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Abstract 

No software engineer can say with assurance how a sizable program, with its virtually infinite 
number of possible execution paths, will behave, that is, what it will do, in all circumstances 
of use. This incredible reality, widely acknowledged but little discussed, lies at the heart of 
intractable problems experienced in software development and use over the past 40 years. If 
full behavior is unknown, so too are embedded errors, vulnerabilities, and malicious code that 
can emerge in use. While this reality has seemed inevitable in the past, it need not be so in the 
future. The SEI CERT Coordination Center has been conducting research on Flow-Service-
Quality (FSQ) engineering for complex, network-centric system analysis and development. 
FSQ Flow Structures treat the control structures of programs as rules, or implementations, of 
mathematical functions, that is, mappings from domains to ranges. The function, or behavior, 
of any control structure can be abstracted into a procedure-free statement that specifies its net 
functional effect in all circumstances of use with mathematical precision. The finite number 
of control structures in a program can be abstracted in stepwise fashion in an algebra of 
functions, to arrive at a precise statement of the program’s overall behavior. The 
mathematical foundations largely exist, and development of such a capability is feasible, 
albeit difficult. Automated program behavior calculation would have a dramatic effect on 
software and systems engineering, and enable a new level of assurance in trustworthy 
systems. This report briefly summarizes research to date on Flow Structures and describes the 
application of their function-theoretic mathematical foundations to the problem of program 
behavior calculation. 
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1 The Problem of Understanding Program Behavior 

No software engineer can say for sure what a sizable computer program does in all 
circumstances of use. Yet incredibly, modern society is totally dependent on the correct 
functioning of countless large-scale systems composed of programs whose full behavior and 
fitness for use are not reliably known. It is little wonder that system development is a risky 
and unpredictable proposition, and that systems experience an endless flood of unforeseen 
bugs, vulnerabilities, and malicious code with frequently serious consequences. Failures in 
system development have been recently estimated to waste a quarter trillion dollars per year 
[Morgan 2002]. Such a situation in other engineering disciplines would not be tolerated. The 
state of affairs is illuminated by a principle argument of the open source software movement 
that maintains that more people looking at program code will find more errors. It is 
interesting to observe that there is no open source arithmetic movement, seeking more people 
to determine if sums are correct. Society knows how to make sums correct and has automated 
the process. It turns out that the same can be true of software. 

The task of program understanding today is a haphazard and error-prone process carried out 
by programmers in human time scale. Because understanding of behavior is an essential 
prerequisite to effective program development and modification, programmers are forced to 
devote substantial time to this task. Reliable understanding is also essential for discovery of 
errors, vulnerabilities, and malicious code. Compounding the problem is the difficulty of 
understanding programs written by others. And because unscrupulous programmers and 
intruders can make deleterious modifications to programs at any time, the task of behavior 
discovery never ends. 

Why are sizable programs so hard to understand? It is because they contain a virtually infinite 
number of possible execution paths, any of which may be relevant to the development or 
modification task at hand, and any of which may contain errors, vulnerabilities, or malicious 
code. Faced with massive sets of possible executions, programmers, constrained by limits on 
time and concentration, typically focus on gaining a general understanding of mainline 
program behavior. There is simply no way to understand and remember it all in today’s state 
of the art. 

While this problem has seemed intractable in the past, it may not be so in the future. The 
mathematical foundations of software illuminate a difficult but feasible strategy to develop 
new types of automation that can address the problem of program understanding in an 
innovative way. These possibilities stem from function-theoretic mathematical semantics that 
have been applied in the Flow-Service-Quality engineering project carried out by the CERT 
Coordination Center, as well as from extensions to the semantics defined in that project. The 
opportunity exists to move from an incomplete understanding of program behavior 
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laboriously derived in human time scale to a precise calculation of program behavior 
automatically derived in CPU time scale. 

The key to the function-theoretic approach is the recognition that, while programs may 
contain a virtually infinite number of execution paths, they are at the same time composed of 
a finite number of control structures. It is this finite nature of program logic viewed through 
the lens of function theory that opens the possibility of automated calculation of program 
behavior. 
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2 Background: Function-Theoretic Foundations of FSQ 

Flow Structures 

Research work on Flow-Service-Quality engineering has been documented in other reports 
[Linger 2002].1 Flow Structures are a key element of FSQ engineering. They provide stable 
engineering foundations for analysis and development of dynamic, network-centric systems 
of systems that are characterized by unpredictable boundaries, uncertain function and quality 
of commercial off-the-shelf (COTS) components, and limited control of security and 
survivability domains. The following discussion briefly summarizes research to date on Flow 
Structures and describes application of their mathematical foundations to the problem of 
program behavior calculation. 

