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Abstract 

The objective of this study is to evaluate the predictive validity of the Capability Maturity 
Model® (CMM®) for Software (SW-CMM) as applied to software maintenance.  

The SW-CMM is intended to apply to both software development and maintenance. A basic 
premise (hypothesis) of the SW-CMM is that improving process maturity will result in better 
project performance and product quality. The extent to which that hypothesis is supported 
empirically is called a test of its predictive validity. No previous evaluation exists of the 
predictive validity of the SW-CMM in a maintenance context.  

The extent to which schedule estimates differ from reality is one important measure of 
project performance. But is higher maturity in fact correlated with a reduction in schedule 
deviation? Data from 752 maintenance projects drawn from 441 SW-CMM assessments are 
analyzed using a zero inflated Poisson (ZIP) regression model, and the results are validated 
using a bootstrap estimation method. Projects from higher maturity organizations typically 
report less schedule deviation than those from organizations assessed at lower maturity 
levels.  

                                                 
®  Capability Maturity Model and CMM are registered in the U.S. Patent and Trademark Office by 

Carnegie Mellon University.  
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1 Introduction 

1.1 The Importance of Software Maintenance 
The Capability Maturity Model® (CMM®) for Software (SW-CMM) [Paulk et al. 93a-93c, 
Paulk et al. 96] cites the definition of maintenance from IEEE Std 610-1990 [IEEE 90] as 
“the process of modifying a software system or component after delivery to correct faults, 
improve performance or other attributes, or adapt to a changed environment.” This definition 
includes at least three types of software maintenance:  

1. corrective maintenance: To correct processing, performance, or implementation faults 
of the software. 

2. adaptive maintenance: To adapt the software to changes in environment such as new 
hardware of the next release of an operating system. Adaptive maintenance does not lead 
to changes in the system’s functionality.  

3. perfective maintenance: To perfect the software for its performance, processing 
efficiency, maintainability, or accommodation of new or changed user requirements.  

The IEEE has estimated the annual cost of software maintenance in the United States to 
exceed $70 billon [Edelstein 93, Lerner 94]. Schrank has estimated it to be more than $30 
billion annually [Schrank et al. 95]. Others have estimated the magnitude of software 
maintenance costs to range from 40 to 80 percent of overall software life-cycle costs 
[Alkhatib 92, Kemerer 95, Schrank et al. 95]. A widely used rule of thumb for the distribution 
of maintenance activities has been 60 percent for enhancements, 20 percent for adaptation, 
and 20 percent for error correction [Lientz & Swanson 80, Glass & Noiseux 81].  

While the SW-CMM is intended to be suited for both development and maintenance 
processes, difficulties in implementing the model in maintenance-only organizations have 
been reported [Drew 92]. Others have criticized the SW-CMM for not directly addressing 
maintenance [Kuilboer & Ashrafi 00]. One survey study conducted in the United Kingdom 
failed to find evidence that higher maturity companies manage maintenance more effectively 
than lower maturity companies; however, the survey does not explicitly state how it defines 
maturity [Hall et al. 01]. Swanson and Beath claimed that software maintenance is 
fundamentally different from development of new systems since the maintainer must interact 
with an existing system [Swanson & Beath 89].  

                                                 
®  Capability Maturity Model and CMM are registered in the U.S. Patent and Trademark Office by 

Carnegie Mellon University.  
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Niessink and van Vliet investigated the difference between software maintenance and 
software development from a service point of view [Niessink & van Vliet 00]. They argued 
that software maintenance can be seen as providing a service, while software development is 
concerned with the development of products. Hence, they developed a separate information 
technology (IT) service Capability Maturity Model meant for software maintenance 
organizations and other IT service providers. Similarly, Kajko-Mattsson developed a problem 
management maturity model for corrective maintenance [Kajko-Mattsson 02].  

1.2 This Study 
A basic premise of the SW-CMM is that higher process maturity is associated with better 
project performance and product quality. Furthermore, improving maturity is expected to 
subsequently improve both performance and quality. Testing this premise can be considered 
an evaluation of the predictive validity of the assessment measurement procedure [El-Emam 
& Goldenson 95]. Given both the high cost of software maintenance and enduring questions 
about the applicability of the SW-CMM, it is important to provide objective evidence about 
the predictive validity of the SW-CMM in a maintenance context.  

This study provides evidence that higher process maturity is in fact associated with “reduced 
mean and variance” of schedule deviation in software maintenance.1 The analysis is based on 
752 maintenance projects from 441 CMM-Based Appraisals for Internal Process 
Improvement (CBA IPI) assessments. A zero inflated Poisson (ZIP) regression model is used 
to account for nonnegative integer values and the existence of multiple reports of no 
deviations in schedule. The results are validated using a bootstrap estimation method.  

Section 2 reviews previous studies on predictive validity and presents the study’s hypotheses. 
Section 3 addresses data collection and the characteristics of our sample. Section 4 presents a 
brief introduction of a ZIP regression model and a bootstrap method for examining the 
stability of our results. Section 5 presents the results of the analysis. Section 6 contains our 
conclusions and final remarks.  

