
DoD Architecture Framework
and Software Architecture
Workshop Report

William G. Wood, Software Engineering Institute
Mario Barbacci, Software Engineering Institute
Paul Clements, Software Engineering Institute
Steve Palmquist, Software Engineering Institute
Huei-Wan Ang, The MITRE Corporation
Loring Bernhardt, The MITRE Corporation
Fatma Dandashi, The MITRE Corporation
David Emery, The MITRE Corporation
Sarah Sheard, Software Productivity Consortium
Lyn Uzzle, Software Productivity Consortium
John Weiler, Interoperability Clearinghouse
Art Krummenoehl, Johns Hopkins University Applied Physics
Laboratory

March 2003

Architecture Tradeoff Analysis Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2003-TN-006

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2003 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Portions of IEEE Std 1471-2000 reprinted with permission from IEEE Std 1471-2000, “IEEE Recommended Practice for
Architectural Description of Software-Intensive Systems” Copyright 2000, by IEEE. The IEEE disclaims any responsibility
or liability resulting from the placement and use in the described manner.

CMU/SEI-2003-TN-006 i

Contents

Abstract..v

1 Introduction ..1

2 Background and Purpose..2

3 Summary of Briefings ..3

4 Discussion ..6

5 Summary...12

Appendix A Documenting Software Architectures Using the “Views
and Beyond” Approach ...13

Appendix B C4ISR Architecture Framework...19

Appendix C IEEE Std 1471-2000 ..20

Appendix D Analytic Views Within the DoDAF ...26

Appendix E Federal Enterprise Architecture Framework28

Appendix F Workshop Announcement ...31

Appendix G Biographies of Authors..32

References ...35

ii CMU/SEI-2003-TN-006

CMU/SEI-2003-TN-006 iii

List of Figures

Figure 1: Linkages Among Views ...19

iv CMU/SEI-2003-TN-006

CMU/SEI-2003-TN-006 v

Abstract

During the Software Engineering Institute’s Workshop on the Department of Defense
Architecture Framework and Software Architecture, participants from government, industry,
and academia discussed the similarities and differences between system and software
architecture representations, and how these representations relate with one another. This
technical note summarizes the activities of that workshop.

vi CMU/SEI-2003-TN-006

CMU/SEI-2003-TN-006 1

1 Introduction

The Software Engineering Institute (SEISM) conducted the Workshop on the Department of
Defense (DoD) Architecture Framework (DoDAF)1 and Software Architecture on January 30,
2003, near Washington, DC. This workshop provided a forum for participants to discuss the
similarities and differences between system and software architecture representations, and
how these representations interrelate. The participants were invited because of their
familiarity with the representations and the various approaches that apply to those
representations.

This half-day workshop consisted of five presentations, which are described in the body of
this report. The workshop concluded with a facilitated discussion.

This report is organized as follows. Section 2 describes the background and purpose of the
workshop. Section 3 summarizes the attendees’ presentations of approaches to representing
software and system architectures. Section 4 describes the topics attendees discussed, and
Section 5 provides a summary of the results. The appendices provide further detail about the
approaches discussed.

SM SEI is a service mark of Carnegie Mellon University.
1 The DoDAF is an in-progress revision of the C4ISR (Command, Control, Communications,

Computer, Intelligence, Surveillance, and Reconnaissance) Architecture Framework.

2 CMU/SEI-2003-TN-006

2 Background and Purpose

The DoDAF is being mandated by the DoD as the basis for building representations of large-
scale systems of systems. The DoDAF prescribes three major interrelated views to represent
system architecture: system, operational, and technical.

While the DoDAF deals with systems of systems, there is also an entire community devoted
to the design and representation of software architectures. For example, the SEI has
developed approaches for documenting, building, and analyzing software architectures. The
Unified Modeling Language (UML) has become a standard notation for describing software
designs. Both UML and the SEI’s “Views and Beyond” approach to architecture
documentation use multiple views to represent a software architecture. However, the views
most often used in the software architecture community do not correspond to the DoDAF
views.

During the development life cycle, DoDAF views might serve as a basis for the development
of a software architecture, but there is no accepted way of using DoDAF views as a
foundation for this development. Furthermore, there is no clear correspondence between
DoDAF views and notations, and those most useful for representing a software architecture.
Nevertheless, because of the ubiquity of the DoDAF and a failure to distinguish between
system and software architectures in some quarters, some DoD acquisition project teams
attempt to fit their software architectures into the DoDAF because they believe that policy
requires them to do so.

This workshop is a first step toward understanding the representational challenges involved
in architecting system and software architectures, as well as trying to understand the
transformation from DoDAF representations to software architecture representations.

CMU/SEI-2003-TN-006 3

3 Summary of Briefings

Workshop attendees described various aspects of architectural approaches in five briefings. A
summary of these briefings follows, and more detail is provided in the appendices.

1. Paul Clements presented an overview of the SEI’s Views and Beyond approach to
documenting software architectures. Rather than prescribing a fixed set of views, as in
the Rational Unified Process (RUP) or the DoDAF, this approach suggests that the
stakeholders should first determine which architectural representation best captures the
information they need to do their jobs. The software architects create a table showing the
system stakeholders and the views that best represent their viewpoints. The architects
then combine views and prioritize them until a set of views that sufficiently covers the
viewtypes is selected. The architects document each view as a number of “view packets”
that show, in varying degrees of detail, different elements and element relationships that
would interest a stakeholder. The Views and Beyond approach suggests a template for
view packets, as well as for documentation that applies to more than one view. The most
important part of the latter is a mapping among views that provides a holistic picture of
the total design by showing how information in one view relates to that in another.

The Views and Beyond approach acknowledges that there is a limited number of
viewtypes to represent the essential categories of views. It also recognizes that
architectural styles (or known design approaches) can provide the conceptual basis for
describing a software architecture.

 Appendix A contains more details of this approach.

2. Fatma Dandashi presented the DoDAF by giving an overview of the proposed changes
to the C4ISR Architecture Framework. One major change is that the architectural
products developed for a system architecture now depend on the life-cycle development
stage and the purpose for building the architecture. For example, an architecture
developed to aid budget planning requires different products from one used to assist
with the development of a concept of operations (CONOPS). Likewise, an architecture
developed to assist with the development of a CONOPS differs from one developed to
serve as a blueprint for system construction. The details required by the architecture also
change during its purpose and life-cycle phase. The DoDAF defines 22 products
organized into three views; architects must select the most appropriate subset of these
products to satisfy their purpose.

Because the DoDAF is not yet published, we could not include actual text from it in this
report. Instead, Appendix B contains text from the C4ISR Architecture Framework, and
Appendix E describes how the DoDAF relates to the Federal Enterprise Architecture
(FEA) mentioned in Item 5 below.

4 CMU/SEI-2003-TN-006

3. David Emery presented an overview of the relationship between the DoDAF and IEEE
Std 1471-2000. This standard suggests that representations for a software-intensive
system

• provide a context that describes how a system fits into its environment

• account for the concerns of its various stakeholders

• fulfill the mission requirements of the system

These requirements can be fulfilled by creating a viewpoint, which establishes the
conventions by which a view is created, depicted, and analyzed. The viewpoint
determines the languages that will be used to describe the view, as well as any associated
modeling methods and analysis techniques that will be applied to these representations
of the view. The viewpoints developed depend heavily on the stakeholders’ concerns.
Moreover, a view can consist of a number of architectural models or representations.

An excerpt of IEEE Std 1471-2000 is provided in Appendix C.