Flow Structures are a representation and reasoning framework for specifying user task flows 
and their precise refinements into uses of system services in traversing a system architecture 
[Hevner 2001, Hevner 2002]. System services include all the functional capabilities of a 
system, from operating systems and communication protocols, to middleware and 
applications, to operations carried out by users and administrators. System services may be 
provided by local system components that are well understood and trusted, by COTS 
components of potentially uncertain function and quality, or by External Service Provider 
(ESP) components for which even less information may be available on functionality and 
quality of service. Architecture traversals by flows may visit and compose many computation 
and communication hardware and software components distributed across multiple systems. 
Mission-critical operations within an enterprise are ultimately carried out by user task flows 
that define the sequencing and composition of system services provided by these components 
to satisfy mission objectives. Survivability of these essential flows in adverse environments 
of intrusion and compromise is a requirement for mission continuity. 

Flow Structures invoke system services that may be engaged in simultaneous and 
asynchronous use by other flows. However, a new approach to flow semantics permits flows 
themselves to be deterministic, despite the underlying asynchronous behavior of their 
constituent services. The basic FSQ semantic model of Flow Structures is the well-known 
functional model [Hoffman 2001, Mills 1986, Mills 2002, Prowell 1999] that treats programs 
as rules for mathematical functions, that is, mappings from domains (inputs, stimuli) to 
ranges (outputs, responses). This model can be extended to a new semantics that permits 
flows to be defined as deterministic entities, no matter what changing or unpredictable 
behavior is exhibited by their constituent services [Linger 2002]. This result permits flows to 

                                                 
1  Also Linger, R. Essential Service and Sense-and-Respond Control Models (CMU/SEI-2002-SR-

004). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2002. 
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be abstracted, refined, and verified with precision. Deterministic flows can be represented in 
straightforward single-entry, single-exit sequence (composition), alternation (ifthenelse), and 
iteration (whiledo) control structures (plus their variants and extensions) for human reasoning 
and analysis. Concurrent structures can be incorporated into flows as well. 

Flow Structure engineering requires that, for survivability, flow designs deal explicitly with 
uncertainty factors characteristic of large-scale, network-centric systems, including 
unpredictable functionality and reliability of COTS and ESP components, as well as essential 
functionality that may be damaged or compromised at any time. This requirement supports 
both enterprise risk management and survivability engineering. In concrete terms, it requires 
that critical service invocations in flows be combined with post-fix predicates on subject-
matter-dependent, designer-defined equivalence classes on all possible service responses. For 
example, use of a radar service to obtain an aircraft position fix could be followed by 
predicates on equivalence classes to determine whether (a) a response was provided 
(existence of the service), (b) whether the response is a position fix (potentially correct 
response), and (c) whether the position fix is, say, valid in comparison to the previous fix 
(presumed correct response). It is up to flow designers to select such critical services for 
response analysis. Sensing and responding to all possible outcomes in this manner is the 
essence of survivability engineering, which requires that systems take appropriate actions 
under all conditions of use, whether benign or adverse, expected or unexpected. In short, 
Flow Structures require sensing adverse events and responding correctly to them. 

Discussion of the mathematical semantics and engineering operations associated with Flow 
Structures can be found in recent reports [Linger 2002].2 The foundations of Flow Structures 
are expressed in a number of theorems, including the following: 

• Flow Structure Theorem 

The Flow Structure theorem guarantees the sufficiency of sequence, alternation, and 
iteration control structures to represent any sequential flow. (Extensions and variants of 
these structures are included as well.) Thus, flows can be expressed in nested and 
sequenced single-entry, single-exit structures, each with a common underlying 
mathematical model, namely, a function mapping from domain to range. 

• Abstraction/Refinement Theorem 

The Abstraction/Refinement theorem addresses conditions for substitution of flow 
specifications and their refinements, thus enabling precise abstraction, refinement, and 
verification operations. 

                                                 
2  Also Linger, R. Essential Service and Sense-and-Respond Control Models (CMU/SEI-2002-SR-

004). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2002. 
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• Flow Verification Theorem 

The Flow Verification theorem defines conditions for correctness of flow control 
structures with respect to their specifications. Even though flows can contain a virtually 
infinite number of paths from start to end, they are expressed in a finite number of 
control structures, each of which can be verified in team inspections in from one to three 
reasoning steps as defined by the theorem. Thus verification is reduced to a finite and 
practical process. 

These theorems provide foundations for the engineering operations of refinement, 
abstraction, and verification of Flow Structures. These are the very operations required in 
program development, modification, and quality assurance, regardless of the programming 
language or subject matter involved. In particular, precise abstraction is the key to program 
understanding, as discussed next. 
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3 Function-Theoretic Calculation of Program Behavior 

The foundations of Flow Structures summarized above have natural application to the 
problem of program understanding, as a basis for automated calculation of the full behavior 
of programs in support of software and systems engineering. The key to intellectual control 
and management of software development, modification, and evolution is capturing and 
understanding the full functional effect of programs with mathematical precision. It is taken 
for granted that complete understanding of expressions is achievable and essential in other 
mathematical disciplines, but it remains an elusive goal in software today. 