 

                                                 
1  While the results are similar across the software development life cycle, important distinctions will 

be addressed in a subsequent study.  
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2 Empirical Hypotheses of Predictive Validity  

2.1 Theoretical Basis 
The SW-CMM provides a framework for organizing software processes into five 
evolutionary steps, or maturity levels, which lay successive foundations for continuous 
process improvement (Table 1). The SW-CMM covers practices for planning, engineering, 
and managing software development and maintenance. More mature software organizations, 
when following these key practices, are expected to be better able to meet their cost, 
schedule, functionality, product quality, and other performance objectives [Paulk et al. 96].  

Table 1: Maturity Levels and their Key Process Areas [Paulk 99]  

Level Focus Key Process Areas 
Level 5  

Optimizing 
 

Continuous process improvement 
- Defect Prevention 
- Technology Change Management  
- Process Change Management  

Level 4  
Managed 

Product and process quality 
- Quantitative Process Management  
- Software Quality Management  

Level 3  
Defined 

 

Engineering processes and  
organizational support 

- Organization Process Focus  
- Organization Process Definition  
- Training Program      
- Integrated Software Management  
- Software Product Engineering   
- Intergroup Coordination    
- Peer Review  

Level 2  
Repeatable 

 
Project management processes 

- Requirements Management       
- Software Project Planning      
- Software Project Tracking and Oversight  
- Software Subcontract Management    
- Software Quality Assurance      
- Software Configuration Management  

Level 1  
Initial 

Competent people (and heroics) 

Testing the above basic premise of the SW-CMM requires an empirical evaluation of the 
predictive validity of the process maturity concept. Is there a characteristic relationship 
between process maturity and independently measured performance criteria? Clearly, such 
relationships may depend on other contextual factors; that is, the relationships may differ 
from one context to another or may exist in only a few contexts. This theoretical basis for 
evaluating predictive validity is depicted in Figure 1.  
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Figure 1:   Theoretical Basis in a Predictive Validity Study  

2.2 Variable Definition and Empirical Hypotheses  
In the context of software maintenance in Figure 1, schedule deviation is the performance 
measure we use as our dependent variable. Schedule deviation is defined as the absolute 
value of the difference between actual schedule and planned schedule, i.e., y =|Actual-
Planned|. Schedule deviation y  is expressed in months ahead or behind schedule, with a 

value of zero indicating that the project is on schedule.2 

Our explanatory variable, process maturity, is coded from maturity level 5 down to maturity 
level 1. Maturity level is an ordinal scale, not an interval scale; however, we do employ 
parametric statistics in this analysis.  

Previous studies show that the distribution of maturity levels differs between the United 
States and elsewhere in the world [SEI 02, Jung et al. 02]. Hence, we examine how the region 
where the assessment was conducted (U.S. versus non-U.S.) acts as a contextual factor in 
mediating the effects of our research hypotheses.3  

The theoretical basis shown in Figure 1 implies that schedule deviation is negatively 
associated with maturity level: the higher the maturity level, the less schedule deviation. In 
addition, the association may differ across regions of the world. Two types of benefits are 
expected to follow:  

                                                 
2  One might argue that being ahead of schedule is less serious than being behind schedule; however, 

too few projects reported being ahead of schedule to allow a separate analysis here. Other 
weaknesses of the schedule deviation measure are described in Section 3.3.  

3  Classical measurement theory posits that variables should be measured on at least an interval scale 
to permit the computation of the mean and related parametric statistics [Stevens 51, Nunnally & 
Bernstein 94], but using only nonparametric methods on non-interval scale data would exclude 
much useful study [Nunnally & Bernstein 94]. Hence, many authors argue that a useful study can 
be conducted even if the proscriptions are violated [Briand et. al. 96, Gardner 75, Stevens 51, 
Velleman & Wilkinson 93]. El-Emam and Birk provide a detailed discussion of the scale type issue 
in studies of process capability and maturity [El-Emam & Birk 00a-00b].  

 

Process maturity Performance (objectives)

Contextual factors

Performance (objectives)

Contextual factors
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• HYPOTHESIS 1: Increasing maturity level reduces the mean of schedule deviance in 
maintenance projects.  

• HYPOTHESIS 2: Increasing maturity level reduces the variance of schedule deviance in 
maintenance projects.  

Testing these two hypotheses in software maintenance projects allows us to evaluate the 
predictive validity of the process maturity concept. The same two hypotheses have been 
depicted elsewhere in graphical form as seen in Figure 2 [Paulk et al. 93a-93c, Paulk et al. 
96].  

 

Figure 2:   Process Capability as Indicated by Maturity Level [Paulk et al. 93a] 

2.3 Previous Empirical Studies  
All previous studies of predictive validity in process improvement are based either implicitly 
or explicitly on the theoretical model depicted in Figure 1. While some empirical studies 
examine variation across large numbers of organizations, most of them are case studies that 
describe the experiences and benefits from increasing process maturity in a single 
organization or a small number of organizations.  

Case studies are quite useful for demonstrating proof of concept. There clearly are 
organizations that have benefited from increased process maturity [Brodman & Johnson 02, 
Butler 95, Diaz & Sligo 97, Daiz & King 02, Dion 92 & 93, Krasner 99].  
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Case studies, however, have a serious methodological disadvantage. It is difficult at best to 
generalize their results to a wider population. A case study can monitor projects in depth, but 
it is difficult to replicate the results later in a comparable context. Case studies also tend to 
suffer from a selection bias [adapted from El-Emam & Birk 00b]: 

• Organizations that have not shown any process improvement or have even regressed will 
be highly unlikely to publicize their results, so case studies tend to show mainly success 
stories.  