4. Loring Bernhardt presented an overview of the challenges of developing architectures to
evolve existing stovepiped software-intensive systems into a constellation of
interoperable systems of systems. This evolution is usually done in a number of delivery
blocks (e.g., every 18 months) over a number of years (e.g., 10 years). Many challenges
arise because the legacy systems are often approaching technical obsolescence, and 10-
year technology forecasts are unreliable. Developing architectures to evolve existing
systems requires (among other things) an approach of creating and maintaining a master
evolution plan (MEP) to describe how the new architecture will be developed, the
impact on the “sensor-to-shooter” chain at each delivery block, and the life-cycle cost
predictions. None of the standard DoDAF products capture the MEP in a satisfactory
manner.

Appendix D contains more information on analytic views within the DoDAF.

5. John Weiler presented an overview of the FEA, an architecture that is being developed
for the Office of Management and Budget (OMB) to facilitate cross-agency and within-
agency analysis of duplicative investments and opportunities for collaboration. Many
federal agencies within the federal government have needs for systems whose features
and capabilities overlap with the needs of other government agencies, and which are
likely to be created from the same set of commercial software and hardware
components. This overlap suggests the use of these interrelated reference models:

• Business Reference Model (BRM)

• Performance Reference Model (PRM)

• Data and Information Reference Model (DIRM)

• Application-Capability Reference Model (ACRM)

• Technical Reference Model (TRM)

CMU/SEI-2003-TN-006 5

The BRM and PRM describe the objectives for the agency, and the DIRM, ACRM, and
TRM describe how best to allocate resources, technology, and services to meet these
objectives. To date, only the BRM is defined.

Appendix E provides an overview of the FEA.

6 CMU/SEI-2003-TN-006

4 Discussion

Workshop participants discussed the following topics:

1. The software and systems architectural views have different purposes but also have
some overlap. Because an enormous number of views could be built, architecture
developers for a system must select the system and software architectural views that are
important to them in documenting the architecture. Developers must also specify the
order and time sequence for developing those views. Selecting which views to use
depends on the purpose for building the architecture, the stakeholders who review the
architecture, and other factors, such as those discussed in IEEE Std 1471-2000.

While everyone agreed that architecture is an essential ingredient in the engineering of
non-trivial systems, there was also general agreement that an “architectural storm” is
brewing with the many overlapping architectural buzzwords. While it is easy to find
references to “information architecture,” “enterprise architecture,” “system
architecture,” “system-of-systems architecture,” “software architecture,”
“communications architecture,” “hardware architecture,” “security architecture,” “data
architecture,” and many other “architectures,” it is harder to find crisp definitions of any
of them, or descriptions of how they should be used in our engineering discipline. (In
fact, one such overlap—“system architecture” versus “software architecture”—can be
said to have led to this workshop.)

2. Everyone agreed that, regardless of whether a project deals with a software architecture
or a system architecture, views should be built according to the purpose for building
them. The group was largely suspicious of any methodology with a closed set of
prescribed architectural views. There was some discussion about whether the DoDAF
encourages, merely allows, or forbids the use of views other than the three it promotes.
The attendees agreed that it would be helpful to clarify the DoD’s position on the use of
other views.

3. IEEE Std 1471-2000 is a good tool for starting to develop viewpoints. This standard is
consistent with the stakeholder/view table in the SEI’s Views and Beyond approach.

4. The group identified a number of important uses for the DoDAF views, including

• as an initial stage in developing a large-scale system. In this case, the evolution from
a DoDAF set of views to a set of software architecture views is necessary if the
system is software intensive (because software views are needed by the software
developers).

• as a source-selection mechanism for fly-off evaluation. In this case, the appropriate
DoDAF views should be chosen, and—if the system is software intensive—some

CMU/SEI-2003-TN-006 7

software architectural views should be built to describe the important software
capabilities being proposed by the competing teams.

• as a mechanism for making investment decisions. In this case, since the investment
decision is often to “mix and match” among the proposed alternatives, many options
are discarded. Once again, if the system is software intensive, some software
architectural views should be developed to demonstrate the capabilities that are
poorly represented in the DoDAF.

5. The group felt that the DoDAF did not adequately represent architectures that involve
software styles such as distributed data or distributed computation; these styles require
some software architectural views. They also felt that, while the DoDAF sufficiently
addressed broad, overarching designs, it did not adequately capture detailed system
design.

6. The end user is under-represented in the development and review of the views or
products. For example, the end user has little patience for reviewing hundreds of pages
of documents and diagrams. Members of each end-user class, however, can be walked
through a number of important use case scenarios that are relevant to the way they will
use the system. The end user relates well to demonstrations of capabilities, especially
person-in-the-loop prototype simulations. The models for these demonstrations must
have reasonable computer-human interfaces.

7. The current DoDAF is representation oriented, and does not impose or recommend a
process for architecture development. Such a process can be quite sophisticated and can
differ across contractors and vendors. Guidance and expertise can prevent the developer
from making mistakes others have already made. Other considerations include the
following:

• There is no obvious way to determine the effect of a reduction in scope, reduction in
funding, or advancement in schedule.

• The “reward” structure is not aligned with the desire to create interoperable
constellations of systems. Each system manager is rewarded by the progress of his or
her system, and the integration of the constellations of systems becomes secondary.

• There is no clear set of criteria to determine what constitutes “acceptable and good”
versus “unacceptable and poor” for individual view products or the set of products
developed.

8. The views in the DoDAF and in the software architecture realm tend to be complex and
are often captured using a variety of notational styles.

• Software architects use the word “view” to describe a set of software elements and
the relationships among them. For example, a logical view describes classes and the
relationships among them, and a process view describes processes and their uses. The
definitions of views are complicated by the fact that more than one representation is
possible for each view (e.g., state transition diagrams and statecharts can be used to

8 CMU/SEI-2003-TN-006

represent the behavioral aspects of processes) and that UML-based tool sets support
many views and multiple representations for each view.

• The DoDAF discusses framework products that are included in 3 types of views: (1)
the Operational View (OV), which contains 7 products; (2) the System View (SV),
which contains 11 products; and (3) the Technical View (TV), which contains 2
products.

Moreover, the DoDAF contains two All-Views (AV) products that do not comprise a
separate view but rather include aspects of the architecture that apply to the
architecture as a whole (e.g., the AV-2 product is the integrated dictionary for the
whole architecture and contains architecture information from all three views).

9. Since both system and software architectures describe elements and how they relate to
each other, there is likely to be some conceptual confusion. Therefore, there will
probably also be confusion between DoDAF views developed by system engineers and
software architecture views developed by software engineers. It is also likely that teams
will mistakenly interpret the DoDAF as sufficient to document the software architecture.
This is wrong because there is superficial overlap among the following:

• the logical view of software architecture as defined by RUP [Kruchten 01] and the
System Functionality Description product of the DoDAF

• the process view of software architecture (again, as defined by RUP) and the System
State Transition Description product of the DoDAF

• use cases in the software architecture (defined by RUP as the “plus one” view, and
captured by sequence diagrams) and the System Event Trace Description product of
the DoDAF

• the deployment view of software architecture (defined in the Views and Beyond
approach summarized in Section 3) and the allocation of the system functions to the
systems that implement them in the DoDAF’s Systems Interface Description; that
product and the supporting Systems-Systems Matrix may also be used to detail the
inter-system software interfaces (i.e., what is currently documented in the Interface
Description Documents [IDDs]).

10. System architectures (especially as represented by the DoDAF) are particularly
concerned with functionality, whereas software architectures are more concerned with
achieving functionality that is specified elsewhere. The software is represented by the
system functions in the DoDAF; this representation is not appropriate for a software
architecture because a software architecture shows how functions are achieved as a
result of cooperating structural elements.

• The system engineer’s view of application functionality tends to be oriented toward
the domain challenges associated with the function, while the software engineer
concentrates on the services provided to achieve the functionality. These approaches
can be quite different. For example, a system engineer may be interested in the

CMU/SEI-2003-TN-006 9

development of an aircraft’s track based on timed inputs from multiple sensors,
whereas the software engineer is likely to be interested in how the tracks get
distributed to clients. Both are important, but the mindset for each is different.