Program behavior abstraction can be accomplished through the function-theoretic 
mathematics and methods [Hausler 1990, Hoffman 2001, Mills 1986, Mills 2002, Parnas 
1994, Pleszkoch 1990, Prowell 1999] that have been previously applied to the development 
of FSQ engineering concepts in this project. As noted, programs are compact representations 
of very large sets of possible behaviors. The process of deriving and expressing the net 
functional effect of program procedures in precise, non-procedural representations is known 
as program abstraction. The possibility of program abstraction arises from the recognition 
that programs and their constituent control structures implement mathematical functions. In 
the abstraction process, these functions are termed program functions. In informal 
illustration, the control structure operating on integers x, y, and z 

if  
     x > y 
then 
     z := x 
else 
     z := y 

endif 

can be abstracted to a procedure-free program function that can be expressed as 

 z := max(x, y) 

where the net effect of the structure is expressed in a single assignment of initial values of x 
and y to the final value of z, and x and y are unchanged. The canonical forms of the program 
functions of the basic control structures can be expressed through operations of function 
composition and case analysis as follows (for control structure labeled P, operations on data 
labeled g and h, predicate labeled p, and program function labeled f): 
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• Sequence control structure 

The program function of a sequence 

P:  g; h   

can be given by 

f = [P] = [g; h] = [h] o [g] 

where the square brackets denote the program function of the enclosed program and “o” 
denotes the composition operator. That is, the program function of a sequence can be 
calculated by ordinary function composition of its constituent parts. 

• Alternation control structure 

The program function of an alternation control structure 

P:  if p then g else h endif 

can be given by 

f = [P] = [if p then g else h endif] 

            = ([p] = true � [g] | [p] = false � [h]) 

where | is the “or” symbol. That is, the program function of an alternation is given by a 
case analysis of the true and false branches, and the opportunity to combine them into a 
single abstraction as in the max illustration above. 

• Iteration control structure 

For iteration control structures, the program function is given by function composition 
and case analysis in a recursive equation based on the equivalence of an iteration control 
structure and an iteration-free control structure (an ifthen structure): 

P:  while p do g enddo 

can be reexpressed as 

f = [P] = [while p do g enddo] 

           = [if p then g; while p do g enddo endif] 

           = [if p then g; f endif] 

 Function f is therefore given by 

 f  = ([P] = ([p] = true � [f] o [g] | [p]= false � I) 

where I is the identity function. Thus, the abstraction of an iteration structure is given 
by a two-part conditional rule, and the composition of f and g must be determined to 
define the true case. 

A miniature example involving a sequence control structure can provide a notional sense of 
the operations involved in one low-level abstraction step in the behavior calculation process. 
Consider the sequence structure below composed of assignments that operate on small 
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integers x and y (matters of machine precision are left aside for the moment). The abstraction 
question asks: What does this program do, that is, what function does it compute? The answer 
is not obvious at first glance: 

    do 

       x := x – y;  

       y := y + x; 

       x := y – x; 

       y := y + abs(x); 

    enddo 

Imagine a programmer writing this sequence and wondering if it does what is intended. An 
abstractor is invoked and the precise answer obtained in CPU time scale before continuing. 
Abstraction with mathematical precision requires deriving a procedure-free expression of 
what this structure does from beginning to end for all values of x and y. For a sequence 
structure, this requires composing the statements to determine their net, sequence-free effect. 
A trace table can be used for this purpose, with a row for every assignment statement and a 
column for every data variable assigned. Each cell in the table records the effect of the row 
assignment on the variables. Subscripts are attached to variables in the cells to index the 
effects from row to row, starting with 0 in the first row: 

operation x y 

x := x – y x1 = x0 – y0 y1 = y0 

y := y + x x2 = x1 y2 = y1 + x1 

x := y – x x3 = y2 – x2 y3 = y2 

y := y + abs(x) x4 = x3 y4 = y3 + abs(x3) 

The derivations below express the final values in the table in terms of the initial values 
through algebraic substitution: 

x4 = x3 

    = y2 - x2 

    = y1 + x1 - x1 

    = y1 

    = y0 
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y4 = y3 + abs(x3) 

     = y2 + abs(y2 – x2) 

    =  y1 + x1 + abs(y1 + x1 - x1) 

    =  y0 + x0 – y0 + abs(y0) 

    =  x0 + abs(y0) 

Thus, the final value of x is the initial value of y, and the final value of y is initial value of x 
plus the absolute value of the initial value of y. That is, this control structure exchanges the 
values of x and y, and adds the absolute value of y to the latter. This abstracted function can 
be written as a concurrent assignment, in which initial values on the right are simultaneously 
assigned in order to final values on the left: 

x, y := y, x + abs(y) 

The control structure in this example is a simple sequence of operations whose behavior was 
derived in a straightforward trace table composition: alternation and iteration structures 
require trace tables that incorporate columns for conditions (predicates) as well, and the 
derivation of their final values in terms of initial values in similar fashion. 