• The majority of organizations do not collect objective process and product data (e.g., on 
defect levels, or even keep accurate effort records). Only organizations that have made 
improvements and reached a reasonable level of maturity will have the actual objective 
data to demonstrate improvements (in productivity, quality, or return on investment). 
Therefore, failures and non-movers are less likely to be considered as viable case studies 
due to the lack of data.  

By now, several predictive validity studies have collected data from larger numbers of 
organizations or projects, and they have statistically investigated relationships between 
capability maturity4 and independent measures of performance. A survey study of individuals 
from SW-CMM-assessed organizations shows that higher maturity organizations tend to 
perform better on the subjective measures of performance (including ability to meet 
schedule), product quality, staff productivity, customer satisfaction, and staff morale 
[Goldenson & Herbsleb et al. 94, Herbsleb et al. 97]. In another survey-based study, 
Deephouse and colleagues found evidence of predictive validity in the relationships among 
seven software processes and measures of project performance including meeting schedule 
and budget targets, quality, and rework [Deephouse et al. 95, Deephouse et al. 96].  

Lawlis and colleagues investigated the benefits of the SW-CMM with two measures extracted 
from U.S. Air Force contracts [Lawlis et al. 96]. Their results show that higher maturity 
projects typically perform better on indices of both cost and schedule performance than do 
those at a lower maturity level. In a study combining questionnaire data with existing project 
metrics, Krishnan and Kellner found that SW-CMM-based process maturity was associated 
characteristically with a reduction in delivered defects after correcting for size and personnel 
capability [Krishnan & Kellner 99].  

El-Emam and Birk evaluated the predictive validity of the ISO/IEC 15504 (Software Process 
Assessment [ISO/IEC 96]) capability measure for four software processes: “Develop 
Software Requirements,” “Develop Software Design,” “Implement Software Design,” and 
“Integrate and Test Software” [El-Emam & Birk 00a, El-Emam & Birk 00b]. They found that 
the “develop software design” process was associated with several project performance 
measures. Using the same dataset, Hwang and Jung found that higher project-management 
process capability is related to increased productivity and improved morale in large 

                                                 
4  Studies based on the SW-CMM have examined maturity level differences in performance.  Studies 

based on ISO/IEC 15504 (Software Process Assessment [ISO/IEC 15504 96]), which uses a 
continuous representation, have examined differences in process capability. 
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organizations [Hwang & Jung 03]. However, much weaker relationships were found between 
project-management process capability and any of the performance measures in small 
organizations.  
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3 Data 

3.1 Data Collection 

3.1.1 Data Source 

Authorized lead assessors are required to provide reports to the Software Engineering 
Institute (SEISM) for their completed assessments. Assessment data on the reports are kept in 
an SEI repository called the Process Appraisal Information System (PAIS). The PAIS 
includes information for each assessment on the company and appraised entity, key process 
area (KPA) profiles, organization and project context, functional area representatives groups, 
findings, and related data.5  

This report considers only CBA IPI assessments. Not all CBA IPI assessments include KPA 
rating profiles, since the determination of a maturity level or KPA ratings is optional and is 
provided at the discretion of the assessment sponsor. The dataset that we analyzed for this 
study was extracted from appraisal reports in the PAIS for the period of January 1998 through 
December 2001.  

3.1.2 Dataset Analyzed 

A statistical rule of thumb states that there should be at least six observations (sometimes 
five) to have confidence in analysis results. A similar criterion was used in an earlier analysis 
of software process assessment [Jung et al. 01]. Briand and colleagues [Briand et al. 00] and 
El-Emam and colleagues [El-Emam et al. 01] also have used a “greater-than-five-
observations” criterion for the validation of software product metrics.  

We follow the same rule of thumb here. Fewer than five maintenance projects at maturity 
levels 4 and 5 reported any schedule deviation whatsoever. Hence, we exclude maturity 
levels 4 and 5 from our statistical analysis. Note, however, that the lower incidence of 
reported schedule deviation at maturity levels 4 and 5 is of course entirely consistent with our 
empirical hypotheses.  

                                                 
SM  SEI is a service mark of Carnegie Mellon University.  
5  Submitting an assessment report does not imply that the SEI certifies any assessment findings or 

maturity levels. All assessment data are kept confidential and are available only to SEI personnel 
on a need-to-know basis for research and development. Information in the PAIS is used to produce 
industry profiles or as aggregated data for research publications, and the SEI publishes a Process 
Maturity Profile twice a year (http://www.sei.cmu.edu/sema/profile.html).  
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Data exist for 752 maintenance projects from 441 organizations assessed at maturity levels 1 
through 3 inclusive. Figure 3 shows the number of organizations and maintenance projects 
assessed by region. Since more than one maintenance project exists in some organizations, 
the number of organizations is fewer than the number of projects.  

 

Figure 3:   Organizations and Maintenance Projects in Regions 

Table 2 shows the number of assessed maintenance projects at each maturity level. Schedule 
delays were reported by a total of 47 projects, while 8 projects reported being ahead of 
schedule.  

Table 2: Number of Maintenance Projects  

 Maturity Level 1 Maturity Level 2 Maturity Level 3 Total 

U.S. 112 (12) 222 (6) 144 (5) 478 (23) 
Non-U.S. 42 (6) 155 (20) 77 (6) 274 (32) 

The numbers in parentheses denote the number of projects that reported deviations in schedule.  

