
Applying FSQ Engineering

Foundations to

Automated Calculation

of Program Behavior

Richard C. Linger

February 2003

Network Systems Survivability

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2003-TN-003

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2003 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2003-TN-003 i

Contents

Abstract..v

1 The Problem of Understanding Program Behavior....................................1

2 Background: Function-Theoretic Foundations of FSQ Flow Structures..3

3 Function-Theoretic Calculation of Program Behavior6

4 The Architecture of an Abstraction Engine ..19

5 Using Abstraction in Automated Verifiers, Integrators, and Certifiers ...21
5.1 Automated Program Verifiers...21

5.2 Automated Program Integrators...21

5.3 Automated Program Certifiers ...23

6 Acknowledgements..24

References ...25

ii CMU/SEI-2003-TN-003

CMU/SEI-2003-TN-003 iii

List of Figures

Figure 1: A Miniature Program for Abstraction ..13

Figure 2: The First Abstraction Step ...13

Figure 3: The Second Abstraction Step ..14

Figure 4: The Final Abstraction Step ..14

Figure 5: The Abstracted Behavior Catalog of a Java Program16

Figure 6: Architectural Structure of an Automatic Abstraction Engine19

iv CMU/SEI-2003-TN-003

CMU/SEI-2003-TN-003 v

Abstract

No software engineer can say with assurance how a sizable program, with its virtually infinite
number of possible execution paths, will behave, that is, what it will do, in all circumstances
of use. This incredible reality, widely acknowledged but little discussed, lies at the heart of
intractable problems experienced in software development and use over the past 40 years. If
full behavior is unknown, so too are embedded errors, vulnerabilities, and malicious code that
can emerge in use. While this reality has seemed inevitable in the past, it need not be so in the
future. The SEI CERT Coordination Center has been conducting research on Flow-Service-
Quality (FSQ) engineering for complex, network-centric system analysis and development.
FSQ Flow Structures treat the control structures of programs as rules, or implementations, of
mathematical functions, that is, mappings from domains to ranges. The function, or behavior,
of any control structure can be abstracted into a procedure-free statement that specifies its net
functional effect in all circumstances of use with mathematical precision. The finite number
of control structures in a program can be abstracted in stepwise fashion in an algebra of
functions, to arrive at a precise statement of the program’s overall behavior. The
mathematical foundations largely exist, and development of such a capability is feasible,
albeit difficult. Automated program behavior calculation would have a dramatic effect on
software and systems engineering, and enable a new level of assurance in trustworthy
systems. This report briefly summarizes research to date on Flow Structures and describes the
application of their function-theoretic mathematical foundations to the problem of program
behavior calculation.

vi CMU/SEI-2003-TN-003

CMU/SEI-2003-TN-003 1

1 The Problem of Understanding Program Behavior

No software engineer can say for sure what a sizable computer program does in all
circumstances of use. Yet incredibly, modern society is totally dependent on the correct
functioning of countless large-scale systems composed of programs whose full behavior and
fitness for use are not reliably known. It is little wonder that system development is a risky
and unpredictable proposition, and that systems experience an endless flood of unforeseen
bugs, vulnerabilities, and malicious code with frequently serious consequences. Failures in
system development have been recently estimated to waste a quarter trillion dollars per year
[Morgan 2002]. Such a situation in other engineering disciplines would not be tolerated. The
state of affairs is illuminated by a principle argument of the open source software movement
that maintains that more people looking at program code will find more errors. It is
interesting to observe that there is no open source arithmetic movement, seeking more people
to determine if sums are correct. Society knows how to make sums correct and has automated
the process. It turns out that the same can be true of software.

The task of program understanding today is a haphazard and error-prone process carried out
by programmers in human time scale. Because understanding of behavior is an essential
prerequisite to effective program development and modification, programmers are forced to
devote substantial time to this task. Reliable understanding is also essential for discovery of
errors, vulnerabilities, and malicious code. Compounding the problem is the difficulty of
understanding programs written by others. And because unscrupulous programmers and
intruders can make deleterious modifications to programs at any time, the task of behavior
discovery never ends.

Why are sizable programs so hard to understand? It is because they contain a virtually infinite
number of possible execution paths, any of which may be relevant to the development or
modification task at hand, and any of which may contain errors, vulnerabilities, or malicious
code. Faced with massive sets of possible executions, programmers, constrained by limits on
time and concentration, typically focus on gaining a general understanding of mainline
program behavior. There is simply no way to understand and remember it all in today’s state
of the art.

While this problem has seemed intractable in the past, it may not be so in the future. The
mathematical foundations of software illuminate a difficult but feasible strategy to develop
new types of automation that can address the problem of program understanding in an
innovative way. These possibilities stem from function-theoretic mathematical semantics that
have been applied in the Flow-Service-Quality engineering project carried out by the CERT
Coordination Center, as well as from extensions to the semantics defined in that project. The
opportunity exists to move from an incomplete understanding of program behavior

2 CMU/SEI-2003-TN-003

laboriously derived in human time scale to a precise calculation of program behavior
automatically derived in CPU time scale.

The key to the function-theoretic approach is the recognition that, while programs may
contain a virtually infinite number of execution paths, they are at the same time composed of
a finite number of control structures. It is this finite nature of program logic viewed through
the lens of function theory that opens the possibility of automated calculation of program
behavior.

CMU/SEI-2003-TN-003 3

2 Background: Function-Theoretic Foundations of FSQ

Flow Structures

Research work on Flow-Service-Quality engineering has been documented in other reports
[Linger 2002].1 Flow Structures are a key element of FSQ engineering. They provide stable
engineering foundations for analysis and development of dynamic, network-centric systems
of systems that are characterized by unpredictable boundaries, uncertain function and quality
of commercial off-the-shelf (COTS) components, and limited control of security and
survivability domains. The following discussion briefly summarizes research to date on Flow
Structures and describes application of their mathematical foundations to the problem of
program behavior calculation.