• The system engineering community seems to be comfortable with the well-
established IDEF approach to detailing the architecture that starts with designing the
hardware elements with associated functionality. The software engineering
community gave up on the IDEF approach many years ago in favor of an object-
oriented approach that allocates software to hardware at a later time in the
development cycle. Many of the major software components that are distributed
throughout the system are poorly represented by the IDEF approach but are well
represented by the object-oriented approach. The software infrastructures, such as
operating systems, communications protocols, and distribution middleware, are all
poorly represented in the DoDAF approach. The tensions between the two
communities make resolving these problems challenging.

11. The interactions of the system with its environment are treated quite differently in the
software architecture and the DoDAF. The software architecture relies heavily on use
cases to describe how multiple actors (end user or external system) interact with the
various automated elements of the system. The DoDAF uses activity diagrams (OV-5) to
describe the general interaction between activities conducted at nodes within the system;
the DoDAF does not distinguish between manual and automated activities, since this
decision is made later. The functions are traced back to the OV-5 diagram relationships
captured in the SV-5 diagrams. There is a strong correlation between use cases and the
OV-5 and SV-5 diagrams. In addition to the product descriptions and the data element
definition tables (which detail the relationships across products), the object-oriented
example in the deskbook also provides guidance on these relationships.

12. The tool sets that support the architectures have been inconsistent in the past. For the last
10 years, the software tool development community has been building a UML standard
that is targeted at the software architectural views and is the basis for most current
graphical tool sets associated with building software architectural views. Additional
UML tool support includes the following capabilities, which many software architects
use to build their software architecture and design representations:

• consistency checking between the different views, which is very necessary and which
is performed by these tool sets, and is very necessary. It is almost impossible, given
hundreds of complicated diagrams and tables, to determine consistency by manual
inspection.

• export and import of representations between tool sets

Until recently, many of the DoDAF views were not UML compliant, and could not be
built, consistency-checked, exported, or imported. The UML-based tools were built
initially for software design, rather than software architectures, and hence lack some
features that many software architects believe are important.

10 CMU/SEI-2003-TN-006

13. Some parts of the community believe that architecture is shaped more by its quality
attributes or “ilities” (performance, availability, modifiability, security, usability, etc.)
than by its functionality. Though this is a well-accepted belief in software architecture,
there are few such representations in the DoDAF view products.

• The DoDAF OV3 product asks for information-exchange performance.

• UML extensions allow for performance annotations.

However, methods and procedures (such as the Architecture Tradeoff Analysis MethodSM
[ATAMSM]) have been developed to analyze software architectures against quality
attribute scenarios; these methods can either produce high confidence that the
architecture will satisfy its major business drivers, or identify risks, tradeoffs, and
concerns. Analysis methods for the DoDAF have not been reported publicly, though they
are undoubtedly used by architects in many cases.

14. The chief information officers (CIOs) and the materiel developers mandate the use of
standards and commercial products, including middleware such as Java 2 Enterprise
Edition (J2EE), .NET, common object request broker architecture (CORBA), and the
Web.

• The DoDAF uses the TV-1 and TV-2 views to represent current and future standards,
but relationships between these standards were not shown in the diagrams in the
previous version of the DoDAF. To remedy this situation, the DODAF has included
relationships between the standards as detailed in the TV-1 and TV-2 views, and the
architectural elements to which these standards correspond (e.g., systems as well as
software and hardware components of systems).

• One approach used by software architects is a “layering” view to describe how
applications, user interfaces, middleware, computing platforms, sensors, and
actuators interact. However, this approach is often depicted weakly in the
architecture. Another approach is to have a constraint model that establishes
responsibilities and obligations that each component must fulfill to behave
predictably.

• Though the FEA attempts to address the standards and commercial off-the-shelf
(COTS) issues explicitly, the representations to capture these issues are not yet
defined, making it difficult to judge the representations’ effectiveness.

• The FEA focuses on information technology (IT), which is largely associated with
distributed access to large-scale commercial databases and is often concentrated on
providing high-volume throughput to serve many customers as quickly as possible.
Many DoD systems must handle significant real-time response requirements. In such
systems, commercial database management system (DBMS) products are used with

SM Architecture Tradeoff Analysis Method and ATAM are service marks of Carnegie Mellon

University.

CMU/SEI-2003-TN-006 11

care, in a way that ensures that the COTS product either meets the performance
requirement or is only used in the system’s non-critical computations.

12 CMU/SEI-2003-TN-006

5 Summary

A summary of the implications of using the approaches described in the previous sections is
provided below. All the following statements refer to large-scale, software-intensive systems
of systems.

1. The DoDAF and current software architecture approaches have been developed
separately, by different organizations, with different purposes, and with little overlap.
Hence, there are significant differences between their favored representations, and there
is no way to ensure compatibility and consistency among their different views.

2. There is a need to select which views (system and software) will be needed for a system.
IEEE Std 1471-2000 and the SEI’s Views and Beyond approach (which leads to 1471-
compliant documentation) both provide guidance on selecting views.

3. The DoDAF does not represent software architectures; some software architectural
views are needed to supplement the DoDAF products to understand how well these
systems will operate.

4. None of the views conveniently represents multi-stage transitions from stovepiped
legacy systems to interoperable systems of systems, even though this is “where the
action is” nowadays in developing mission-critical systems. Some additional approach,
such as an MEP, is needed.

5. Currently each system program office (SPO)/contractor combination must struggle—
with little guidance—with the differences between the DoDAF and current software
architecture approaches to develop individual approaches for solving their problems.
They must then train their staffs to follow the approach, using available tool sets as
much as possible.

Though there is certainly room for improving this situation, no detailed discussions took
place at the workshop. Some of the above issues can be targeted for further workshops.

CMU/SEI-2003-TN-006 13

Appendix A Documenting Software Architectures

Using the “Views and Beyond” Approach

Authors’ note: The material in this appendix is based on the book Documenting Software
Architectures: Views and Beyond [Clements 02].

Introduction: Viewtypes, Styles, and Views
Three years ago, researchers at the Software Engineering Institute and the Carnegie Mellon
School of Computer Science set out to answer the question: “How should you document an
architecture so that others can successfully use it, maintain it, and build a system from it?”
The result of that work is an approach we loosely call “views and beyond.”

Modern software architecture practice embraces the concept of architectural views. A view is
a representation of a set of system elements and the relations associated with them. Views are
representations of the many system structures that are present simultaneously in software
systems. Modern systems are more than complex enough to make it difficult to grasp them all
at once. Instead, we restrict our attention at any one moment to one (or a small number) of
the software system’s structures that we represent as views.

Some authors prescribe a fixed set of views with which to engineer and communicate an
architecture. Rational’s Unified Process, for example, is based on Kruchten’s 4+1 view
approach to software [Kruchten 01]. The Siemens Four Views model [Hofmeister 00] is
another example. A recent trend, however, is to recognize that architects should produce
whatever views are useful for the system at hand. IEEE Std 1471-2000, a recommended best
practice for documenting the architectures of software-intensive systems exemplifies this
philosophy [IEEE 00]; it holds that an architecture description consists of a set of views, each
of which conforms to a viewpoint, which, in turn, is a realization of the concerns of one or
more stakeholders.

This philosophy about views leads to the fundamental principle of the Views and Beyond
approach:

Documenting an architecture is a matter of documenting the relevant views, and then
adding documentation that applies to more than one view.