This behavior function precisely defines the net effect of the sequence, with matters of 
machine precision aside. If necessary, however, the finite nature of machine precision can be 
integrated into the analysis. For example, the properties of overflow and underflow can be 
dealt with in several referentially transparent ways, with the best approaches ultimately 
determined through experience with abstraction technology and user preferences: 

1. Overflow and underflow can be ignored in the abstraction process. This corresponds to 
performing referentially transparent abstraction on a program and machine model that 
has infinite precision. In this case, the behavior function precisely defines the net effect 
of the sequence, with machine precision not accounted for, and is sufficient for many 
analytical purposes. It is the obvious choice where machine precision has no effect on 
particular operations. An advantage of this approach is that the overall program function 
is not obscured by details of finite precision; however, any behavior resulting from finite 
precision is lost. For example, consider the following simple exchange of integers, with 
attached program function in square brackets: 

 [x, y := y, x] 
 do 
     x := x + y; 
     y := x - y; 
     x := x - y; 
 enddo 

Note that in this case, if two’s complement arithmetic is preformed, and overflow and 
underflow do not cause machine traps, then the exchange behavior is always correct, 
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even when overflow does occur, because the result must be correct modulo the word size 
of the executing machine. If necessary, however, the finite nature of machine precision 
can be integrated into behavior abstraction using one of the following approaches. 

2. The domain of each potential overflow or underflow can be explicitly incorporated into 
the conditions of the conditional assignment statement. The finite nature of integer 
representations on a given machine introduces the possibility of underflow and overflow 
into the functional effect of the sequence, and the opportunity to produce other than the 
intended result. This corresponds to performing referentially transparent abstraction on a 
program and machine model with finite precision to a behavior model with infinite 
precision. This possibility can be accounted for by partitioning the domain and range of 
each assignment in the sequence into equivalence class regions, based in this case on 
subsets of initial values of x and y, within each of which the same functional results will 
be obtained. Some classes will produce the program function derived above, others will 
not. Incorporation of the operational semantics of machines is important for analysis of 
programs for vulnerabilities and malicious code intended to exploit, for example, finite 
properties and overflow characteristics of number representations or data structures such 
as buffers or registers. When the behavior calculations are augmented by operational 
semantics, such problems become obvious, with no additional analysis on the part of the 
user required. For example, consider the following program function for a single 
assignment: 

 [ ((x + y) >= 2^31) � overflow occurs 
 | ((x + y) < -2^31)  � negative overflow occurs 
 | true                       � z := x + y ] 
 do 
     z := x + y 
 enddo 

An advantage of this approach is that the complete behavior of the program is captured 
in the behavior specification; however, the overflow and underflow conditions can 
obscure the primary logic of the program. This disadvantage can be mitigated by 
introducing variable bounds as preconditions and treating the behavior outside those 
preconditions as undefined. For example: 

 [ (abs(x) < 10^8) and (abs(y) < 10^8) � z := x + y 
 | true                                                    � undefined ] 
 do 
     z := x + y 
 enddo 

3. A third approach is to incorporate the operational semantics of the executing machine 
into the behavior calculation and simplification process as part of the trace table 
analysis. This corresponds to performing referentially transparent abstraction where the 
program and machine model, and the behavior model, are finite precision. That is, 
arithmetic operations in the behavior specification are subject to the same overflow and 
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underflow as in the program. For example, consider the following treatment of the 
exchange program: 

 [x, y := (x + y) - ((x + y) - y), (x + y) - y] 
 do 
     x := x + y; 
     y := x - y; 
     x := x - y; 
 enddo 

In this approach, “((x + y) - y)” cannot always be simplified to “x”, because the original 
expression can have overflow, while the simplified expression cannot. A disadvantage of 
this approach is that overflow and underflow semantics are buried in behavior 
abstractions just as deeply as in the program statements. Behaviors that do not require 
simplification, however, will more clearly reflect the primary logic of the program. 

These examples illustrate the power of the function-theoretic approach to deal with any 
behavioral and operational semantics appropriate to the problem at hand. As work on 
abstraction technology progresses, suitable vocabulary, definitions, reduction and 
simplification rules, and flexible user interfaces will emerge to support human preferences 
and understanding. In any case, it is important to recognize that the abstraction process is 
capable of extracting the true and complete behavior of any program or program part, the 
very behavior that exposes unforeseen errors and that intruders attempt to subvert for their 
own purposes. These behaviors are generated in the programmed functional logic and in its 
interaction with executing machines, and function-theoretic abstraction can deal completely 
and correctly with both. 