3.1.3 Unit of Analysis 

The units of analysis in this study are projects in the maintenance phase of their life cycles, 
and our performance measure is schedule deviation expressed in months. Since the 
organization typically is the unit of analysis in CBA IPI assessments, our measure of maturity 
is organization-wide. If several maintenance projects are assessed in a single organization, all 
of the projects have the same level of maturity but have their own individual values of 
schedule deviation.  
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3.2 Data Quality 
Our analysis mostly relies on two variables. The independent variable (covariate) is 
organizational maturity level as determined by CBA IPI assessment teams. A previous study 
provides ample confidence in the quality of that measure.6 The dependent variable, schedule 
deviation, is a self-reported nonnegative integer measured by month, in which a project may 
be ahead, behind, or on schedule. Our reliance on such a measure raises significant accuracy 
issues.  

In particular, a very large proportion, approximately 95 percent, of the projects in the 
maintenance phase of their life cycles reported being on schedule. That, of course, is contrary 
to both the results of previous studies and practical experience in the field.  

Several reasons may account for this divergence. The question that is used to measure 
schedule deviation only asks whether or not the project is on time, but the criteria for being 
on time are not specified. One likely conjecture is that many projects periodically modify 
their baseline schedule estimates, which results in less-reported delay. Another is that 
assessments often include exemplary projects.  

Time ahead or behind schedule is measured in months, so there also is most probably 
rounding error in the projects’ replies. If a maintenance project is delayed for six weeks, 
should it be recorded as a delay of one month or two? Similarly, should a two-week delay be 
reported as a one-month delay or as essentially on time? Moreover, the measure does not 
account for variations in project size and duration. For example, a two-month delay in a one-
month project is treated the same as a two-month delay in a nine-month project.  

That said, as one might expect, reported schedule deviation is in fact higher for projects that 
are in other phases of their life cycles than maintenance. For example, more than 25 percent 
of the projects in test and integration do report being a month or more behind schedule.  

Self-reports and direct observation often differ. For example, one study shows that software 
engineers over-report the amount of time that they work by an average of almost three 
percent; the proportion of times that self-reports and observer reports agreed on what the 
software engineer actually was doing varied substantially, from 95 to 58 percent [Perry et al. 
96]. Errors in self-reports have been noted in various other studies, including voting [Abelson 
et al. 92], receiving of health care [Loftus et al. 92], and doctor’s visits [McCallum et al. 95].  

                                                 
6   In it we performed an internal-consistency reliability study using the same 676 CBA IPI 

assessments on which the present work is based [Jung and Goldenson 02]. The results identified 
three underlying dimensions of the capability maturity construct. “Project implementation” 
includes the key process areas (KPAs) at maturity level 2, “organization implementation” covers 
the KPAs at maturity level 3, and the KPAs at both maturity levels 4 and 5 are subsumed under 
“quantitative process implementation.” Cronbach’s alpha coefficient of internal consistency for 
each of the three dimensions exceeds the recommended value of 0.9, which indicates a sufficiently 
high level of internal consistency for use in practice.  
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Every measure has its strengths and weaknesses. For example, some studies recommend 
using relative measures.7 But if the denominator has a small value, the measure may be 
exaggerated and take on an unreasonably large value.  

Other candidate measures of schedule deviation include arithmetic means and standard 
deviations. However, they too are subject to a lack of robustness; one very small or very large 
value causes them to take on an arbitrarily large value. A trimmed method such as a 
Winsorized standard deviation or median absolute deviation might be used [Lunneborg 00]; 
however, such methods cannot be applied to a dataset characterized by excess zeros such as 
ours.  

We have very little independent basis for judging the criterion validity of the schedule 
deviation question per se. Moreover, maturity level is an organizational construct while 
schedule deviation can vary by project. This too may introduce measurement error into our 
analysis. As will be seen later, however, our results are robust in spite of these limitations. 
The relationships with maturity level provide compelling evidence of the predictive validity 
of the SW-CMM.  

3.3 Sampling Characteristics of the Dataset 
Statistical analysis and its interpretations depend on the criteria by which a sample (subset) is 
selected from a population. Classical population inference requires random sampling. Hence, 
we examine here the sampling characteristics of our dataset.  

The simplest form of sampling is a random sample. A simple random sample is defined as “a 
set of cases selected from a well-defined population of cases by a process that ensures that 
every sample containing the same number of cases has the same chance of being the one 
selected” [Lunneborg 00]. In the context of SW-CMM assessments, this definition explicitly 
requires two things: (1) a well-defined population of assessment cases from which to sample, 
and (2) a well-defined random process for selecting the sample.  

The assessments reported to the PAIS database do not satisfy these two requirements. The 
population and the size of its assessments cannot be clearly defined, and the assessed 
organizations are not selected on a random basis. Rather, the assessments in PAIS are a self-
selected sample (i.e., assessed organizations that have voluntarily participated in CBA IPI 
assessments to improve their software processes or were required to do so by contractors.) 
Our analyses here clearly must be based on nonrandom sampling methods.  

                                                 
7  Conte and colleagues [Conte et al. 86] suggest using a magnitude of relative error (MRE) measure 

of schedule deviation, or iy =|(Actual-Planned)/Actual|. Stensrud and colleagues [Stensrud et al. 