Flow Structures are a representation and reasoning framework for specifying user task flows
and their precise refinements into uses of system services in traversing a system architecture
[Hevner 2001, Hevner 2002]. System services include all the functional capabilities of a
system, from operating systems and communication protocols, to middleware and
applications, to operations carried out by users and administrators. System services may be
provided by local system components that are well understood and trusted, by COTS
components of potentially uncertain function and quality, or by External Service Provider
(ESP) components for which even less information may be available on functionality and
quality of service. Architecture traversals by flows may visit and compose many computation
and communication hardware and software components distributed across multiple systems.
Mission-critical operations within an enterprise are ultimately carried out by user task flows
that define the sequencing and composition of system services provided by these components
to satisfy mission objectives. Survivability of these essential flows in adverse environments
of intrusion and compromise is a requirement for mission continuity.

Flow Structures invoke system services that may be engaged in simultaneous and
asynchronous use by other flows. However, a new approach to flow semantics permits flows
themselves to be deterministic, despite the underlying asynchronous behavior of their
constituent services. The basic FSQ semantic model of Flow Structures is the well-known
functional model [Hoffman 2001, Mills 1986, Mills 2002, Prowell 1999] that treats programs
as rules for mathematical functions, that is, mappings from domains (inputs, stimuli) to
ranges (outputs, responses). This model can be extended to a new semantics that permits
flows to be defined as deterministic entities, no matter what changing or unpredictable
behavior is exhibited by their constituent services [Linger 2002]. This result permits flows to

1 Also Linger, R. Essential Service and Sense-and-Respond Control Models (CMU/SEI-2002-SR-

004). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2002.

4 CMU/SEI-2003-TN-003

be abstracted, refined, and verified with precision. Deterministic flows can be represented in
straightforward single-entry, single-exit sequence (composition), alternation (ifthenelse), and
iteration (whiledo) control structures (plus their variants and extensions) for human reasoning
and analysis. Concurrent structures can be incorporated into flows as well.

Flow Structure engineering requires that, for survivability, flow designs deal explicitly with
uncertainty factors characteristic of large-scale, network-centric systems, including
unpredictable functionality and reliability of COTS and ESP components, as well as essential
functionality that may be damaged or compromised at any time. This requirement supports
both enterprise risk management and survivability engineering. In concrete terms, it requires
that critical service invocations in flows be combined with post-fix predicates on subject-
matter-dependent, designer-defined equivalence classes on all possible service responses. For
example, use of a radar service to obtain an aircraft position fix could be followed by
predicates on equivalence classes to determine whether (a) a response was provided
(existence of the service), (b) whether the response is a position fix (potentially correct
response), and (c) whether the position fix is, say, valid in comparison to the previous fix
(presumed correct response). It is up to flow designers to select such critical services for
response analysis. Sensing and responding to all possible outcomes in this manner is the
essence of survivability engineering, which requires that systems take appropriate actions
under all conditions of use, whether benign or adverse, expected or unexpected. In short,
Flow Structures require sensing adverse events and responding correctly to them.

Discussion of the mathematical semantics and engineering operations associated with Flow
Structures can be found in recent reports [Linger 2002].2 The foundations of Flow Structures
are expressed in a number of theorems, including the following:

• Flow Structure Theorem

The Flow Structure theorem guarantees the sufficiency of sequence, alternation, and
iteration control structures to represent any sequential flow. (Extensions and variants of
these structures are included as well.) Thus, flows can be expressed in nested and
sequenced single-entry, single-exit structures, each with a common underlying
mathematical model, namely, a function mapping from domain to range.

• Abstraction/Refinement Theorem

The Abstraction/Refinement theorem addresses conditions for substitution of flow
specifications and their refinements, thus enabling precise abstraction, refinement, and
verification operations.

2 Also Linger, R. Essential Service and Sense-and-Respond Control Models (CMU/SEI-2002-SR-

004). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2002.

CMU/SEI-2003-TN-003 5

• Flow Verification Theorem

The Flow Verification theorem defines conditions for correctness of flow control
structures with respect to their specifications. Even though flows can contain a virtually
infinite number of paths from start to end, they are expressed in a finite number of
control structures, each of which can be verified in team inspections in from one to three
reasoning steps as defined by the theorem. Thus verification is reduced to a finite and
practical process.

These theorems provide foundations for the engineering operations of refinement,
abstraction, and verification of Flow Structures. These are the very operations required in
program development, modification, and quality assurance, regardless of the programming
language or subject matter involved. In particular, precise abstraction is the key to program
understanding, as discussed next.

6 CMU/SEI-2003-TN-003

3 Function-Theoretic Calculation of Program Behavior

The foundations of Flow Structures summarized above have natural application to the
problem of program understanding, as a basis for automated calculation of the full behavior
of programs in support of software and systems engineering. The key to intellectual control
and management of software development, modification, and evolution is capturing and
understanding the full functional effect of programs with mathematical precision. It is taken
for granted that complete understanding of expressions is achievable and essential in other
mathematical disciplines, but it remains an elusive goal in software today.

Program behavior abstraction can be accomplished through the function-theoretic
mathematics and methods [Hausler 1990, Hoffman 2001, Mills 1986, Mills 2002, Parnas
1994, Pleszkoch 1990, Prowell 1999] that have been previously applied to the development
of FSQ engineering concepts in this project. As noted, programs are compact representations
of very large sets of possible behaviors. The process of deriving and expressing the net
functional effect of program procedures in precise, non-procedural representations is known
as program abstraction. The possibility of program abstraction arises from the recognition
that programs and their constituent control structures implement mathematical functions. In
the abstraction process, these functions are termed program functions. In informal
illustration, the control structure operating on integers x, y, and z

if
 x > y
then
 z := x
else
 z := y

endif

can be abstracted to a procedure-free program function that can be expressed as

 z := max(x, y)

where the net effect of the structure is expressed in a single assignment of initial values of x
and y to the final value of z, and x and y are unchanged. The canonical forms of the program
functions of the basic control structures can be expressed through operations of function
composition and case analysis as follows (for control structure labeled P, operations on data
labeled g and h, predicate labeled p, and program function labeled f):

CMU/SEI-2003-TN-003 7

• Sequence control structure

The program function of a sequence

P: g; h

can be given by

f = [P] = [g; h] = [h] o [g]

where the square brackets denote the program function of the enclosed program and “o”
denotes the composition operator. That is, the program function of a sequence can be
calculated by ordinary function composition of its constituent parts.