14 CMU/SEI-2003-TN-006

What views are available, from which the views relevant to a system can be chosen? Plenty,
in fact, too many. To lend some order to an otherwise-chaotic collection of possible views, we
find it extremely helpful to think about views in groups, according to the kind of information
they carry. Architects carry out their creative task by thinking about the system in three
different ways at once:

1. How is the system to be structured as a set of code units?

2. How is the system to be structured as a set of interacting runtime elements?

3. How is the system to relate to non-software structures in its environment?

Considering views along the lines of these three broad categories helps an architect think in
naturally structured terms about the system, and helps consumers of documentation
discriminate among the separate concerns that an architecture manifests. We call the
categories viewtypes. The three viewtypes are:

1. Module viewtype. In views belonging to the module viewtype, the elements are
modules, which are units of implementation. Modules represent a code-based way
of considering the system. Modules are assigned areas of functional responsibility
and assigned to teams for implementation. There is less emphasis on how the
resulting software manifests itself at runtime. Relations among modules shown in
module views include is a, is part of, and depends on.

2. Component-and-connector viewtype. In views belonging to the C&C viewtype,
the elements are components (which are principal units of computation) and
connectors (which are the communication vehicles among components). The
principle relation shown in C&C views is attachment between the components and
the connectors.

3. Allocation viewtype. Views belonging to the allocation viewtype show the
relationship between the software elements and elements in one or more external
environments (hardware, organizational, environmental, etc.) in which the software
is created and executed.

Even within the confines of a viewtype, elements and relation can be specialized in known
ways, resulting in styles. Styles represent known design approaches to architectures. In the
C&C viewtype, many styles are well known. By restricting the components to interact via a
client-server request-reply connector, and by restricting the communication paths among the
elements, a client-server style emerges. Or, by restricting the components to be data
repositories and data accessors that communicate via connectors that provide the appropriate
communication mechanisms, a shared-data style emerges.

Many authors have catalogued C&C styles (e.g., the work of Shaw and Clements [Shaw 97]).
However, the other two viewtypes are just as rich with respect to styles. For example, by
specializing the relation among modules to “allowed to use” and imposing a strict ordering
on the relation, the well-known layers style emerges. Specializing the relation to is part of

CMU/SEI-2003-TN-006 15

and modules to elements that have functional responsibilities yields the module
decomposition style. Employing the is a relation and other constraints yields a generalization
style, the basis for inheritance relations in object-oriented systems.

The allocation viewtype can host various styles depending on how the software and
environmental elements are specialized. Allocating modules to a development organization’s
structure produces the work assignment style. Allocating processes to processors defines the
deployment style. And allocating modules to a development environment’s file structure
gives us the implementation style.

When a style is bound to a particular system, the result is a view.

Choosing the Views
Our fundamental principle cited in Section 3 implies that the first task for an architect is to
decide which views are relevant. Our approach provides a simple three-step procedure for
choosing the views relevant to a particular project’s needs. In concert with IEEE Std 1471-
2000, it is based on determining the needs of the stakeholders.

Step 1: Produce a Candidate View List

Begin by building a stakeholder/view table for your project. Enumerate the stakeholders for
your project’s software architecture documentation down the rows. Be as comprehensive as
you can. For the columns, enumerate the views that apply to your system. Some views (e.g.,
decomposition, uses, and work assignment) apply to every system, while others (C&C views,
the layered view) only apply to systems designed according to the corresponding styles.

Once you have the rows and columns defined, fill in each cell to describe how much
information the stakeholder requires from the view: none, overview only, or detailed
information. We encourage architects to hold a workshop with stakeholders or their
representatives to begin a dialogue about what information they will need from the
documentation.

The candidate view list consists of those views for which some stakeholder has a vested
interest.

Step 2: Combine Views

The candidate view list from Step 1 is likely to yield an impractical number of views. Step 2
winnows the list to a manageable size.

16 CMU/SEI-2003-TN-006

First, look for views in the table that require only overview depth, or that serve very few
stakeholders. See if the stakeholders could be equally well served by another view having a
stronger constituency.

Next, look for views that are good candidates to become combined views. A combined view
shows information native to two or more separate views. A rule of thumb is that if there is a
strong correspondence between the elements in two views, then they are good candidates to
be combined.

Step 3: Prioritize

After Step 2, you should have the minimum set of views needed to serve your stakeholder
community. At this point, you need to decide what to do first. For example, some
stakeholders’ interests supersede others. A project manager or the management of a company
with which yours is partnering often demands attention and information early and often, and
you may want to cater to his/her needs first.

Documenting a View
The unit of documentation for a view is a view packet, which is the smallest unit of
information about the system you would ever want to give a stakeholder. View packets are a
mechanism to “chunk” the information in a view into manageable pieces, because a single
unit of documentation that portrayed all the information in a view (especially for large and
complex systems) would be unmanageably complex. A view packet can show information
about a small portion of the system, or it can show information at a particular level of detail.
For instance, the first view packet in a view might show the entire system, but with coarse-
grained information. Subsequent view packets could show more detail about each element
(such as its substructure). View packets let a stakeholder pan and tilt a “camera” of interest
around the system in a view; he/she can zoom in or zoom out to/from elements of interest,
and jump from view to view in an organized fashion.

No matter the view, the documentation for a view packet is placed into a standard
organization or template comprising seven parts:

1. A primary presentation shows the elements and relationships among them that
populate the portion of the view shown in this view packet. The primary presentation
should contain the information you wish to convey about the system (in the vocabulary
of that view) first. The primary presentation is usually graphical. If so, it must be
accompanied by a key that explains or points to an explanation of the notation.

2. An element catalog details those elements (and their properties, including interfaces)
depicted in the primary presentation. In addition, if elements or relations relevant to this

CMU/SEI-2003-TN-006 17

view packet were omitted from the primary presentation, the catalog is where they are
introduced and explained.

3. A context diagram shows how the system (or portion of the system) depicted in the
primary presentation relates to its environment.

4. A variability guide shows how to exercise any variation points that are part of the
architecture shown in this view packet.

5. An architecture background or rationale explains why the design reflected in the view
packet came to be.

6. An “other information” section contains items that vary according to the standard
practices of each organization or the needs of the particular project.

7. Related view packets provide a pointer to the view packet’s parent, siblings, and
children (if any). In some cases, a view packet’s children may reside in a different view,
as when an element in one style (e.g., a filter in a pipe-and-filter view) is decomposed
into a set of elements in a different style (e.g., a set of communicating processes).

Documenting Information that Applies to More than One View
The final piece of architecture documentation is the information that applies to more than one
view and to the entire package. It ties together the views and provides a holistic picture of the
total design. Cross or “beyond-view” documentation consists of the following sections:

1. Documentation roadmap. The documentation roadmap is the reader’s introduction to
the information that the architect has chosen to include in the suite of documentation. A
roadmap begins with a brief description of each part of the documentation package. For
each view in the package, the roadmap gives a description of the view’s element types,
relation types, and property types. The roadmap also gives a description of what the
view’s purpose. The information can be presented by listing the stakeholders who are
likely to find the view of interest, and by listing a series of questions that can be
answered by examining the view. The roadmap follows with a section describing how
various stakeholders might access the package to help address their concerns. This
section might include short scenarios such as “a maintainer wishes to know the units of
software that are likely to be changed by a proposed modification.”

2. View template. A view template is the standard organization for a view. Its purpose is to
help a reader navigate quickly to a section of interest. It helps a writer organize the
information and establish criteria for knowing how much work is left to do.

3. System overview. A system overview is a short prose description of what the system’s
function is, who its users are, and any important background or constraints. The purpose
is to provide readers with a consistent mental model of the system and its purpose.

18 CMU/SEI-2003-TN-006

4. Mapping between views. Helping a reader or other consumer of the documentation
understand the relationship between views will help that reader gain a powerful insight
into how the architecture works as a unified conceptual whole.

5. Directory. The directory is simply an index of all the elements, relations, and properties
that appear in any of the views, along with a pointer to where each one is defined and
used.

6. Project glossary and acronym list. The glossary and acronym list define terms unique
to the system that have special meaning. These lists, if they exist as part of the overall
system or project documentation, might be given as pointers in the architecture package.