02] prefer a measure of the magnitude of error relative (MER), or iy =|(Actual-Planned)/Planned|.  
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In our nonrandom design, the PAIS dataset itself is a population of assessment cases, where 
the population is called a local population or a set of available cases [Lunneborg 00]. 
Although the PAIS database retains the largest number of assessment cases available 
anywhere, the dataset is not a random sample, and our results cannot be generalized to all 
SW-CMM assessments conducted around the world. Hence, interpretation of our results 
should rightly be limited to assessments reported to PAIS by the current base of CMM users.  

Still, it is sensible to make inferences about the descriptions to the local population. The 
descriptions are not inferences to a wider population; rather, they are descriptive statistics 
which can neither be generalized to others nor have causal implications. Typical descriptions 
include measures of central tendency (e.g., means or medians), dispersion (e.g., variance or 
control limits), or relationship (e.g., correlation coefficients or internal consistency).  

Descriptions based on a nonrandom sample need assurance that they truly characterize the 
available cases and that they are stable [Lunneborg 00, Montgomery et al. 98]. An available 
set of cases such as our assessment dataset cannot be assumed to have the same degree of 
homogeneity as a random sample. A fair description is a stable one that is relatively 
uninfluenced by the presence of specific cases. Thus, results such as those in this report 
should be tested for their stability (homogeneity).  
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4 Data Analysis 

4.1 Correlation and Regression Models 
Correlational studies have been used to investigate whether an association exists between 
increased capability maturity and performance, and under what conditions [Goldenson et al. 
99]. All of the previous studies (except case studies) reviewed in Section 2 are correlational 
studies. In correlational studies, process maturity or capability and performance data from a 
large number of organizations or projects are collected and statistically analyzed to find 
relationships between them. Correlational studies typically compute Pearson or Spearman 
correlations or investigate regression coefficients. 

Schedule deviation, as we have defined it, is limited to nonnegative integer values, which can 
be called count outcomes. More than one regression model exists for count outcomes [Long 
97, King 88], so it is necessary to select an appropriate one. The selection should consider the 
strengths and weaknesses of each model in a specific application field, as well as perceptions 
in the research community about what are appropriate models of count outcomes.  

Schedule deviation is a relatively rare occurrence in our dataset. Many projects reported 
being less than one month behind schedule, and there are many zero values. Hence, this study 
uses a zero inflated Poisson (ZIP) regression model.  

4.2 A Zero Inflated Poisson (ZIP) Regression Model 
ZIP regression has been used elsewhere for predicting count outcomes in software 
engineering [Khoshgoftaar et al. 02]. The ZIP regression model accounts for the 
characteristics of an excess number of zero values on the dependent variables, which meets 
our current needs with schedule deviation. Commonly used Pearson or Spearman correlations 
are not sufficient to examine such an association.  

Our ZIP regression model assumes that the software maintenance processes in an assessed 
organization are in either a “perfect” or an “imperfect” state. In the perfect state, no schedule 
deviation will occur, whereas in the imperfect state, there may or may not be schedule 
deviation. Several factors affect the distribution of schedule deviation in software 
maintenance and the probability of there being an imperfect state. Process maturity is 
assumed to be a single factor for the purposes of this study.  
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Let iψ  be the probability that the i th maintenance project is performed by a maintenance 

process that is in a perfect state. Then, (1 )iψ−  becomes the probability that a process of the 

i th maintenance project is in an imperfect state. Maintenance projects whose processes are in 

a perfect state are always assumed to be on schedule. Projects whose processes are in an 
imperfect state may be on schedule following a Poisson distribution with the parameter iµ , 

i.e. , exp( )iµ− . For maintenance processes that are in an imperfect state, the probability that 

schedule deviation is greater than one month is a product of the probability of being in an 
imperfect state and the probability of schedule deviation iy  in a Poisson distribution of iy . 

Therefore, the probability density function of the ZIP regression model is as follows 
[Lambert 92, Long 97]: 

  

(1 )exp( )   for 0,

Pr( | ) exp( )
(1 )     for 1,2,
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The conditional mean and variance of the ZIP probability function (1) are (1 )i iµ ψ−  

and (1 )(1 )i i i iµ ψ µψ− + , respectively. If ψ  is 0, then the ZIP regression model (1) becomes a 

Poisson regression model. The term “conditional” is used to denote that the mean and 
variance depend on covariates. The only covariate in this study is maturity level.  

The ZIP regression model is obtained by the following two link functions: 

 0 1 MATURITY_LEVELlog( )iµ β β= + ×  

0 1 MATURITY_LEVELlogit( ) log
1

i
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A negative value of 
1β  implies that a high-maturity maintenance process has less schedule 

deviation than that of a low one. The probability that the maintenance process of project i  is 
in a perfect state is estimated by: 

 0 1

0 1
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and the Poisson parameter is estimated by 

 0 1exp( MATURITY_LEVEL)iµ β β= + ×
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4.3 Stability Examination  
Since our dataset is not a simple random sample, we also need to examine the stability of the 
analysis results. For this purpose, we use a bootstrap8 resampling technique that samples B  
times from the original observation with replacement, where B  is a large number such as 
1,000. For each sample, the ZIP regression gives interesting descriptions 1β  (coefficients of 

maturity level in the ZIP regression model), (1 )i iµ ψ−  (mean), and (1 )(1 )i i i iµ ψ µψ− +  

(variance). Then, the lower and upper limits of the confidence interval of each description are 
determined at the 2.5 and 97.5 percentiles respectively from the empirical reference 
distribution (i.e., a histogram of B  replications). The confidence interval of the empirical 
reference distribution is called the empirical confidence interval (ECI). The bootstrap method 
is free from unrealistic assumptions such as normality and homogeneity and is suitable to 
conduct local inferences.  