• Alternation control structure

The program function of an alternation control structure

P: if p then g else h endif

can be given by

f = [P] = [if p then g else h endif]

 = ([p] = true � [g] | [p] = false � [h])

where | is the “or” symbol. That is, the program function of an alternation is given by a
case analysis of the true and false branches, and the opportunity to combine them into a
single abstraction as in the max illustration above.

• Iteration control structure

For iteration control structures, the program function is given by function composition
and case analysis in a recursive equation based on the equivalence of an iteration control
structure and an iteration-free control structure (an ifthen structure):

P: while p do g enddo

can be reexpressed as

f = [P] = [while p do g enddo]

 = [if p then g; while p do g enddo endif]

 = [if p then g; f endif]

 Function f is therefore given by

 f = ([P] = ([p] = true � [f] o [g] | [p]= false � I)

where I is the identity function. Thus, the abstraction of an iteration structure is given
by a two-part conditional rule, and the composition of f and g must be determined to
define the true case.

A miniature example involving a sequence control structure can provide a notional sense of
the operations involved in one low-level abstraction step in the behavior calculation process.
Consider the sequence structure below composed of assignments that operate on small

8 CMU/SEI-2003-TN-003

integers x and y (matters of machine precision are left aside for the moment). The abstraction
question asks: What does this program do, that is, what function does it compute? The answer
is not obvious at first glance:

 do

 x := x – y;

 y := y + x;

 x := y – x;

 y := y + abs(x);

 enddo

Imagine a programmer writing this sequence and wondering if it does what is intended. An
abstractor is invoked and the precise answer obtained in CPU time scale before continuing.
Abstraction with mathematical precision requires deriving a procedure-free expression of
what this structure does from beginning to end for all values of x and y. For a sequence
structure, this requires composing the statements to determine their net, sequence-free effect.
A trace table can be used for this purpose, with a row for every assignment statement and a
column for every data variable assigned. Each cell in the table records the effect of the row
assignment on the variables. Subscripts are attached to variables in the cells to index the
effects from row to row, starting with 0 in the first row:

operation x y

x := x – y x1 = x0 – y0 y1 = y0

y := y + x x2 = x1 y2 = y1 + x1

x := y – x x3 = y2 – x2 y3 = y2

y := y + abs(x) x4 = x3 y4 = y3 + abs(x3)

The derivations below express the final values in the table in terms of the initial values
through algebraic substitution:

x4 = x3

 = y2 - x2

 = y1 + x1 - x1

 = y1

 = y0

CMU/SEI-2003-TN-003 9

y4 = y3 + abs(x3)

 = y2 + abs(y2 – x2)

 = y1 + x1 + abs(y1 + x1 - x1)

 = y0 + x0 – y0 + abs(y0)

 = x0 + abs(y0)

Thus, the final value of x is the initial value of y, and the final value of y is initial value of x
plus the absolute value of the initial value of y. That is, this control structure exchanges the
values of x and y, and adds the absolute value of y to the latter. This abstracted function can
be written as a concurrent assignment, in which initial values on the right are simultaneously
assigned in order to final values on the left:

x, y := y, x + abs(y)

The control structure in this example is a simple sequence of operations whose behavior was
derived in a straightforward trace table composition: alternation and iteration structures
require trace tables that incorporate columns for conditions (predicates) as well, and the
derivation of their final values in terms of initial values in similar fashion.

This behavior function precisely defines the net effect of the sequence, with matters of
machine precision aside. If necessary, however, the finite nature of machine precision can be
integrated into the analysis. For example, the properties of overflow and underflow can be
dealt with in several referentially transparent ways, with the best approaches ultimately
determined through experience with abstraction technology and user preferences:

1. Overflow and underflow can be ignored in the abstraction process. This corresponds to
performing referentially transparent abstraction on a program and machine model that
has infinite precision. In this case, the behavior function precisely defines the net effect
of the sequence, with machine precision not accounted for, and is sufficient for many
analytical purposes. It is the obvious choice where machine precision has no effect on
particular operations. An advantage of this approach is that the overall program function
is not obscured by details of finite precision; however, any behavior resulting from finite
precision is lost. For example, consider the following simple exchange of integers, with
attached program function in square brackets:

 [x, y := y, x]
 do
 x := x + y;
 y := x - y;
 x := x - y;
 enddo

Note that in this case, if two’s complement arithmetic is preformed, and overflow and
underflow do not cause machine traps, then the exchange behavior is always correct,

10 CMU/SEI-2003-TN-003

even when overflow does occur, because the result must be correct modulo the word size
of the executing machine. If necessary, however, the finite nature of machine precision
can be integrated into behavior abstraction using one of the following approaches.