Consider next behavior calculation for larger programs. The nested and sequenced control 
structures (sequence, ifthenelse, whiledo, etc.) in a program form an expression in an algebra 
of functions, where every control structure is a rule for a function as described above. In 
particular, the abstracted function defined by a given control structure can be freely 
substituted for the control structure itself, with no change in the meaning of the overall 
program, as summarized in an Axiom of Replacement. The control structures of a program 
define a natural decomposition hierarchy, wherein leaf node control structures can be 
abstracted into their program functions, thereby revealing new control structures now ready 
for abstraction, etc., continuing in this manner until the entire program has been abstracted 
into a single program function representing its net functional effect. At this point, all the 
procedural logic and local variables have been abstracted out, but their overall effect has been 
preserved in the final abstraction. 

As illustrated in the example above, the abstracted program functions of control structures are 
conveniently recorded as a single statement in a closed specification language composed of a 
procedure-free concurrent assignment statement with general syntax 

<id>, <id>, …, <id> := <expr>, <expr>, …, <expr> 
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(where <id> represents an identified data item, <expr> represents an expression that 
calculates a value for a data item, and the expressions on the right are simultaneously 
assigned in order to the data items on the left), and a concurrent conditional assignment 
statement with syntax 

(<condition> � <concurrent assignment> 

| <condition> � <concurrent assignment> 

… 

| <condition> � <concurrent assignment>) 

where “|” represents “or” and <condition> is a truth-valued predicate. Any sequential logic 
can be abstracted into a program function expressed in this form. 

The semantics of conditional concurrent assignments are easily represented in various 
graphic-based formats in a user interface for ready understanding and analysis. 

In illustration of the stepwise abstraction process, consider the miniature program of Figure 1 
and the question of what it does. The program is expressed in terms of a design language 
syntax, and is composed of sequence, ifthenelse, and whiledo control structures. It takes as 
input and produces as output a queue of integers named Q, and defines local queues of 
integers named odds and evens and a local integer variable named x. 

The control structures of the program form a natural hierarchy with a number of leaf nodes. 
To begin the stepwise abstraction process, the lowest-level, leaf-node ifthenelse and sequence 
control structures of the program can be abstracted into non-procedural conditional 
concurrent assignments, as shown in Figure 2. 
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Figure 1: A Miniature Program for Abstraction 

����������

	
��
�����������

��

��������������

���������

�

�

��������������


� 


�����!���������


����


����

	
��
��������������

���

��������������

�����������


����

	
��
��!������������

���

����������!����

������������


����


������

����������

	
��
�����������

���

��������������

��������������������������  ���

�� ������!�������!��������!����  ��"


#���

	
��
��������������

��

��������������������"


#���

	
��
��!������������

���

����������������!����"�


#���


#�����

 

Figure 2: The First Abstraction Step 
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Figure 3: The Second Abstraction Step 

Next, the three whiledo structures can likewise be abstracted to conditional rules and 
assignments, resulting in the program of Figure 3. Finally, the sequence of three abstractions 
can be composed into a single assignment expressing the overall behavior of the program as 
shown in Figure 4. This assignment precisely defines what the program does in functional 
terms. It is the as-built behavior specification, that is, the program function, of the program. 
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Figure 4: The Final Abstraction Step 
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Note in this process that intermediate control structures and data references drop out to 
simplify scale-up by subsuming their functional effects into higher-level abstractions. The 
principal behavior calculation process is function composition through value substitution, 
which by definition eliminates intermediate expressions at successive levels of abstraction. 
As noted above, programs can exhibit an enormous number of execution paths, but are 
comprised of a finite number of control structures, so the abstraction process is itself finite 
and guaranteed to terminate. Furthermore, behavior is recorded at each abstraction step, to 
produce complete functional documentation for human understanding at all levels. 

This miniature example illustrates in informal terms a stepwise abstraction process that is 
invariant with respect to scale—the same mathematics and operations are employed at all 
levels of abstraction, no matter the size of the program. Were this program embedded in a 
larger system, it is its abstracted function that would participate in further abstraction, and not 
the program itself. In this way, local details are left behind at each step with no loss of 
information while precise abstractions propagate to higher levels. Abstraction does not mean 
vagueness; abstractions embody the precise net effect of implementation details. This 
process, combined with other techniques, limits complexity in behavior abstraction of large 
programs. Additional mathematical methods for unification and reduction must be brought to 
bear to simplify intermediate expressions and maintain intellectual control. These methods 
address the question of scale up to a practical industrial process, and are key elements of the 
required work to automate the process. 

Larger programs are capable of more extensive behavior in mapping their inputs into outputs. 
Abstracted behavior of these programs is more extensive, and can be usefully organized into 
behavior catalogs. These catalogs are repositories of program behavior expressed in lists of 
conditional concurrent assignments and indexed according to the predicate expressions 
involved. Catalogs can be searched, browsed, and analyzed according to users’ needs and 
objectives in investigating what a program does. 

It is important to note that conditional concurrent assignments are engineering expressions of 
behavior that can be presented to users in forms that exhibit suitable human factors (graphical 
forms, in particular) as part of a familiar windowed user interface. 