As noted earlier, we use the region of assessed organizations as a mediating contextual factor. 
The proportions of assessments in the two regions are not fixed in advance; rather, a 
bootstrap sample is drawn with permutation from the original dataset and then is divided into 
the U.S. cases or non-U.S. cases before computing our descriptions. Each bootstrap sample is 
likely to have different proportions of U.S. and non-U.S. cases. This is called “not by design” 
from the original dataset [Lunneborg 00].  

The description from the original dataset should be solidly in the middle of the empirical 
reference distribution to be considered stable. It should not be at or near the limits of the 
description. A measure for evaluating stability bias is defined as follows: 

*

1 ˆBias

B

b
b

t

B
θ== −

∑
, 

where *
bt  is a value of the description at the b th subsample, where b =1, � , B ; and θ̂  is a 

description value from an original dataset.  

The degree of bias is evaluated against the standard error (SE) of the description distribution 
of B  replicates. The SE is computed as follows:  

( )* *

1

1

B

b
b

t t
SE

B
=

−
=

−

∑
, where * *

1

B

b
b

t t B
=

= ∑  

If the bias is large relative to the SE, there is an instability problem. A criterion for judgment 
is that if the absolute value of the bias is less than one-quarter of  the size of the SE, the bias 
                                                 
8   This bootstrap method should not be confused with the Bootstrap model for process assessment 

[Kuvaja 99].  
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can be ignored [Efron & Tibshirani 93]. Hence, a description from the original dataset can be 
considered to be stable.  

Bootstrap methods have been used previously in empirical software engineering. El-Emam 
and Garro estimated the number of ISO/IEC 15504 assessments by utilizing a capture-
recapture method [El-Emam & Garro 00]. Jung and Hunter utilized a bootstrap method in 
computing confidence levels for the capability levels for each ISO/IEC 15504 process [Jung 
and Hunter 01]. Jung and Goldenson used a bootstrap resampling method to evaluate the 
stability of internal consistency in the SW-CMM [Jung & Goldenson 02].  
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5 Results 

5.1 Descriptive Statistics  
This study is based on 752 maintenance projects from 441 SW-CMM CBA IPI assessments. 
Figure 4 shows the distribution of organizations and maintenance projects by region. A single 
maintenance project was reported in each of 56 percent of the assessed organizations 
(171+76=247). Approximately 26 percent of the assessed organizations in the United States 
included one maintenance project, while about 34 percent of the non-U.S. organizations 
included a single maintenance project. Two organizations assessed six maintenance projects 
each. The mean, median, and standard deviation of the number of maintenance projects in 
these assessed organizations in the United States are 1.67, 1, and 1.01, respectively. In the 
non-U.S. organizations, the mean, median, and standard deviation of maintenance projects 
are 1.75, 1.5, and 0.95, respectively.  

 

Figure 4:   Number of Maintenance Projects in Each Assessed Organization 

Figure 5 shows the distribution of maturity level by region. If two or more maintenance 
projects exist in an assessed organization, the maturity level is counted two or more times. 
The most frequent maturity level is 2 (Repeatable) in both regions, followed by level 3 
(Defined), and level 1 respectively. Means and standard deviations are presented in Table 4. 
Maturity levels 4 and 5 are not considered in this study because of the very small number of 
maintenance projects that report delayed schedules at those levels of process maturity.  
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Figure 5:   Distribution of Maturity Level Among Assessed Organizations  

The proportion of organizations at maturity level 2 clearly is not larger than that at maturity 
level 1 in software industries throughout the world [Fayad & Laitnen 97]. More likely, as 
early adopters of a new technology and specifically as organizations interested in software 
process improvement, the organizations in our sample are drawn from the “higher end” of the 
maturity spectrum. This phenomenon has been detected in the ISO/IEC PDTR 15504 as well 
[Rout et al. 98].  

As shown in Table 3, the arithmetic mean maturity level in the U.S. dataset is nearly equal to 
that in the non-U.S. dataset. But, the arithmetic mean of schedule deviations in the U.S. 
dataset, 0.17, is less than half the value of 0.38 in the non-U.S. dataset.  

Table 3: Descriptive Statistics of Maturity Level and Schedule Deviation 

Maturity level Schedule deviation  
Mean Std dev Mean Std dev 

U.S. (478) 2.07 0.73 0.17 0.99 
Non-U.S. (274) 2.13 0.65 0.38 1.44 

Table 4 shows the arithmetic mean value of schedule deviance at each maturity level. Though 
arithmetic means are subject to a lack of robustness, the performance of schedule deviation is 
improved as maturity level increases in both the U.S. and non-U.S. datasets.  