7. Cross-view rationale. This section documents the reasoning behind decisions that apply
to more than one view. Prime candidates for cross-view rationale include documentation
of background or organizational constraints that led to decisions of system-wide import.

Summary
Adopting a view-based approach to documentation, and then following that approach with
discipline, helps the architect design (and then communicate) along clean conceptual lines
that are not haphazardly mixed. Readers will be able to digest the information quickly, and
see how the system is structured into a set of well-separated but mutually supporting design
spaces.

Our approach frees the architect from the confines of a fixed set of views or having to choose
from prescriptions that conflict with each other (e.g., the work of Hofmeister and associates
[Hofmeister 00] and Kruchten [Kruchten 01]). The architect is free to choose only those
views that are appropriate to the system under construction.

To help the architect make that choice, we have also provided a simple three-step procedure
for choosing the relevant views for a system based on stakeholders’ concerns. This procedure
uses the concept of combined views and prioritization to bring the view set into manageable
size for real-world projects.

We have also provided a simple but powerful way to categorize views. Structuring views
(and hence, architectural documentation) into the three broad categories defined by the
module, component-and-connector, and allocation viewtypes provides a strong intellectual
handle for producing architectural information, and understanding documentation produced
by others. In this light, views can be seen to belong in one of the three viewtypes or be
combinations (perhaps unintended) of views in different viewtypes or styles. The result is
greater insight.

By recognizing three viewtypes we can expand previous notions of an architectural style to
show that module and allocation styles are a consistent conceptual extension to runtime styles
and provide a rich framework in which to make architectural decisions.

CMU/SEI-2003-TN-006 19

Appendix B C4ISR Architecture Framework

Authors’ Note: The material in this appendix comes from the C4ISR Architecture
Framework [C4ISR 97]. That framework is the predecessor of the DoD
Architecture Framework, which is currently in progress and therefore not
quotable.

Executive Summary
The Framework defines three related views of architecture: operational (OV), systems (SV),
and technical standards (TV). Each view is composed of sets of architecture information that
are depicted via graphic, tabular, or textual products. The All-DoD Core Architecture Data
Model (CADM) defines the data structure and relationship for architecture information.

The Framework is partitioned into two volumes and a deskbook:

• Volume I provides definitions, guidelines, and some background material.

• Volume II contains descriptions of each of the product types.

• The DoD Architecture Framework Deskbook provides supplementary guidance to
Framework users.

Operational
View

Identifies Participant Relationships
and Information Needs

Systems
View

Relates Capabilities and Characteristics
to Operational Requirements

Technical Standards
View

Prescribes Standards and
Conventions

• Specific Capabilities
Required to Satisfy

Information Exchanges

• Technical Criteria Governing
Interoperable Implementation/
Procurement of the Selected
System Capabilities

• Operational Capability

Requirements

• Basic Technology

Supportability

• New Technical

Capabilities

• Sys
tem

s t
ha

t S
up

po
rt

the
 Acti

vit
ies

 an
d

Inf
orm

ati
on

Exc
ha

ng
es

• Wha
t N

ee
ds

 to
 Be D

on
e

• W
ho

 D
oe

s I
t

• Inf
orm

ati
on

 Exc
ha

ng
es

Req
uir

ed
 to

 G
et

It D
on

e

Figure 1: Linkages Among Views

20 CMU/SEI-2003-TN-006

Appendix C IEEE Std 1471-2000

Authors’ Note: Text in this appendix comes from IEEE Std 1471-2000, copyright 2000, by
IEEE [IEEE 00].

Introduction
(This introduction is not part of IEEE Std 1471-2000, IEEE Recommended Practice for
Architectural Description of Software-Intensive Systems.)

It has long been recognized that “architecture” has a strong influence over the life cycle of a
system. In the past, hardware-related architectural aspects were dominant, whereas software-
related architectural integrity, when it existed, was often first to be sacrificed in the course of
system development. Today, software-intensive systems are pervasive. The cost of software
development and the increasing complexity of software systems have changed the relative
balance. Software technology is maturing rapidly. The practice of system development can
benefit greatly from adherence to architectural precepts.

However, the concepts of architecture have not been consistently defined and applied within
the life cycle of software-intensive systems. Despite significant industrial and research
activity in this area, there is no single, accepted framework for codifying architectural
thinking, and thereby facilitating the common application and evolution of available and
emerging architectural practices.

The IEEE Architecture Planning Group (APG) was formed in August 1995 to address this
need. The APG was chartered by the IEEE Software Engineering Standards Committee
(SESC) to set a direction for incorporating architectural thinking into IEEE standards. The
result of the APG’s deliberations was to recommend an IEEE activity with these goals:

• To define useful terms, principles and guidelines for the consistent application of
architectural precepts to systems throughout their life cycle;

• To elaborate architectural precepts and their anticipated benefits for software products,
systems and aggregated systems (“systems of systems”);

• To provide a framework for the collection and consideration of architectural attributes
and related information for use in IEEE Standards; and

• To provide a useful road map for the incorporation of architectural precepts in the
generation, revision and application of IEEE standards.

CMU/SEI-2003-TN-006 21

In April 1996 SESC created the Architecture Working Group (AWG) to implement those
recommendations.

This recommended practice addresses the activities of the creation, analysis, and sustainment
of architectures of software-intensive systems, and the recording of such architectures in
terms of architectural descriptions. A conceptual framework for architectural description is
established. The content of an architectural description is defined. Annexes provide the
rationale for key concepts and terminology, the relationships to other standards and examples
of usage.

Scope
This standard addresses the architectural description of software-intensive systems. A
software-intensive system is any system where software contributes essential influences to
the design, construction, deployment and evolution of the system as a whole.

The scope of this standard encompasses those products of system development which capture
architectural information. This includes architectural descriptions which are used for:

• the expression of the system and its evolution;

• communication among the system stakeholders;

• evaluation and comparison of architectures in a consistent manner;

• planning, managing, and executing the activities of system development;

• the expression of the persistent characteristics and supporting principles of a system to
guide acceptable change;

• the verification of a system implementation’s compliance with an architectural
description; and,

• recording contributions to the body of knowledge of software-intensive systems
architecture.

Purpose
The purpose of this standard is to facilitate the expression and communication of
architectures and thereby lay a foundation for quality and cost gains through standardization
of elements and practices for architectural description.

Despite significant efforts to improve engineering practices and technologies, software-
intensive systems continue to present formidable risks and difficulties in their design,
construction, deployment and evolution. Recent attempts to address these difficulties have
focused on the earliest period of design decision-making and evaluation, increasingly referred

22 CMU/SEI-2003-TN-006

to as the “architectural level” of system development. The phrases “architectural level” and
“architecture” are widely, if imprecisely, used. Their use reflects acceptance of an
architectural metaphor in the analysis and development of software-intensive systems. A key
premise of this metaphor is that important decisions may be made early in system
development in a manner similar to the early decision-making found in the civil architecture
profession.

Many innovations are resulting from this attention to the architectural level, among them
architectural description languages and associated tools and environments, architectural
frameworks, models and patterns, and techniques for architectural analysis, evaluation and
architecture-based reuse. While these efforts differ considerably in important aspects,
sufficient commonality exists to warrant the development of a recommended practice to
codify their common elements.

These innovations are occurring, and maturing, rapidly within many research and application
communities, and they reflect differing interests, influences, insights, and intentions. There is
a general consensus on the importance of the “architectural level of systems development,”
and that that level consists of early decision-making about overall design structure, goals,
requirements, and development strategies. However, there has not yet emerged any reliable
consensus on a precise definition of a system’s “architecture,” how it should be described,
what uses such descriptions may serve, or where and when it should be defined. The
boundaries and relationships between architectural trends and practices and other practices,
and between architectural technology and other technology, are not yet widely recognized.