Consider next the problem of understanding the behavior of the Java program of Figure 5, 
which appears to perform a financial calculation. The program is shown on the left and its 
abstracted behavior catalog on the right. The abstraction was carried out through manual 
application of a behavior calculation algorithm. The calculated abstraction shown in its 
behavior catalog reveals non-trivial behavior summarized into three cases, expressed as 
conditional concurrent assignment statements. Each case begins with the conditions 
(predicate values) under which the corresponding transformations of data from input to 
output values will occur. The lists of data assignments within the cases occur simultaneously, 
but are shown in sequence for readability. In particular, the third case reveals complexities 
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that would be difficult and time-consuming indeed for fallible human analysis to uncover. It 
is simply not obvious that the program carries out the behavior cataloged here. 

 

public class AccountRecord {
public int acct_num;
public double balance;
public int loan_out;
public int loan_max;

} // end of AccountRecord

public class AdjustRecord
extends AccountRecord {

public bool default;   
} // end of AdjustRecord

public static AdjustRecord classify_account
(AccountRecord acctRec) {

AdjustRecord adjustRec = new AdjustRecord();
adjustRec.acct_num = acctRec.acct_num;
adjustRec.balance = acctRec.balance;
adjustRec.loan_out = acctRec.loan_out;
adjustRec.loan_max = acctRec.loan_max;
adjustRec.default = (adjRec.balance < 0.00);

while ((adjustRec.balance < 0.00) &&
(adjustRec.loan_out + 100) <= adjustRec.loan_max))

{
adjustRec.loan_out = adjustRec.loan_out + 100;
adjustRec.balance = adjustRec.balance + 100.00;

}

return adjustRec;
}

1.   AccountRecord acctRec
Object is unchanged

2.   AdjustRecord adjustRec
A new object adjustRec is created and returned,
the contents of which are described in three cases: 

CASE 1:
if (acctRec.balance >= 0.00)
then

adjustRec.acct_num = acctRec.acct_num
adjustRec.balance    = acctRec.balance
adjustRec.loan_out   = acctRec.loan_out
adjustRec.loan_max = acctRec.loan_max
adjustRec.default     = false 

CASE 2:
if (acctRec.balance < 0.00) and

(acctRec.loan_out + 100> acctRec.loan_max)
then

adjustRec.acct_num = acctRec.acct_num
adjustRec.balance    = acctRec.balance
adjustRec.loan_out   = acctRec.loan_out
adjustRec.loan_max = acctRec.loan_max
adjustRec.default     = true

CASE 3:
if (acctRec.balance < 0.00) and

(acctRec.loan_out + 100 <= acctRec.loan_max)
then

adjustRec.acct_num = acctRec.acct_num
adjustRec.balance    = acctRec.balance + (100.00 * term)
adjustRec.loan_out   = acctRec.loan_out + (100 * term)
adjustRec.loan_max = acctRec.loan_max
adjustRec.default     = true

where
term   = min(term1, term2)
term1 = ceiling(0.00 – acctRec.balance)/100.00)
term2 = 1 + floor((acctRec.loan_max – 100 –
acctRec.loan_out)/100)

Abstractor

Program Behavior Catalog

 

Figure 5: The Abstracted Behavior Catalog of a Java Program 

Behavior calculation has potential for transformational impact on software and systems 
engineering through major reduction in effort combined with improved quality. Typical uses 
include: 

• malicious code 

A security specialist periodically submits a critical operational program to an abstractor 
to determine if its behavior catalog reveals any malicious code recently inserted by 
programmers or intruders. 

• error detection 

A quality assurance specialist submits a recently completed program to an abstractor and 
analyzes the calculated behavior catalog for incorrect behavior with respect to program 
requirements and specifications. 

• new program development 

A software engineer periodically submits a partial program under development to an 
extractor to determine if the function defined by its behavior calculation is the function 
intended. 
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• just-in-time component composition 

A systems engineer employs an abstractor to generate behavior catalogs that guide rapid 
and reliable composition of components in responding to new system requirements. 

• program maintenance 

A software engineer submits a program undergoing maintenance to an abstractor to 
determine where and how to make changes, and later resubmits it to ensure that changes 
have the desired effect. 

• COTS product evaluation 

A systems engineer requests a product behavior catalog from a COTS software vendor to 
evaluate for planned use in a new system. 

• reuse 

A systems engineer submits a program to an abstractor to generate its behavior catalog 
for evaluation of potential reuse in a new system. 

• documentation 

A software engineer submits a completed program to an abstractor to generate its final 
behavior catalog for future maintenance and evolution. 