2. The domain of each potential overflow or underflow can be explicitly incorporated into
the conditions of the conditional assignment statement. The finite nature of integer
representations on a given machine introduces the possibility of underflow and overflow
into the functional effect of the sequence, and the opportunity to produce other than the
intended result. This corresponds to performing referentially transparent abstraction on a
program and machine model with finite precision to a behavior model with infinite
precision. This possibility can be accounted for by partitioning the domain and range of
each assignment in the sequence into equivalence class regions, based in this case on
subsets of initial values of x and y, within each of which the same functional results will
be obtained. Some classes will produce the program function derived above, others will
not. Incorporation of the operational semantics of machines is important for analysis of
programs for vulnerabilities and malicious code intended to exploit, for example, finite
properties and overflow characteristics of number representations or data structures such
as buffers or registers. When the behavior calculations are augmented by operational
semantics, such problems become obvious, with no additional analysis on the part of the
user required. For example, consider the following program function for a single
assignment:

 [((x + y) >= 2^31) � overflow occurs
 | ((x + y) < -2^31) � negative overflow occurs
 | true � z := x + y]
 do
 z := x + y
 enddo

An advantage of this approach is that the complete behavior of the program is captured
in the behavior specification; however, the overflow and underflow conditions can
obscure the primary logic of the program. This disadvantage can be mitigated by
introducing variable bounds as preconditions and treating the behavior outside those
preconditions as undefined. For example:

 [(abs(x) < 10^8) and (abs(y) < 10^8) � z := x + y
 | true � undefined]
 do
 z := x + y
 enddo

3. A third approach is to incorporate the operational semantics of the executing machine
into the behavior calculation and simplification process as part of the trace table
analysis. This corresponds to performing referentially transparent abstraction where the
program and machine model, and the behavior model, are finite precision. That is,
arithmetic operations in the behavior specification are subject to the same overflow and

CMU/SEI-2003-TN-003 11

underflow as in the program. For example, consider the following treatment of the
exchange program:

 [x, y := (x + y) - ((x + y) - y), (x + y) - y]
 do
 x := x + y;
 y := x - y;
 x := x - y;
 enddo

In this approach, “((x + y) - y)” cannot always be simplified to “x”, because the original
expression can have overflow, while the simplified expression cannot. A disadvantage of
this approach is that overflow and underflow semantics are buried in behavior
abstractions just as deeply as in the program statements. Behaviors that do not require
simplification, however, will more clearly reflect the primary logic of the program.

These examples illustrate the power of the function-theoretic approach to deal with any
behavioral and operational semantics appropriate to the problem at hand. As work on
abstraction technology progresses, suitable vocabulary, definitions, reduction and
simplification rules, and flexible user interfaces will emerge to support human preferences
and understanding. In any case, it is important to recognize that the abstraction process is
capable of extracting the true and complete behavior of any program or program part, the
very behavior that exposes unforeseen errors and that intruders attempt to subvert for their
own purposes. These behaviors are generated in the programmed functional logic and in its
interaction with executing machines, and function-theoretic abstraction can deal completely
and correctly with both.

Consider next behavior calculation for larger programs. The nested and sequenced control
structures (sequence, ifthenelse, whiledo, etc.) in a program form an expression in an algebra
of functions, where every control structure is a rule for a function as described above. In
particular, the abstracted function defined by a given control structure can be freely
substituted for the control structure itself, with no change in the meaning of the overall
program, as summarized in an Axiom of Replacement. The control structures of a program
define a natural decomposition hierarchy, wherein leaf node control structures can be
abstracted into their program functions, thereby revealing new control structures now ready
for abstraction, etc., continuing in this manner until the entire program has been abstracted
into a single program function representing its net functional effect. At this point, all the
procedural logic and local variables have been abstracted out, but their overall effect has been
preserved in the final abstraction.

As illustrated in the example above, the abstracted program functions of control structures are
conveniently recorded as a single statement in a closed specification language composed of a
procedure-free concurrent assignment statement with general syntax

<id>, <id>, …, <id> := <expr>, <expr>, …, <expr>

12 CMU/SEI-2003-TN-003

(where <id> represents an identified data item, <expr> represents an expression that
calculates a value for a data item, and the expressions on the right are simultaneously
assigned in order to the data items on the left), and a concurrent conditional assignment
statement with syntax

(<condition> � <concurrent assignment>

| <condition> � <concurrent assignment>

…

| <condition> � <concurrent assignment>)

where “|” represents “or” and <condition> is a truth-valued predicate. Any sequential logic
can be abstracted into a program function expressed in this form.

The semantics of conditional concurrent assignments are easily represented in various
graphic-based formats in a user interface for ready understanding and analysis.

In illustration of the stepwise abstraction process, consider the miniature program of Figure 1
and the question of what it does. The program is expressed in terms of a design language
syntax, and is composed of sequence, ifthenelse, and whiledo control structures. It takes as
input and produces as output a queue of integers named Q, and defines local queues of
integers named odds and evens and a local integer variable named x.

The control structures of the program form a natural hierarchy with a number of leaf nodes.
To begin the stepwise abstraction process, the lowest-level, leaf-node ifthenelse and sequence
control structures of the program can be abstracted into non-procedural conditional
concurrent assignments, as shown in Figure 2.

CMU/SEI-2003-TN-003 13

� � � � ��� � ��

	

 � � �
 �
 � � � �� �
 �
 �	 � � �� �
 �
 � � �

�� �� �� �
� � ��

� � � �� �
 �
 �

� � ! " �� �# $ �
� � ��

% �

� ��& �
 �
 �� � �� �

 ' �	

 � � �

(� ")

 �
 �	

 � � ��& ��

" ! * "

 �
 �
 �
 � � � ��& ��

") % '

") % % �

� � ! " �	

 � �# $ �
� � ��

% � �

� ��& �
 �
 �	

 � �

 �
 �� � ��& ��

") % % �

� � ! " �
 �
 � � �# $ �
� � ��

% � �

� ��& �
 �
 �
 �
 � � �

 �
 �� � ��& �� �

") % % �

") % � � � �

Figure 1: A Miniature Program for Abstraction

����������

	
��
�����������

��

��������������

���������

�

�

��������������

�

�����!���������

����

����

	
��
��������������

���

��������������

�����������

����

	
��
��!������������

���

����������!����

������������

����

������

����������

	
��
�����������

���

��������������

�������������������������� ���

�� ������!�������!��������!���� ��"

#���

	
��
��������������

��

��������������������"

#���

	
��
��!������������

���

����������������!����"�

#���

#�����

Figure 2: The First Abstraction Step

14 CMU/SEI-2003-TN-003

����������

	
��
�����������

���

��������������

�������������������������� ���

�� ������!�������!��������!���� ��"

#���

	
��
��������������

��

��������������������"