In such situations, progress often depends on mediating influences. Potential adopters of
architectural practices and technology need a frame of reference within which to address
implementation and adoption decisions. Technology developers need a frame of reference
within which to communicate the motivating concepts of their technology, and to accumulate
and appreciate feedback from early adoption.

To these ends, this standard is intended to reflect generally accepted trends in practices for
architectural description and to provide a technical framework for further evolution in this
area. Furthermore, it establishes a conceptual framework of concepts and terms of reference
within which future developments in system architectural technology can be deployed. This
standard codifies those elements on which there is consensus; specifically the use of multiple
views, reusable specifications for models within views, and the relation of architecture to
system context.

Intended Users
The principal class of users for this standard comprises stakeholders in system development
and evolution, including:

CMU/SEI-2003-TN-006 23

• those that use, own and acquire the system (users, operators, and acquirers, or clients),

• those that develop, describe and document architectures (architects),

• those that develop, deliver and maintain the system (architects, designers, programmers,
maintainers, testers, domain engineers, quality assurance staff, configuration
management staff, suppliers and project managers, or developers), and

• those who oversee and evaluate systems and their development (chief information
officers, auditors, independent assessors).

A secondary class of users of this standard comprises those involved in the enterprise-wide,
infrastructure activities that span multiple system developments, including: methodologists,
process and process improvement engineers, researchers, producers of standards, tool
builders and trainers.

Conformance to this Standard
An architectural description conforms to this standard if that description meets the
requirements in Clause 5.

Applying IEEE Std 1471-2000 to the DoDAF
The DoD Framework can be interpreted in terms of IEEE Std 1471-2000 and the reference
model for architectural descriptions contained in IEEE Std 1471-2000. With relatively small
additions to the contents, and some modifications to the approach used to develop DoD
Framework products, the resulting DoD Framework description of a architecture can
(minimally) conform to IEEE Std 1471-2000.

First it is useful to see how IEEE Std 1471-2000 defines Architecture:

• Architecture: the fundamental organization of a system embodied in its components, their
relationships to each other and to the environment and the principles guiding its design
and evolution.

where:

• fundamental organization means essential, unifying concepts and principles

• system includes application, system, platform, system-of-systems, enterprise, product
line, ...

• environment is developmental, operational, programmatic, … context of the system

Although the definition of ‘architecture’ in the DoD Framework does not match this
definition, it does not explicitly contradict the standard’s definition.

24 CMU/SEI-2003-TN-006

The DoD Framework conforms to the requirements of IEEE Std 1471-2000 on architectural
descriptions in the following ways (in that an architectural description that meets the
requirements of the DoD Framework would also meet these IEEE Std 1471-2000
requirements):

• Labeling information (author, version, etc)

• Framework products meet IEEE Std 1471-2000 viewpoint definitions

• Conforming architecture definitions must meet framework product definitions

The DoD Framework is missing some significant items required by IEEE Std 1471-2000. To
conform to IEEE Std 1471-2000, an architectural description that conforms to the DoD
Framework must add the following items to what is already required by the DoD Framework:

• Notion of Stakeholders and Concerns as part of the DoD Framework approach.

• Association of Viewpoints/Views with Stakeholder Concerns “Why am I producing this
product?”

• Flexibility in selecting and constructing new Viewpoints.

• Identification/documentation of known inconsistencies.

• Documentation of rationale for the specific architectural choices

Specifically, information can be added to an existing product (e.g. AV-1) or to a new product
(AV-“new”) to capture stakeholders and concerns for the architecture, the mapping of
viewpoints (Framework products) to concerns, and the documentation of known
inconsistencies between the various Framework Products included in this description. The
requirement of IEEE Std 1471-2000 for capturing rationale can be done either in a separate
Framework product (AV-1 or AV-new), or can be included with each Framework product. It
would be best to update the Framework to explicitly capture all of the IEEE Std 1471-2000
requirements in the same way for all applications of the DoD Framework.

Note that the DoD Framework does not explicitly prohibit the construction of additional
viewpoints/products, but does not explicitly encourage extensions. The DoD Framework
should allow for extensions by its users to meet stakeholder requirements not satisfied by the
existing Framework products.

Finally, the DoD Framework document could be rewritten using the IEEE Std 1471-2000
definitions and reference model, which would facilitate its integration with other architectural
approaches (including software architectural approaches) that apply the IEEE Std 1471-2000
definitions and model.

CMU/SEI-2003-TN-006 25

References
This standard shall be used in conjunction with the following publications. When the
following standards are superceded by an approved revision, the revision shall apply.

IEEE Std 100−1996, IEEE Standard Dictionary of Electrical and Electronics Terms.

IEEE Std 610.12−1990, IEEE Standard Glossary of Software Engineering Terminology.

IEEE/EIA Std 12207.0−1996, IEEE/EIA Standard − Industry Implementation of ISO/IEC
12207:1995, Information Technology − Software Life Cycle Processes.

26 CMU/SEI-2003-TN-006

Appendix D Analytic Views Within the DoDAF

It is difficult to build the architecture for a large-scale, software-intensive system, especially
if it involves multi-stage deployment to the field in delivery blocks, mixing at each stage:
replacement of legacy systems; introduction of new technology; introduction of new
capabilities; changes in business processes; experiments with new technologies and
operational concepts; and prototype and demonstration development. Of course, changes in
budgets and schedules will always force changes in deployment blocks. Neither the software
architectures discussed at this workshop nor the DoDAF is especially good at addressing this
problem. One suggested approach at the workshop was to use an n-stage spiral development
model, with periodically deployable delivery blocks (1 to 2 years) with the following
elements:

• a legacy systems inventory, including a catalog of problems associated with the legacy
system

• a business drivers document outlining what is to be accomplished to improve the
missions’ effectiveness and the life-cycle support efficiency, and to manage the identified
risks

• an end-stage architecture using a combination of products from the Operational View
(OV), Technical View (TV), and System View (SV). This serves as a vision of the
architecture of the eventual system.

• a master evolution plan (MEP) that determines what is developed and deployed at each
stage, and captures the roadmap changes as they occur

• the need to coordinate the efforts with the independent development of closely related
systems, which may be part of the external environment. The worst-case coordination
effort is where the system to be coordinated is “external” for the first few delivery stages
and then becomes part of the system.

• The materiel developer (system program office [SPO] or program management office
[PMO]) should control the OV, which drives the capabilities to be fielded; the materiel
developer is heavily influenced by the combat developer. The materiel developer should
also control the TV, which drives the new technology introduced and the technology
retired; in this case, the materiel developer is heavily influenced by the chief information
officer (CIO) and the current set of technical standards. The OV and TV refer to the
selected set of products from the DoDAF. The SPO should also adjust the end-stage
vision architecture and the MEP to account for programmatic and technical changes.

CMU/SEI-2003-TN-006 27

• The operational community (e.g., operators, warfighters, and other users) owns the OV of
the architecture. The acquiring community (e.g., the programming office) owns the
development/maintenance of the SV of the architecture. A number of stakeholders (e.g.,
standards organizations, commercial technology, and interoperability organizations)
influence the TV. The OV and the TV constrain, influence, and provide requirements for
the SV. As the OV and TV evolve over time, the SV must evolve also. The reality is that
the end vision also evolves over time (hopefully more slowly). For this to work, the
stakeholder communities must become a team with the perspective that there is one
architecture for which each community has significant input. This can become a major
problem if the DoD organizes the architecture around a specific architectural view or
when organizations build one view independent of the others—the different architectural
views are not mutually exclusive.

• The contractors should manage the SV, which influences (along with cost) the
development, testing, and deployment plans.

• There must be close cooperation between the materiel developer, the combat developer,
the CIO, and the contractor in determining the OV, TV, and SV for the next stage, and
upgrading the vision document.