If automated behavior extraction were easy, it would be commonplace by now. While much 
of the required mathematical theory already exists, this is nevertheless a hard problem with a 
number of challenges: 

• loop function abstraction 

No general theory for loop abstraction exists. Because even a single while loop can 
compute an arbitrary partial recursive function, many results from the area of 
computability theory stand in the way. For example, the undecidability of the Halting 
Problem means that there will be some terminating while loops that the automated 
behavior abstraction system will not be able to detect as terminating. The undecidability 
of program function equivalence implies that an automated behavior abstraction system 
will need to use multiple representations of the same program function. The research 
approach here includes use of recursive expressions to represent loop operations as a 
starting point for behavior extraction, and development and application of canonical 
patterns and behavior templates for loops. Undecidability results from computability 
theory will be used to guide research choices along feasible directions. Potential 
limitations at the mathematical level can often be dealt with effectively at the engineering 
level to produce satisfactory solutions. This appears to be the case with respect to loop 
abstraction. 

• expression simplification and reduction 

It is important to control the complexity of calculated behavior expressions as they 
propagate to higher levels. While much complexity reduction is intrinsic to function-
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theoretic abstraction, research is required to investigate promising mathematical methods 
for unification and elimination of cases, as well as appropriate human factors engineering 
for effective display and analysis of behavior catalogs. A key component of this 
complexity reduction is the appropriate use of definitions to represent units of behavior 
that recur frequently throughout a program. Such use of definitions has long been applied 
in mathematics to render theorems and proofs more understandable. For example, 
although it is possible to do set theory using only “epsilon” (set membership) as the sole 
non-logical symbol, in practice it is impossible to express even the axioms of Zermelo-
Fraenkel set theory in this manner without a complete loss of understandability. Facilities 
for specifying and integrating definitions into the process will be an important capability 
for an abstraction engine. 

• indirect data references 

Many languages permit pointer references (either explicit or implicit) to data items that 
introduce a level of indirection that must be accommodated in the semantics of behavior 
calculation. The research approach here will include mapping of data references into 
canonical reference frameworks as a starting point for analysis. In particular, all objects 
are allocated on the heap in Java, so the problem of aliasing (i.e., different variable names 
referring to the same storage location) is substantial. Conversely, this is an area where 
automatic analysis can bring a significant amount of benefit to understanding the 
implications of the data layout of an unknown program. 

The solutions to these challenges will enable abstraction engine development as a key enabler 
for the trustworthy systems of the future. In fact, it is difficult to imagine how trustworthy 
computing can ever be reliably achieved without knowing what programs do in all 
circumstances of use. In the current state of the art, this knowledge is sporadically and 
imperfectly accumulated from specifications, designs, code, and test results, all potentially 
incomplete and incorrect. Dynamic program modifications and compositions in modern 
network-centric systems severely limit the value and relevance of even this hard won but 
static and suspect knowledge. But programs are mathematical artifacts subject to 
mathematical analysis. Human fallibility still exists in interpreting the analytical results, but 
there can be little doubt that routine availability of calculated behavior would substantially 
reduce errors and vulnerabilities in software and make intrusion and compromise more 
difficult and detectable. Furthermore, questions about system trustworthiness capabilities for 
authentication, encryption, filtering, etc., are in large part questions about the behavior of 
programs that implement them. And because programs are subject to dynamic change and 
adaptation, only automated analysis can maintain the currency and relevance of behavior 
knowledge at little cost. 
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4 The Architecture of an Abstraction Engine 

Figure 6 depicts a notional architecture of a program function abstractor. Denotational 
(functional) semantics are defined for the control and data structures of the target language, 
and possibly the machine, whose programs are to be abstracted, as well as for the forms of 
the behavior expressions that will represent the abstracted behavior. These semantics are 
stored in data repositories and employed to verify the correctness of the abstractor, to ensure 
that the calculated behavior indeed corresponds to the behavior of the program being 
abstracted. The behavior calculations are provided to a graphical interface to create 
presentation formats with appropriate human factors. Users need never be exposed to the 
underlying mathematics, but can have confidence in the abstracted behavior in the knowledge 
that it was derived with sound mathematical methods. 
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Figure 6: Architectural Structure of an Automatic Abstraction Engine 

The abstractor itself employs abstraction and simplification rules to the stepwise derivation of 
program functions for each of the control structures of the input program or program part. 
The resulting behavior catalog is available for browsing and analysis. 
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A sensible, low-risk development process for such an abstractor would focus on creation of a 
prototype that addresses a subset of the target programming language, in order to gain early 
operational experience with the abstraction process. The subset would gradually be extended 
to eventually incorporate all language capabilities. As experience grows, new abstraction and 
simplification rules and techniques could be added in an iterative process of system 
development. 