#���

	
��
��!������������

���

����������������!����"�

#���

#�����

����������

�����������	�
������
������������

����
�
����������	�
�����

�	�
�
�
��������

������������������������
����

�����	�
�����������	�
����
�����

#�����

����������

	
��
�����������

���

��������������

�������������������������� ���

�� ������!�������!��������!���� ��"

#���

	
��
��������������

��

��������������������"

#���

	
��
��!������������

���

����������������!����"�

#���

#�����

����������

�����������	�
������
������������

����
�
����������	�
�����

�	�
�
�
��������

������������������������
����

�����	�
�����������	�
����
�����

#�����

Figure 3: The Second Abstraction Step

Next, the three whiledo structures can likewise be abstracted to conditional rules and
assignments, resulting in the program of Figure 3. Finally, the sequence of three abstractions
can be composed into a single assignment expressing the overall behavior of the program as
shown in Figure 4. This assignment precisely defines what the program does in functional
terms. It is the as-built behavior specification, that is, the program function, of the program.

����������

����������	
��
���������

�
	�	
��
������

	
�����

����������

����������
�
	�����
�������������

����	
��
�������
�
	�����

�
	�	
��
������

�����������������������
�����

����
�
	����������
�
	���
������

	
�����

����������

����������	
��
���������

�
	�	
��
������

	
�����

����������

����������
�
	�����
�������������

����	
��
�������
�
	�����

�
	�	
��
������

�����������������������
�����

����
�
	����������
�
	���
������

	
�����

Figure 4: The Final Abstraction Step

CMU/SEI-2003-TN-003 15

Note in this process that intermediate control structures and data references drop out to
simplify scale-up by subsuming their functional effects into higher-level abstractions. The
principal behavior calculation process is function composition through value substitution,
which by definition eliminates intermediate expressions at successive levels of abstraction.
As noted above, programs can exhibit an enormous number of execution paths, but are
comprised of a finite number of control structures, so the abstraction process is itself finite
and guaranteed to terminate. Furthermore, behavior is recorded at each abstraction step, to
produce complete functional documentation for human understanding at all levels.

This miniature example illustrates in informal terms a stepwise abstraction process that is
invariant with respect to scale—the same mathematics and operations are employed at all
levels of abstraction, no matter the size of the program. Were this program embedded in a
larger system, it is its abstracted function that would participate in further abstraction, and not
the program itself. In this way, local details are left behind at each step with no loss of
information while precise abstractions propagate to higher levels. Abstraction does not mean
vagueness; abstractions embody the precise net effect of implementation details. This
process, combined with other techniques, limits complexity in behavior abstraction of large
programs. Additional mathematical methods for unification and reduction must be brought to
bear to simplify intermediate expressions and maintain intellectual control. These methods
address the question of scale up to a practical industrial process, and are key elements of the
required work to automate the process.

Larger programs are capable of more extensive behavior in mapping their inputs into outputs.
Abstracted behavior of these programs is more extensive, and can be usefully organized into
behavior catalogs. These catalogs are repositories of program behavior expressed in lists of
conditional concurrent assignments and indexed according to the predicate expressions
involved. Catalogs can be searched, browsed, and analyzed according to users’ needs and
objectives in investigating what a program does.

It is important to note that conditional concurrent assignments are engineering expressions of
behavior that can be presented to users in forms that exhibit suitable human factors (graphical
forms, in particular) as part of a familiar windowed user interface.

Consider next the problem of understanding the behavior of the Java program of Figure 5,
which appears to perform a financial calculation. The program is shown on the left and its
abstracted behavior catalog on the right. The abstraction was carried out through manual
application of a behavior calculation algorithm. The calculated abstraction shown in its
behavior catalog reveals non-trivial behavior summarized into three cases, expressed as
conditional concurrent assignment statements. Each case begins with the conditions
(predicate values) under which the corresponding transformations of data from input to
output values will occur. The lists of data assignments within the cases occur simultaneously,
but are shown in sequence for readability. In particular, the third case reveals complexities

16 CMU/SEI-2003-TN-003

that would be difficult and time-consuming indeed for fallible human analysis to uncover. It
is simply not obvious that the program carries out the behavior cataloged here.

public class AccountRecord {
public int acct_num;
public double balance;
public int loan_out;
public int loan_max;

} // end of AccountRecord

public class AdjustRecord
extends AccountRecord {

public bool default;
} // end of AdjustRecord

public static AdjustRecord classify_account
(AccountRecord acctRec) {

AdjustRecord adjustRec = new AdjustRecord();
adjustRec.acct_num = acctRec.acct_num;
adjustRec.balance = acctRec.balance;
adjustRec.loan_out = acctRec.loan_out;
adjustRec.loan_max = acctRec.loan_max;
adjustRec.default = (adjRec.balance < 0.00);

while ((adjustRec.balance < 0.00) &&
(adjustRec.loan_out + 100) <= adjustRec.loan_max))

{
adjustRec.loan_out = adjustRec.loan_out + 100;
adjustRec.balance = adjustRec.balance + 100.00;

}

return adjustRec;
}

1. AccountRecord acctRec
Object is unchanged

2. AdjustRecord adjustRec
A new object adjustRec is created and returned,
the contents of which are described in three cases:

CASE 1:
if (acctRec.balance >= 0.00)
then

adjustRec.acct_num = acctRec.acct_num
adjustRec.balance = acctRec.balance
adjustRec.loan_out = acctRec.loan_out
adjustRec.loan_max = acctRec.loan_max
adjustRec.default = false

CASE 2:
if (acctRec.balance < 0.00) and

(acctRec.loan_out + 100> acctRec.loan_max)
then

adjustRec.acct_num = acctRec.acct_num
adjustRec.balance = acctRec.balance
adjustRec.loan_out = acctRec.loan_out
adjustRec.loan_max = acctRec.loan_max
adjustRec.default = true

CASE 3:
if (acctRec.balance < 0.00) and

(acctRec.loan_out + 100 <= acctRec.loan_max)
then

adjustRec.acct_num = acctRec.acct_num
adjustRec.balance = acctRec.balance + (100.00 * term)
adjustRec.loan_out = acctRec.loan_out + (100 * term)
adjustRec.loan_max = acctRec.loan_max
adjustRec.default = true

where
term = min(term1, term2)
term1 = ceiling(0.00 – acctRec.balance)/100.00)
term2 = 1 + floor((acctRec.loan_max – 100 –
acctRec.loan_out)/100)

Abstractor

Program Behavior Catalog

Figure 5: The Abstracted Behavior Catalog of a Java Program

Behavior calculation has potential for transformational impact on software and systems
engineering through major reduction in effort combined with improved quality. Typical uses
include:

• malicious code

A security specialist periodically submits a critical operational program to an abstractor
to determine if its behavior catalog reveals any malicious code recently inserted by
programmers or intruders.