• Each stage should begin with an upgraded vision document and MEP and the detailed
architecture from the previous stage, and should build a detailed architecture for the new
stage. The key stakeholders must always be identified and be active participants in
agreeing what should be done at each stage. This will involve resolving conflicts among
the stakeholders.

28 CMU/SEI-2003-TN-006

Appendix E Federal Enterprise Architecture

Framework

Authors’ Note: The text in this appendix comes from the Federal Enterprise Architecture
Framework [FEA 99].

Executive Summary

Overview …

To facilitate efforts to transform the Federal Government into one that is citizen-centered,
results-oriented, and market-based, the Office of Management and Budget (OMB) is
developing the Federal Enterprise Architecture (FEA), a business-based framework for
Government-wide improvement. The FEA is being constructed through a collection of
interrelated “reference models” designed to facilitate cross-agency analysis and the
identification of duplicative investments, gaps, and opportunities for collaboration within and
across Federal Agencies.

This Federal Enterprise Architecture and Business Reference Model is intended for use in
analyzing investment in IT and other capital assets. It will also serve as a pilot for the
development of a broader architecture that can serve as the foundation for a comprehensive
budget and performance reporting system that supports the budget and performance
integration initiative.

Summary of Version 1.0

The Business Reference Model (BRM) presented in this document describes the Federal
Government’s Lines of Business and its services to the citizen – independent of the Agencies,
bureaus, and offices that perform these business operations and provide these services.
Developed with significant input from civilian Cabinet and other Federal Agencies (work is
currently underway to validate those areas of the model relevant to the Department of
Defense), the BRM identifies three Business Areas that provide a high-level view of the
operations the Federal Government performs – Services to Citizens, Support Delivery of
Services, and Internal Operations/Infrastructure. The three Business Areas comprise a total of
35 external and internal Lines of Business – the services and products the Federal
Government provides to its citizens; and 137 Sub-Functions – the lower level activities that
Federal Agencies perform.

CMU/SEI-2003-TN-006 29

• The Services to Citizens Business Area includes the delivery of citizen-focused, public,
and collective goods and/or benefits as a service and/or obligation of the Federal
Government to the benefit and protection of the nation’s general population. This
Business Area includes 22 Lines of Business and 82 Sub-Functions.

• The Support Delivery of Services Business Area provides the critical policy,
programmatic and managerial underpinnings that facilitate the Federal Government’s
delivery of services to citizens and other Federal, State and local agencies. This Business
Area includes 9 Lines of Business and 32 Sub-Functions.

• The Internal Operations and Infrastructure Business Area refers to the “back office”
support activities that must be performed for the Federal Government to operate
effectively. This Business Area includes 4 Lines of Business and 23 Sub-functions.

Other reference models

The BRM serves as the foundation for additional reference models that will be published in
the upcoming months – the Performance Reference Model, Data and Information Reference
Model, Application-Capability Reference Model and the Technical Reference Model.

• The Performance Reference Model will identify a common set of general performance
outcomes and metrics that Agencies use to achieve much broader program goals and
objectives.

• The Data and Information Reference Model will describe, at an aggregate level, the
data and information that support program and business line operations. The model will
aid in describing the types of interactions and information exchanges that occur between
the Federal Government and its various customers, constituencies, and business partners.

• The Application-Capability Reference Model will identify and classify horizontal and
vertical IT capabilities that support Federal agencies. The model will aid in
recommending applications to support the reuse of business components and services
across the Federal Government.

• The Technical Reference Model provides a hierarchical foundation to describe how
technology is supporting the delivery of the application capability. The model will outline
the technology elements that collectively support the adoption and implementation of
component-based architectures.

Together, the Business and Performance Reference Models will define objectives for Federal
Lines of Business, while the other reference models will define how to best allocate
resources, technology, and services to meet those objectives.

Managing the Program

The Federal Enterprise Architecture effort will only be successful if a sustainable and
repeatable process is established and the roles of all affected stakeholders are clearly defined

30 CMU/SEI-2003-TN-006

and communicated. To manage and coordinate construction of the FEA, and provide a means
of participation for all interested parties (e.g., senior Federal agency IT, budget, planning, and
procurement officials), OMB established a FEA Program Management Office (PMO). Led by
OMB’s Chief Technology Officer and the FEA Program Manager, the PMO is driving the
development of Component-Based Architectures to support the 24 Presidential Priority E-
Government initiatives, the development of the FEA reference models, and the identification
of new opportunities for business process and system consolidation to improve the efficiency
and effectiveness of the Federal Government. A prime means of communicating its
accomplishments to its many stakeholders and customers is the PMO’s Website, located at
www.feapmo.gov.

The recently chartered Solution Architects Working Group (SAWG) is playing a key role in
assisting Federal Agencies with the technical design, development, and deployment of their
E-Government initiatives. Through close collaboration with the E-Government initiative
teams, the SAWG is providing the leadership and guidance necessary to promote the
principles of Component-Based Architectures.

CMU/SEI-2003-TN-006 31

Appendix F Workshop Announcement

Where: SEI Ballston Office, near Washington, DC

When: January 30, 2003, 1 p.m. - 5 p.m.

Background
The DoD Architecture Framework (DoDAF) is being mandated by the DoD as the basis for
building representations of large-scale “systems of systems” (note that it was previously
called the C4ISR Architecture Framework). These representations cover the operational,
systems, and technical architectures—each as a set of interrelated views.

The SEI has extensive experience with software architecture, and has developed approaches
to documenting, building, and analyzing software architectures. SEI staff members have
published many papers and books on the subject and performed analysis on many software
architectures using the Architecture Tradeoff Analysis Method (ATAM).

During the development life cycle, DoDAF views serve as a basis for the development of a
software architecture, but there is no accepted way of doing this. This workshop is a first step
to understand the challenges involved in the transformation from DoDAF representations to
software architectural representations.

The agenda for the workshop is shown below.

1:00 to 1:15 Bill Wood (SEI) Introductions

1:15 to 1:45 Paul Clements (SEI) Software Architectural Representations

1:45 to 2:00 Dave Emery (MITRE)

2:00 to 2:15 Loring Bernhardt (MITRE) Practical Ways of Viewing Software
 Architecture Within the DoD
 Architecture Framework

2:15 to 2:45 Fatma Dandashi (MITRE) DoD Architecture Framework V1.0 Update

2:45 to 3:00 Break

3:00 to 3:30 John Weiler (IAC EA) OMB A130 Guidance

3:30 to 4:45 Bill Wood Facilitated Discussion

32 CMU/SEI-2003-TN-006

Appendix G Biographies of Authors

William G. Wood, SEI

William Wood has been a member of the technical staff at the SEI at Carnegie Mellon
University for 18 years. During this time, he has managed a technical program and technical
projects, and provided technical support to the program development organization. He is
currently working in software architecture with a number of clients. Previously Wood had
worked in process control automation for Westinghouse Electric Corp. for 20 years. He has
an MSEE from Carnegie Mellon University and a B.Sc. in Physics from Glasgow University,
Scotland.

Paul Clements, SEI

Dr. Paul Clements is a senior member of the technical staff at Carnegie Mellon University’s
SEI, where he has worked for nine years leading or coleading projects in software
architecture documentation and analysis, and software product line engineering. Clements is
coauthor of three practitioner-oriented books about software architecture: Software
Architecture in Practice, Evaluating Software Architectures: Methods and Case Studies, and
Documenting Software Architectures: View and Beyond. He also coauthored Software
Product Lines: Practices and Patterns in 2001. He was coauthor and editor of Constructing
Superior Software, and has written dozens of papers in software engineering that reflect his
interest in the design and specification of challenging software systems.

