongs 
in any language that plays the role of CCL as it has been by considerations of syntactic ele-
gance. As a consequence, it is fair to say that CCL has not achieved much in the way of such 
elegance. The authors fully expect the syntax of CCL to evolve, perhaps substantially, as end-
user (and possibly automation) considerations become more apparent with experience.

One area of CCL semantics that has yet to stabilize is the treatment of connectors, as discussed 
in Section 2.2.2. Until this area of CCL becomes stable, we will have no way of specifying or 
analyzing interactions among components. There are also numerous useful but minor language 
features that remain to be implemented (such as arrays).

The CCL semantics are nowhere, outside of the current implementation of a CCL front end, 
explicitly specified. An external and, where feasible, formal specification of these semantics is 
necessary for many reasons. We are examining two approaches that are not mutually exclu-
sive. One approach is to use a traditional technique for specifying language semantics—per-
haps structured operation semantics. The other approach is to define a UML 2.0 “profile” for 
CCL or extend the UML metamodel to encompass CCL. The first approach provides better 
prospects for near-term development efforts; for example, the development of interpretations 
to model checkers and simulation environments. The second approach offers better prospects 
for integrating CCL with commercial UML environments; it also offers the potential for 
replacing the current implementation of CCL with one written in a more recent language-spec-
ification technology; for example, the Generic Modeling Environment (GME) [Ledeczi 01].

A functioning CCL front end is not sufficient: it must also export to its users—PECT develop-
ers in this case—the means for implementing interpretations. Minimally, this consists of a 
well-documented programming interface. The CCL front end currently exports an interface for 
an abstract syntax tree of the CCL language, with nodes bearing various semantic annotations 
previously computed and deposited by front-end semantic analysis. This interface is still under 
development and is exported as ANSI-C rather than the more programming-friendly ANSI-
C++ or something language neutral. In the near term, a pragmatic “only when specifically 
needed” approach will be taken to improving the programming infrastructure. This, of course, 
will have implications on our ability to provide this implementation to third parties.
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We have asserted elsewhere [Hissam 02] that the CCL processor is just one of various forms of 
automation used in developing and using a PECT. Design issues are raised by a language-cen-
tric (in this case, CCL-centric) development environment. There is, for instance, the matter of 
interfaces and interchange standards for different elements of the environment. And, use of a 
CCL-based environment will entail very practical considerations for managing components, 
component and assembly specifications, intermediate products (specifications in develop-
ment), analysis results (predictions), and so forth. As before, we adopt a pragmatic “only when 
specifically needed” approach to this kind of infrastructure development.
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Appendix A Complete Example

The following source was processed successfully by a CCL processor. Keywords are not pre-
sented in boldface.

// CCL specification of example 1
environment E() {
  service Clock() {
     source unicast tic();
     threaded react ticking(tic) {
        start->sleeping{}
        sleeping->pulsing{trigger after(10); action ^tic();}
        pulsing->sleeping{trigger $tic();}
      }
   }
   service Log() {
     sink asynch listen();
     threaded react logging(listen) {
        start->run{}
        run->run{trigger ^listen(); action $listen();}
     }
   }
}

component Comp() {
  sink asynch toc();
  source unicast tic();
  source unicast talk();

  threaded react passIt(toc, tic, talk) {
        start->ready{}
        ready->work{trigger ^toc(); action ^tic();}
        work->log{trigger $tic(); action ^talk();}
        log->ready{trigger $talk(); action $toc();}
  }
}
assembly Inner ()(E) {
   assume {
      E:Clock innerClock(); 
      E:Log innerLog();
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   }
   Comp c1(), c2();  // instances

 // properties
 annotate c1 {"passIt:priority", const int priority = 15}
 annotate c2 {"passIt:priority", const int priority = 10}

innerClock:tic ~> c1:toc;
   c1:tic ~> c2:toc;
   c1:talk ~> innerLog:listen;
   c2:talk ~> innerLog:listen;

expose {c2:tic as drip}
}

assembly Outer ()(E) {
   assume {
      E:Clock outerClock(); 
      E:Log outerLog();
   }
   Inner inner(){
      Inner:innerClock = outerClock;
      Inner:innerLog = outerLog;
   };
   Comp c3();

   inner:drip ~> c3:toc;
   c3:talk ~> outerLog:listen;

   expose {}
}
E appEnv() { E:Clock appClock(); E:Log appLog(); };

Outer myApp()(appEnv) {
  Outer:outerClock = appEnv:appClock;
  Outer:outerLog = appEnv:appLog;
};
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Glossary8

annotation a property P associated with a referent R, meaning that “R has 
property P,” denoted as R.P

assembly a set of components and their enabled interactions

component an implementation in final form, modulo bound labels, that pro-
vides an interface for third-party composition and is a unit of 
independent deployment

connector a mechanism provided by the runtime environment that enforces 
an interaction protocol or discipline on the components that are 
participants in an interaction

compose to enable component interaction through connectors

composition a set of interactions among components enabled through connec-
tors. See also assembly.

contain to restrict the visibility of interactions on pins. All interactions 
among components are restricted to the scope of the most imme-
diately enclosing (“containing”) assemblies and partial assem-
blies.

interaction a composition of two or more reactions, from distinct compo-
nents, using a runtime-environment-provided connector

interpretation a mapping from assemblies specified in CCL to specifications in 
the language of a reasoning framework

partial assembly a (recursively defined) abstraction that aggregates a set of compo-
nents and their enabled interactions and exposes selected compo-
nent pins. Logically, a partial assembly is a component 
implemented in terms of other components. See also assembly.

8. Adapted from Volume III: A Technology for Predictable Assembly from Certifiable Components [Wallnau 03].
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property an n-tuple <name, value, ... >, where name and value refer to the 
name of some property and the value it takes, respectively. See 
also annotation.

reaction specification of the behavior of a unit of concurrency within a 
component (e.g., a thread) and the behavioral dependencies 
between the sink pins and source pins of a component

reasoning 
framework

a combination of a property theory, an automated reasoning pro-
cedure, and a validation procedure that is used to predict assem-
bly properties

pin binding labels in the construction and composition language 
(CCL). See also source pin, sink pin, connector.

runtime 
environment

environment that provides runtime services that may be used by 
components in an assembly, provides an implementation for one 
or more connectors, and enforces assembly constraints

sink pin a pin that accepts interactions with the environment of a compo-
nent (i.e., from other components or the runtime environment). 
See also pin, source pin.

source pin a pin that initiates interactions with the environment of a compo-
nent (i.e., to other components or the runtime environment). See 
also pin, sink pin.
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