• error detection

A quality assurance specialist submits a recently completed program to an abstractor and
analyzes the calculated behavior catalog for incorrect behavior with respect to program
requirements and specifications.

• new program development

A software engineer periodically submits a partial program under development to an
extractor to determine if the function defined by its behavior calculation is the function
intended.

CMU/SEI-2003-TN-003 17

• just-in-time component composition

A systems engineer employs an abstractor to generate behavior catalogs that guide rapid
and reliable composition of components in responding to new system requirements.

• program maintenance

A software engineer submits a program undergoing maintenance to an abstractor to
determine where and how to make changes, and later resubmits it to ensure that changes
have the desired effect.

• COTS product evaluation

A systems engineer requests a product behavior catalog from a COTS software vendor to
evaluate for planned use in a new system.

• reuse

A systems engineer submits a program to an abstractor to generate its behavior catalog
for evaluation of potential reuse in a new system.

• documentation

A software engineer submits a completed program to an abstractor to generate its final
behavior catalog for future maintenance and evolution.

If automated behavior extraction were easy, it would be commonplace by now. While much
of the required mathematical theory already exists, this is nevertheless a hard problem with a
number of challenges:

• loop function abstraction

No general theory for loop abstraction exists. Because even a single while loop can
compute an arbitrary partial recursive function, many results from the area of
computability theory stand in the way. For example, the undecidability of the Halting
Problem means that there will be some terminating while loops that the automated
behavior abstraction system will not be able to detect as terminating. The undecidability
of program function equivalence implies that an automated behavior abstraction system
will need to use multiple representations of the same program function. The research
approach here includes use of recursive expressions to represent loop operations as a
starting point for behavior extraction, and development and application of canonical
patterns and behavior templates for loops. Undecidability results from computability
theory will be used to guide research choices along feasible directions. Potential
limitations at the mathematical level can often be dealt with effectively at the engineering
level to produce satisfactory solutions. This appears to be the case with respect to loop
abstraction.

• expression simplification and reduction

It is important to control the complexity of calculated behavior expressions as they
propagate to higher levels. While much complexity reduction is intrinsic to function-

18 CMU/SEI-2003-TN-003

theoretic abstraction, research is required to investigate promising mathematical methods
for unification and elimination of cases, as well as appropriate human factors engineering
for effective display and analysis of behavior catalogs. A key component of this
complexity reduction is the appropriate use of definitions to represent units of behavior
that recur frequently throughout a program. Such use of definitions has long been applied
in mathematics to render theorems and proofs more understandable. For example,
although it is possible to do set theory using only “epsilon” (set membership) as the sole
non-logical symbol, in practice it is impossible to express even the axioms of Zermelo-
Fraenkel set theory in this manner without a complete loss of understandability. Facilities
for specifying and integrating definitions into the process will be an important capability
for an abstraction engine.

• indirect data references

Many languages permit pointer references (either explicit or implicit) to data items that
introduce a level of indirection that must be accommodated in the semantics of behavior
calculation. The research approach here will include mapping of data references into
canonical reference frameworks as a starting point for analysis. In particular, all objects
are allocated on the heap in Java, so the problem of aliasing (i.e., different variable names
referring to the same storage location) is substantial. Conversely, this is an area where
automatic analysis can bring a significant amount of benefit to understanding the
implications of the data layout of an unknown program.

The solutions to these challenges will enable abstraction engine development as a key enabler
for the trustworthy systems of the future. In fact, it is difficult to imagine how trustworthy
computing can ever be reliably achieved without knowing what programs do in all
circumstances of use. In the current state of the art, this knowledge is sporadically and
imperfectly accumulated from specifications, designs, code, and test results, all potentially
incomplete and incorrect. Dynamic program modifications and compositions in modern
network-centric systems severely limit the value and relevance of even this hard won but
static and suspect knowledge. But programs are mathematical artifacts subject to
mathematical analysis. Human fallibility still exists in interpreting the analytical results, but
there can be little doubt that routine availability of calculated behavior would substantially
reduce errors and vulnerabilities in software and make intrusion and compromise more
difficult and detectable. Furthermore, questions about system trustworthiness capabilities for
authentication, encryption, filtering, etc., are in large part questions about the behavior of
programs that implement them. And because programs are subject to dynamic change and
adaptation, only automated analysis can maintain the currency and relevance of behavior
knowledge at little cost.

CMU/SEI-2003-TN-003 19

4 The Architecture of an Abstraction Engine

Figure 6 depicts a notional architecture of a program function abstractor. Denotational
(functional) semantics are defined for the control and data structures of the target language,
and possibly the machine, whose programs are to be abstracted, as well as for the forms of
the behavior expressions that will represent the abstracted behavior. These semantics are
stored in data repositories and employed to verify the correctness of the abstractor, to ensure
that the calculated behavior indeed corresponds to the behavior of the program being
abstracted. The behavior calculations are provided to a graphical interface to create
presentation formats with appropriate human factors. Users need never be exposed to the
underlying mathematics, but can have confidence in the abstracted behavior in the knowledge
that it was derived with sound mathematical methods.