Table 4: Arithmetic Mean of Schedule Deviation at Each Maturity Level  

 Maturity level 1 Maturity level 2 Maturity level 3 
 Mean Std dev Mean Std dev Mean Std dev 

U.S. 0.464 1.750 0.086 0.622 0.069 0.468 
Non-U.S. 0.643 2.070 0.407 1.463 0.195 0.828 
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5.2 Analysis Results 

5.2.1 Parameter Estimation and Stability Test 

The results of our ZIP regression analyses are given in Table 5. As expected, the estimated 

coefficient of maturity level, 1̂β , is both negative and statistically significant for both the U.S. 

and non-U.S. datasets. The negative association indicates that schedule deviance decreases 
across the maintenance projects as their respective organizations’ maturity levels 
progressively increase. This is consistent with the hypothesis in our theoretical model.  

Table 5: ZIP Regression Results of Schedule Deviation 

U.S. Non-U.S.  
Estimated One-sided  

p-value 
Estimated One-sided  

p-value 

Intercept ( 0γ ) 1. 625 0. 002 1. 376 0. 007 

MATURITY_LEVEL ( 1γ ) 0. 682 0. 008 0. 278 0. 089 

Intercept ( 0β ) 1. 886 0 1. 841 0 

MATURITY_LEVEL ( 1β ) -0. 428 0. 004 -0. 364 0. 009 

Goodness-of-fit 2χ  < 1 1 2χ =9. 558 0. 047 

 
In addition, the log ratio of perfect to imperfect state, log[ /(1 )]i iψ ψ− , has a positive 

association ( 1γ >0) with maturity level. The ratio for the non-U.S. dataset is significant at 

8.9%, which indicates only a weak association; however, the results for both regions indicate 
that the probability of being in a perfect state is increased as maturity progressively increases.  

The Chi-square goodness-of-fit values9 in the last row in Table 5 show the aptness of our ZIP 
regression model [Cameron & Trivedi 98]. Each of the two fitted models conforms to the 
assumptions of the ZIP regression model at an alpha value of 1 percent.  

Figure 6 shows a graph comparing the fitted and actual probabilities for the non-U.S. case. 
The better the fit is, the smaller the difference of probabilities. Figure 6 shows that the 
number of one-month deviation projects is slightly underestimated. On the other hand, the 
number of projects with three- and four-month deviations is slightly overestimated. However, 
all of the differences are negligible. For the U.S. dataset, the plot is omitted because the 
difference of fitted and actual probabilities is quite small.  

 

                                                 
9   A null hypothesis for Chi-square goodness-of-fit is that no difference exists between actual counts 

and estimated counts, i. e. , 2 2( ) /i i i
i

O E Eχ = −∑ , where iO  and iE  are observed and estimated 

schedule deviation, respectively ( 5iE ≥ ). Thus, a large statistic and small p-value implies a poor 

model fit. The p-value is a right-tail probability [Cameron & Trivedi 98].  
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Figure 6:   A Plot of Actual and Estimated Probabilities 

The estimated coefficients 1̂β ’s are most directly related to our hypotheses, and they are 

examined for their stability here. Figure 7 shows a bootstrap distribution of the estimated 

coefficients 1̂β ’s of schedule deviation with 1,000 replicates. For the U.S. dataset (on the left 

in Figure 7), the dotted and solid vertical lines denote a bootstrap coefficient of –0.463 and an 
observed coefficient10 of –0.428 respectively. The difference between them, -0.035, is defined 
as a bias in bootstrap sampling. It is ignorable in comparison with the SE value of 0.299. 

Therefore, we conclude that the estimated coefficient 1̂β  of maturity level is stable. In the 

bootstrap distribution, 97 percent of the estimated coefficients have negative values.  

For the non-U.S. dataset, the bias of the maturity level coefficient, -0.363 - (-0.364) = 0.001, 
is also ignorable in comparison with the SE value of 0.314. However, 89 percent of the 

estimates of the maturity level coefficient 1̂β  are negative. This is a relatively high value 

compared to the p-value of 0.009 in Table 5.  

                                                 
10  The term observed implies “the sample in our dataset,” i.e., the estimated value from our original 

dataset.  
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Figure 7:   Bootstrap Distribution of Estimated Coefficients 1̂β  

5.2.2 Mean and Its Stability 

As seen in Table 5, the negative coefficients 1̂β of process maturity support the hypothesis 

that increases in maturity level result in decreases in schedule deviation. Figure 8 shows the 
evaluation of HYPOTHESIS 1 in fuller detail. The (expected) mean (1 )i iµ ψ−  of probability 

density function (1) is decreasing, and the decrease is distinct for both the U.S. and non-U.S. 
datasets.  



22  CMU/SEI-2003-TN-015 

 

Figure 8:   Mean of Schedule Deviation at Maturity Levels 1-3 

Table 6 shows results of the bootstrap resampling that examines the stability of the expected 
mean at each capability level. We conclude that mean at each level is stable because the bias 
is smaller than one quarter of the SE.  

Table 6: Bootstrap Results of Mean Schedule Deviation  

Region Maturity 
Level 

Observed 
Mean 

Bootstrap 
Mean 

Bias SE 95% ECI 

1 0.389 0.390 0.001 0.144 [0.134, 0.689] 

2 0.134 0.127 -0.007 0.037 [0.060, 0.206] U.S. 

3 0.045 0.047 0.002 0.026 [0.009, 0.108] 

1 0.703 0.707 0.004 0.265 [0.270.1.273] 

2 0.385 0.374 -0.011 0.086 [0.220, 0.548] Non-U.S. 