John Weiler, Interoperability Clearinghouse

John Weiler is currently the Executive Director and cofounder of the Interoperability
Clearinghouse (ICHnet.org), a public-private partnership formed to capture, normalize, and
share e-business best practices for architectures and interoperability. He has over 25 years of
experience in systems engineering, configuration management, and applied architectures.

His current efforts are focused on emerging enterprise architecture methods and tools in some
of the most progressive institutions, and he has been a leading force in advancing
architectures and interoperability practices in government and industry.

Weiler is a frequent distinguished speaker at conferences, workshops, and executive training
programs in the U.S. and abroad. Weiler is a 1978 graduate of the University of Maryland,

CMU/SEI-2003-TN-006 33

School of Business (Senatorial Scholarship) specializing in Information Systems
Management and Statistics.

Huei-Wan Ang, The MITRE Corporation

Huei-Wan Ang is a senior software systems engineer with the MITRE Corporation. She has
been working on the DoD Architecture Framework since October 2001. She has 10 years of
experience in object-oriented software development and software architecture. She has an
MS in Information Systems from the American University and a BS in Computer Science
from George Mason University.

Fatma Dandashi, The MITRE Corporation

Dr. Fatma Dandashi has been working on the DoD Architecture Framework as a member of
the MITRE development team supporting the Office of the Secretary of Defense (OSD) since
she joined MITRE in 1999. Her major contributions to the draft revision titled DoD
Architecture Framework V2.1 and the later draft revision entitled DoD Architecture
Framework V1.0 consisted of providing a description and representation of the framework
products (and their associated architecture information) in UML notation. Since October
2002, Dr. Dandashi has been the task lead for the MITRE development team responsible for
revising and publishing the current draft DoD Architecture Framework V1.0, dated January
15, 2003 (Volumes I and II). This draft has been reviewed by the Architecture Framework
Working Group and is currently being reviewed by the larger DoD community. An official
release of a final DoD Architecture Framework V 1.0 by the OSD is scheduled for July 2003.

Dr. Dandashi holds a PhD in Information Technology from George Mason University, an MS
in Computer Science from the University of Louisiana (Lafayette), and a BA in
Computers/Business Administration from the Lebanese American University.

Dave Emery, The MITRE Corporation

David Emery is a principal engineer with the MITRE Corporation. He has been working on
software architecture and system architecture concepts since 1992. He served on the
committee that wrote IEEE Std 1471-2000, Recommended Practice for Architectural
Description of Software-Intensive Systems.

Mario Barbacci, SEI

Mario Barbacci is a senior member of the staff at the SEI. He was one of the founders of the
SEI, where he has served in several technical and managerial positions, including project
leader (Distributed Systems), program director (Real-Time Distributed Systems, Product
Attribute Engineering), and associate director (Technology Exploration Department). Prior to
joining the SEI, he was a member of the faculty in the School of Computer Science at

34 CMU/SEI-2003-TN-006

Carnegie Mellon University. His current research interests are in the areas of software
architecture and distributed systems. He has written numerous books, articles, and technical
reports, and has contributed to books and encyclopedias on subjects of technical interest.

Steve Palmquist, SEI

Steven Palmquist is a registered professional engineer and a certified project management
professional. Before joining the SEI in 2000, he served for 20 years as a program manager
and helicopter pilot in the U.S. Coast Guard. His final tour was as the assistant program
manager for C4ISR on the Integrated DeepWater System, designated a government
reinvestion lab, where he was one of the principal architects of the program’s structure. A
commercial-rated pilot and a naval aviator, he holds an MSEE from the Naval Postgraduate
School and is a graduate of the National Test Pilot School (Avionics).

Sarah Sheard, Software Productivity Consortium

Sarah Sheard has worked in systems engineering and process improvement for over 20 years
and is currently the chief technologist leading the systems engineering effort at the Software
Productivity Consortium. She received the 2002 INCOSE Founder’s Award for her work in
INCOSE, including publishing over 20 symposium papers. She led a two-day systems
architecture workshop at the Consortium in March and will be a lead author on Consortium
architecture products in 2003 and 2004.

Lyn Uzzle, Software Productivity Consortium

Lyn Uzzle is a senior member of the technical staff at the Software Productivity Consortium.
She has over 20 years of software/system development and process improvement experience
with the Consortium and defense, aerospace, and consulting organizations. Uzzle has a BS in
Computer Science from North Carolina State University.

CMU/SEI-2003-TN-006 35

References

[Bass 98] Bass, L.; Clements, P.; & Kazman, R. Software Architecture in Practice.
Boston, MA: Addison Wesley, 1998.

[Bosch 00] Bosch, J. Design and Use of Software Architectures. London: Addison
Wesley, 2000.

[Buschmann
96]

Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; & Stal, M.
Pattern-Oriented Software Architecture, Volume 1: A System of Patterns.
New York: Wiley, 1996.

[Clements 01] Clements, P.; Kazman, R.; & Klein, M. Evaluating Software Architectures:
Methods and Case Studies. Boston, MA: Addison-Wesley, 2001.

[Clements 02] Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little, R.; Nord,
R.; & Stafford, J. Documenting Software Architectures: Views and Beyond.
Boston, MA: Addison-Wesley, 2002.

[C4ISR 97] Office of the Secretary of Defense Working Group. C4ISR Architecture
Framework, Version 2.0. Washington, DC, 1997.

[FEA 99] Federal Chief Information Officers’ Council. Federal Enterprise
Architecture Framework, Version 1.1. Washington, DC, 1999.

[Hofmeister
00]

Hofmeister, C.; Nord, R.; & Soni, D. Applied Software Architecture.
Boston, MA: Addison-Wesley, 2000.

[IEEE 00] Institute of Electrical and Electronics Engineers. IEEE Std 1471-2000.
Piscataway, NJ: IEEE Computer Press, 2000.

[Kruchten 01] Kruchten, P. The Rational Unified Process: An Introduction, 2nd ed.
Boston, MA: Addison-Wesley, 2001.

[Putman 00] Putman, J. Architecting with RM-ODP. Upper Saddle River, NJ: Prentice-
Hall, 2000.

[Shaw 97] Shaw, M. & Clements, P. “A Field Guide to Boxology: Preliminary

36 CMU/SEI-2003-TN-006

Classification of Architectural Styles for Software Systems,” 6-13.
Proceedings of First International Computer Software and Applications
Conference (COMPSAC97). Washington, DC, August 11-15, 1997.
Piscataway, NJ: IEEE Computer Society Press, 1997.
<http://www2.cs.cmu.edu/afs/cs.cmu.edu/project/vit/www/paper_abstracts
/Boxology.html>

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

March 2003

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

DoD Architecture Framework and Software Architecture Workshop
Report

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

William G. Wood, Mario Barbacci, Paul Clements, Steve Palmquist, Huei-Wan Ang, Loring Bernhardt, Fatma
Dandashi, David Emery, Sarah Sheard, Lyn Uzzle, John Weiler, Art Krummenoehl

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2003-TN-006

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

During the Software Engineering Institute’s Workshop on the Department of Defense Architecture Framework
and Software Architecture, participants from government, industry, and academia discussed the similarities
and differences between system and software architecture representations, and how these representations
relate with one another. This technical note summarizes the activities of that workshop.

14. SUBJECT TERMS

software architecture, system architecture, view, view products

15. NUMBER OF PAGES

45
16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	DoD Architecture Framework and Software Architecture Workshop Report
	Contents
	List of Figures
	Abstract
	1 Introduction
	2 Background and Purpose
	3 Summary of Briefings
	4 Discussion
	5 Summary
	Appendix A Documenting Software Architectures Using the “Views and Beyond” Approach
	Appendix B C4ISR Architecture Framework
	Appendix C IEEE Std 1471-2000
	Appendix D Analytic Views Within the DoDAF
	Appendix E Federal Enterprise Architecture Framework
	Appendix F Workshop Announcement
	Appendix G Biographies of Authors
	References