AbstractorProgram

Denotational
semantics of
the language

Graphic
interface

Simplification
Rules

Abstraction
Rules

Denotational
semantics of
the function
expressions

Used to verify
abstractor

correctness

Behavior
Catalog

Browsing and
analysis

User
Controls

Selection and
modification

AbstractorProgram

Denotational
semantics of
the language

Graphic
interface

Simplification
Rules

Abstraction
Rules

Denotational
semantics of
the function
expressions

Used to verify
abstractor

correctness

Behavior
Catalog

Browsing and
analysis

User
Controls

Selection and
modification

Figure 6: Architectural Structure of an Automatic Abstraction Engine

The abstractor itself employs abstraction and simplification rules to the stepwise derivation of
program functions for each of the control structures of the input program or program part.
The resulting behavior catalog is available for browsing and analysis.

20 CMU/SEI-2003-TN-003

A sensible, low-risk development process for such an abstractor would focus on creation of a
prototype that addresses a subset of the target programming language, in order to gain early
operational experience with the abstraction process. The subset would gradually be extended
to eventually incorporate all language capabilities. As experience grows, new abstraction and
simplification rules and techniques could be added in an iterative process of system
development.

Abstraction engine development would require a small team of mathematicians and language
semanticists with deep experience in function-theoretic mathematics and their software
engineering application. The team would investigate and apply a spectrum of mathematical
methods ranging from logic and fixpoint theory to model and category theory. Virtually all of
the required mathematical foundations already exist. The principal task is to identify,
specialize, and combine them for application to the behavior calculation problem in a process
of iterative prototype evolution. There is no need to revisit the Halting Problem or deal with
incomputable functions. A rich variety of concrete and computable mathematics is readily
available. A reasonable approach would be to first identify foundations for abstracting
sequential logic, then progress to concurrent logic. It is important to note that mathematical
foundations are a means to an end, not an end in themselves. The overarching goal is
practical automation of program behavior calculation and its routine engineering application.

CMU/SEI-2003-TN-003 21

5 Using Abstraction in Automated Verifiers, Integrators,

and Certifiers

As noted above, automated function abstraction is unimaginable in today’s state of the art.
But if such a capability were developed, additional automation of traditionally manual and
error-prone software engineering tasks would become possible, as discussed next.

5.1 Automated Program Verifiers

Function abstractions derived by automated abstractors are as-designed specifications of
programs, and can be checked by software engineers in team inspections for correctness
subject to human fallibility.

Beyond human inspection, it is possible to envision automated program verifiers that could
compare function abstractions to intended specifications of programs for correctness with no
human fallibility in CPU time scale. In this case, a program, its intended specification, or
both may be correct or incorrect. Intended specifications must be defined by software
engineers for this purpose. Verifier technology requires a capability for automated abstraction
to derive as-designed specifications to be compared to intended specifications. Imagine a
software engineer writing an intended specification and a corresponding refinement into a
program part, then invoking a verifier on the fly to receive confirmation (or not) of
correctness before continuing.

5.2 Automated Program Integrators

Consider the following miniature component and its as-designed function abstraction derived
in a trace table:

do
 x := x + 2;
 y := x – y;
 x := y – x;
enddo

22 CMU/SEI-2003-TN-003

operation x y

x := x + 2 x1 = x0 + 2 y1 = y0

y := x – y x2 = x1 y2 = x1 – y1

x := y – x x3 = y2 – x2 y3 = y2

x3 = y2 – x2
 = x1 – y1 – x1
 = – y1
 = – y0

y3 = y2
 = x1 – y1
 = x0 + 2 – y0
 = x0 – y0 + 2

Thus, the function abstraction of the component is:

x, y := –y, x – y + 2

Now consider integrating this component as the second part of a sequence composition with
the first part an exchange component as shown below:

do

 x, y := y, x;

 x, y := –y, x – y +2;

enddo

What is the net effect of this integration? This question can be answered by a trace table that
calculates the net effect of the two components in sequence:

operation x y

x, y := y, x x1 = y0 y1 = x0

x, y := –y, x – y +2 x2 = –y1 y2 = x1 – y1 + 2

x2 = –y1
 = –x0

y2 = x1 – y1 + 2
 = y0 – x0 + 2

Thus, the net effect of the integration is the following function abstraction:

x, y := –x, y – x + 2

Imagine a systems engineer attempting to integrate these components. Each component has
an as-designed abstraction that can be furnished to an integrator to evaluate the composition

CMU/SEI-2003-TN-003 23

and derive its net effect in CPU time scale. Components paired with corresponding as-
designed abstractions are thereby enabled for such automated integration. Imagine changing a
line of code in a large program. How does that change affect its function, correctness, and
existing integration relationships with other components? With automated abstraction and
integration technology these questions can be answered as routine engineering processes.

5.3 Automated Program Certifiers

Sizable programs exhibit virtually infinite populations of possible executions. It is an
immutable fact of software engineering that no testing effort, no matter how extensive, can
hope to exercise more than a minute fraction of these executions. So all testing is really
sampling from an infinite population, and the only important question is how to draw the
sample of test cases. If the sample is representative of eventual field use, then test results
from the sample can be extrapolated to the entire population to make scientifically valid
estimates of future field experience with all the executions that could not be tested. Such
results are invaluable in making informed decisions on product quality and fitness for use,
development process effectiveness, and resource allocation for testing.

This process is statistical usage-based testing. It requires as a starting point a definition of the
population of possible executions augmented with estimated usage probabilities. This
definition can be derived from the as-designed function abstraction of a system under test. So
abstraction technology informs a scientific testing process that produces valid predictions of
fitness for use of a system in a particular usage environment. In addition, as-designed
abstractions can serve as oracles for evaluating the results of test executions. Imagine a
systems engineer considering use of an abstraction-enabled component in a particular usage
environment. The as-designed function abstraction can be furnished to an automated certifier
along with a description of usage to produce valid predictions of how the component will
perform. It is also important to note that verified programs have been determined to be
correct with respect to their specifications with no testing or execution involved. It is this
level of quality that permits the objective of testing to shift from attempting to improve
quality through debugging, an impossible task, to focus on scientific certification of fitness
for use.