3 0.209 0.216 0.007 0.084 [0.078, 0.389] 

The observed means are a result of the sample in our dataset. Different samples would 
produce different mean values. Hence, a confidence interval is employed to delimit the true 
(unknown) mean value of schedule deviation at each maturity level. The 95% ECI in Table 6 
is computed from Figure 9, which is a bootstrap empirical reference distribution of mean 
schedule deviation with 1,000 replicates.  

As an example of the ECI interpretation, we can say with a confidence of 95 percent that 
mean schedule deviation at maturity level 1 in the U.S. dataset is somewhere in the interval 
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between 0.134 and 0.689. But this interpretation is limited to the current dataset; it cannot be 
extended to all industries in the United States. Since the bootstrap empirical reference 
distribution in Figure 9 does not satisfy a normality assumption, using a bootstrap ECI is 
justified.  

Note that there are long tails on the right-hand side of the non-U.S. distributions. They are 
truncated for reasons of space. In Figure 9, however, the same basic results hold for both the 
U.S. and non-U.S. data.  

The 95% ECIs among the maturity levels in Table 6 partially overlap each other. The 
empirical reference distributions in Figure 9 also show that overlap. Hence, we must test 
whether there is a significant difference in the mean schedule deviation between maturity 
levels. The empirical reference distributions in Figure 9 clearly indicate that we cannot 
employ a parametric test to examine the mean differences; however, the bootstrap method 
shows that there are statistically significant difference of mean schedule deviation between 
maturity levels 1 and 2 and levels 2 and 3 with a p-vale of 0.005 for the both cases; 
corresponding p-values of 0.04 and 0.039 show that there also are significant differences in 
mean schedule deviation for the same two pairs of maturity levels in the non-U.S. dataset.  

 

 

Figure 9:   Bootstrap Distribution for Mean Schedule Deviation  
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5.2.3 Variance and Its Stability 

Our second hypothesis requires us to evaluate the reduction of variance in schedule deviation 
with respect to maturity level. Figure 10 shows how the conditional variance of the ZIP 
probability density function (1), (1 )(1 )i i i iµ ψ µψ− + , is reduced with respect to maturity 

level. Again, the reduction in variance is significant.  

 
Figure 10: Variance of Schedule Deviation at Maturity Levels 1-3 

The results of our bootstrap resampling shown in Table 7 show that the bias is less than a 
quarter of the SE. The estimated value of variance in schedule deviation also is stable at each 
maturity level.  

Table 7: Bootstrap Results of Variance of Schedule Deviation  

Region Maturity 
Level 

Observed 
Mean 

Bootstrap 
Mean 

Bias SE 95% ECI 

1 1.910 1.961 0.051 0.947 [0.523, 4.100] 

2 0.492 0.464 -0.028 0.188 [0.159, 0.905] U.S. 

3 0.126 0.138 0.012 0.099 [0.018. 0.370] 

1 3.289 3.490 0.201 1.909 [0.839, 7.958] 

2 1.409 1.370 -0.039 0.447 [0.647, 2.315] Non-U.S. 

3 0.608 0.684 0.076 0.575 [0.133, 1.511] 

Finally, the 95% ECIs of conditional variance in Table 7 also are partially overlapped. The 
empirical reference distributions in Figure 11 lead to the same conclusion. Therefore, we can 
use the bootstrap empirical reference distributions in Figure 11 to evaluate the variance 
difference in the schedule deviation between maturity levels. In the U.S. dataset, 95 percent 
of the 1,000 replicates show that the variance in schedule deviance at maturity level 2 is less 
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than that at level 1. At maturity levels 2 and 3, the value also is 95 percent. The 
corresponding values for the non-U.S. dataset are 95 percent and 95 percent respectively. 
Increases in process maturity are in fact regularly accompanied by reduced variation in 
schedule deviation by software maintenance projects.  

 

 

Figure 11:  Bootstrap Distribution of Schedule Deviation Variance  
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6 Conclusion 

This study presents compelling evidence about the predictive validity of the SW-CMM as 
applied to software maintenance. A basic premise of the SW-CMM is that higher maturity 
should result in better project performance. We find that assessed maturity level is in fact 
related as expected to schedule deviation in software maintenance projects, and our results 
are quite robust, in spite of the limitations of the data. While important distinctions remain to 
be addressed, the results are similar across the software development life cycle; they do not 
appear to be limited to maintenance projects. 

A univariate ZIP regression model is employed to test the premise. Since the results are based 
on non-random sampling, they are validated using a bootstrap estimation method. 

The results show that maintenance projects in higher maturity organizations typically have 
lower mean and variance in schedule deviation than do comparable projects from 
organizations assessed at lower levels of maturity. The schedule estimates of projects from 
higher maturity organizations are markedly more predictably accurate. 

Clearly, organizational maturity is not the only factor that affects schedule deviation in 
software maintenance projects. Neither is schedule deviation the only performance measure 
worth considering. Other measures of performance such as cost, productivity, quality, and 
customer satisfaction should be evaluated in future analyses of the predictive validity of 
Capability Maturity Modeling . Moreover, such analyses should be extended to CMM 

IntegrationSM and the full life cycle of the development, maintenance, and acquisition of 
software-intensive systems.  

                                                 
   Capability Maturity Modeling is registered in the U.S. Patent and Trademark Office by Carnegie 

Mellon University.  
SM  CMM Integration is a service mark of Carnegie Mellon University. 
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