Abstraction engine development would require a small team of mathematicians and language 
semanticists with deep experience in function-theoretic mathematics and their software 
engineering application. The team would investigate and apply a spectrum of mathematical 
methods ranging from logic and fixpoint theory to model and category theory. Virtually all of 
the required mathematical foundations already exist. The principal task is to identify, 
specialize, and combine them for application to the behavior calculation problem in a process 
of iterative prototype evolution. There is no need to revisit the Halting Problem or deal with 
incomputable functions. A rich variety of concrete and computable mathematics is readily 
available. A reasonable approach would be to first identify foundations for abstracting 
sequential logic, then progress to concurrent logic. It is important to note that mathematical 
foundations are a means to an end, not an end in themselves. The overarching goal is 
practical automation of program behavior calculation and its routine engineering application. 
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5 Using Abstraction in Automated Verifiers, Integrators, 

and Certifiers 

As noted above, automated function abstraction is unimaginable in today’s state of the art. 
But if such a capability were developed, additional automation of traditionally manual and 
error-prone software engineering tasks would become possible, as discussed next. 

5.1 Automated Program Verifiers 

Function abstractions derived by automated abstractors are as-designed specifications of 
programs, and can be checked by software engineers in team inspections for correctness 
subject to human fallibility. 

Beyond human inspection, it is possible to envision automated program verifiers that could 
compare function abstractions to intended specifications of programs for correctness with no 
human fallibility in CPU time scale. In this case, a program, its intended specification, or 
both may be correct or incorrect. Intended specifications must be defined by software 
engineers for this purpose. Verifier technology requires a capability for automated abstraction 
to derive as-designed specifications to be compared to intended specifications. Imagine a 
software engineer writing an intended specification and a corresponding refinement into a 
program part, then invoking a verifier on the fly to receive confirmation (or not) of 
correctness before continuing. 

5.2 Automated Program Integrators 

Consider the following miniature component and its as-designed function abstraction derived 
in a trace table: 

do 
    x := x + 2; 
    y := x – y; 
    x := y – x; 
enddo 
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operation x y 

x := x + 2 x1 = x0 + 2 y1 = y0 

y := x – y x2 = x1 y2 = x1 – y1 

x := y – x x3 = y2 – x2 y3 = y2 

 
x3 = y2 – x2  
    = x1 – y1 – x1  
    = – y1 
    = – y0 
 
y3 = y2 
    = x1 – y1 
    = x0 + 2 – y0  
    = x0 – y0 + 2   

Thus, the function abstraction of the component is: 

x, y := –y, x – y + 2 

Now consider integrating this component as the second part of a sequence composition with 
the first part an exchange component as shown below: 

do 

    x, y := y, x; 

    x, y := –y, x – y +2; 

enddo 

What is the net effect of this integration? This question can be answered by a trace table that 
calculates the net effect of the two components in sequence: 

operation x y 

x, y := y, x x1 = y0 y1 = x0 

x, y := –y, x – y +2 x2 =  –y1 y2 = x1 – y1 + 2 

 

x2 =  –y1 
    =  –x0 

y2 = x1 – y1 + 2 
    = y0 – x0 + 2 

Thus, the net effect of the integration is the following function abstraction: 

x, y := –x, y – x + 2 

Imagine a systems engineer attempting to integrate these components. Each component has 
an as-designed abstraction that can be furnished to an integrator to evaluate the composition 
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and derive its net effect in CPU time scale. Components paired with corresponding as-
designed abstractions are thereby enabled for such automated integration. Imagine changing a 
line of code in a large program. How does that change affect its function, correctness, and 
existing integration relationships with other components? With automated abstraction and 
integration technology these questions can be answered as routine engineering processes. 

5.3 Automated Program Certifiers 

Sizable programs exhibit virtually infinite populations of possible executions. It is an 
immutable fact of software engineering that no testing effort, no matter how extensive, can 
hope to exercise more than a minute fraction of these executions. So all testing is really 
sampling from an infinite population, and the only important question is how to draw the 
sample of test cases. If the sample is representative of eventual field use, then test results 
from the sample can be extrapolated to the entire population to make scientifically valid 
estimates of future field experience with all the executions that could not be tested. Such 
results are invaluable in making informed decisions on product quality and fitness for use, 
development process effectiveness, and resource allocation for testing. 

This process is statistical usage-based testing. It requires as a starting point a definition of the 
population of possible executions augmented with estimated usage probabilities. This 
definition can be derived from the as-designed function abstraction of a system under test. So 
abstraction technology informs a scientific testing process that produces valid predictions of 
fitness for use of a system in a particular usage environment. In addition, as-designed 
abstractions can serve as oracles for evaluating the results of test executions. Imagine a 
systems engineer considering use of an abstraction-enabled component in a particular usage 
environment. The as-designed function abstraction can be furnished to an automated certifier 
along with a description of usage to produce valid predictions of how the component will 
perform. It is also important to note that verified programs have been determined to be 
correct with respect to their specifications with no testing or execution involved. It is this 
level of quality that permits the objective of testing to shift from attempting to improve 
quality through debugging, an impossible task, to focus on scientific certification of fitness 
for use. 

Developing automated abstractors, verifiers, integrators, and certifiers will be difficult. The 
good news is that the most of the required theoretical foundations already exist. The place to 
start with is automated function abstraction, as the foundation for the other capabilities. The 
required work is substantial, but does not exceed the knowledge of how to do it. 
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