Developing automated abstractors, verifiers, integrators, and certifiers will be difficult. The
good news is that the most of the required theoretical foundations already exist. The place to
start with is automated function abstraction, as the foundation for the other capabilities. The
required work is substantial, but does not exceed the knowledge of how to do it.

24 CMU/SEI-2003-TN-003

6 Acknowledgements

The research work described in this report builds on Flow-Service-Quality engineering
concepts, in particular the foundations of Flow Structures. It is a pleasure to acknowledge the
contributions of Dr. Alan Hevner, Dr. Mark Pleszkoch, and Dr. Gwendolyn Walton to the
development of those concepts. Thanks are also due to Dr. Richard Pethia and Dr. Thomas
Longstaff, for sponsoring a visiting scientist in the CERT Coordination Center to explore
foundations for automated function abstraction.

CMU/SEI-2003-TN-003 25

References

[Hausler 1990] Hausler, P.; Pleszkoch, M.; Linger, R.; & Hevner, A. “Using Function
Abstraction to Understand Program Behavior.” IEEE Software 7, 1
(January 1990): 55-63.

[Hevner 2001] Hevner, A.; Linger, R.; Sobel, A.; & Walton, G. “Specifying Large-
Scale, Adaptive Systems with Flow-Service-Quality (FSQ) Objects,”
110-120. Proceedings of the 10th OOPSLA Workshop on Behavioral
Semantics. Tampa, Florida, October, 2001. New York, NY: ACM Press,
2001.

[Hevner 2002] Hevner, A.; Linger, R.; Sobel, A.; & Walton, G. “The Flow-Service-
Quality Framework: Unified Engineering for Large-Scale, Adaptive
Systems,” Proceedings of the 35th Annual Hawaii International
Conference on System Science (HICSS35). Hawaii, Jan. 7-10, 2002. Los
Alamitos, CA: IEEE Computer Society Press, 2002.

[Hoffman 2001] Hoffman, D. & Weiss, D., eds. Software Fundamentals: Collected
Papers by David L. Parnas. Upper Saddle River, NJ: Addison Wesley,
2001.

[Linger 2002] Linger, R.; Pleszkoch, M.; Walton, G.; & Hevner, A. Flow-Service-
Quality Engineering: Foundations for Network System Analysis and
Development (CMU/SEI-2002-TN-019). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2002.
<http://www.sei.cmu.edu/publications/documents/02.reports
/02tn019.html>.

[Mills 1986] Mills, H.; Linger, R.; & Hevner, A. Principles of Information System
Analysis and Design. San Diego, CA: Academic Press, 1986.

[Mills 2002] Mills, H. & Linger, R. “Cleanroom Software Engineering.”
Encyclopedia of Software Engineering, 2nd ed. New York, NY: John
Wiley & Sons, Inc., 2002.

[Morgan 2002] Morgan, T. Business Rules and Information Systems: Aligning IT with
Business Objectives. Reading, MA: Addison-Wesley, 2002.

26 CMU/SEI-2003-TN-003

[Parnas 1994] Parnas, D. & Wang, Y. “Simulating the Behavior of Software Modules
by Trace Rewriting Systems.” IEEE Transactions on Software
Engineering 19, 10 (October 1994): 750-759.

[Pleszkoch 1990] Pleszkoch, M.; Hausler, P.; Hevner, A.; & Linger, R. “Function-
Theoretic Principles of Program Understanding.” Proceedings of the
23rd Annual Hawaii International Conference on System Science
(HICSS23). Hawaii, January, 1990. Los Alamitos, CA: IEEE Computer
Society Press, 1990.

[Prowell 1999] Prowell, S.; Trammell, C.; Linger, R.; & Poore, J. Cleanroom Software
Engineering: Technology and Practice. Reading, MA: Addison Wesley,
1999.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

January 2003

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Applying FSQ Engineering Foundations to Automated Calculation of
Program Behavior

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

Richard C. Linger
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2003-TN-003

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

No software engineer can say with assurance how a sizable program, with its virtually infinite number of
possible execution paths, will behave, that is, what it will do, in all circumstances of use. This incredible
reality, widely acknowledged but little discussed, lies at the heart of intractable problems experienced in
software development and use over the past 40 years. If full behavior is unknown, so too are embedded
errors, vulnerabilities, and malicious code that can emerge in use. While this reality has seemed inevitable in
the past, it need not be so in the future. The SEI CERT Coordination Center has been conducting research on
Flow-Service-Quality (FSQ) engineering for complex, network-centric system analysis and development. FSQ
Flow Structures treat the control structures of programs as rules, or implementations, of mathematical
functions, that is, mappings from domains to ranges. The function, or behavior, of any control structure can be
abstracted into a procedure-free statement that specifies its net functional effect in all circumstances of use
with mathematical precision. The finite number of control structures in a program can be abstracted in
stepwise fashion in an algebra of functions, to arrive at a precise statement of the program’s overall behavior.
The mathematical foundations largely exist, and development of such a capability is feasible, albeit difficult.
Automated program behavior calculation would have a dramatic effect on software and systems engineering,
and enable a new level of assurance in trustworthy systems. This report briefly summarizes research to date
on Flow Structures and describes the application of their function-theoretic mathematical foundations to the
problem of program behavior calculation.

14. SUBJECT TERMS

program understanding, program comprehension, program behavior
calculation, function abstraction, function-theoretic methods,
vulnerability detection, malicious code detection

15. NUMBER OF PAGES

34

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Contents
	List of Figures
	Abstract
	1 The Problem of Understanding Program Behavior
	2 Background: Function-Theoretic Foundations of FSQ Flow Structures
	3 Function-Theoretic Calculation of Program Behavior
	4 The Architecture of an Abstraction Engine
	5 Using Abstraction in Automated Verifiers, Integrators, and Certifiers
	6 Acknowledgements
	References

