
Rendering Tcl/Tk

Windows as HTML

Wilfred J. Hansen

February 2003

COTS-Based Systems Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2003-TN-002

Since its initial release, this report has

been revised to correct a few inaccuracies.

This revision was released March 5, 2003.

printed 3/5/2003 9:07 AM version number / editor’s initials

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2003 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubWeb.html).

CMU/SEI-2003-TN-002 i

Contents

1 Introduction..1

2 Example of the Approach..3

3 Implementation ..6

4 What Has Been Demonstrated..7

5 Why a Full Conversion Will Be Harder ...8

Conclusion...10

References ...11

ii CMU/SEI-2003-TN-002

CMU/SEI-2003-TN-002 iii

List of Figures

Figure 1: A Data Entry Form with Label and Field Widgets................................3

Figure 2: Tcl/Tk Code for the Data Entry Example..4

Figure 3: The Image Displayed by a Browser...5

Figure 4: The HTML Generated by the Modified Tcl/Tk Processor......................5

iv CMU/SEI-2003-TN-002

CMU/SEI-2003-TN-002 v

Abstract

Tool Control Language (Tcl) is a programming language having a Toolkit (Tk) library that
provides a standard set of graphical user interface (GUI) widgets. Since these are aimed at
direct presentation via a window manager, Tcl/Tk applications are not compatible with Web-
based service delivery environments. Several tools provide some help, but do not provide a
migration path for eventual full conversion to Web-based delivery. This note suggests a new
approach. For the particular application prompting this note, the GUI consists almost entirely
of Tk widgets, especially tables and buttons. Hypertext Markup Language (HTML) offers
these same widgets, so it is natural to consider delivering Tk windows by expressing their
contents in HTML. To demonstrate this possibility, the Tk library was altered to generate
HTML. As described in the paper, this shows that the Tcl/Tk internal data structures are
sufficient to generate appropriate HTML commands having the same user interface as that
presented by the application. Consequently, it is possible to add to Tk a fourth GUI interface
in parallel to the existing ones for Unix, Macintosh, and MS Windows.

vi CMU/SEI-2003-TN-002

CMU/SEI-2003-TN-002 1

1 Introduction

One system recently reviewed by the Software Engineering Institute (SEISM) is a military
accounting database. I will refer to it as SYS for purposes of discussion. One of its distinctive
features is an implementation written entirely in Tool Control Language/Toolkit (Tcl/Tk)
[Tcl/Tk 2002]. While this makes for succinct code, it has disadvantages:

• Military users must access SYS through special approved hardware-software platforms
and these must have an X Windows server installed.

• The user interface is unlike emerging companion systems that are accessed through
standard Web browsers.

In answer to these disadvantages, users have created another tool—a browser-accessible
tool—that handles an important subclass of SYS operations.

Browser-accessible applications and SYS’s X Windows application both run the application
on a remote computer that communicates to the user’s workstation. In the browser-accessible
case, this communication is in the form of HTML data. In the X Windows case,
communication is via a specialized data stream. Military and other secure systems usually
allow communication via HTML, while restricting access via X Windows.1 Users’ systems
come with ready-to-run browsers, but require some non-trivial setup to use X Windows.
HTML will go through firewalls whereas X Windows often do not.

The SYS windows generated by Tcl used primarily the Tk widgets for tables and buttons.
These, it seemed to me, could be rendered into HTML and thus presented to the user through
a Web browser. It seemed simple enough,2 so I was encouraged to create a proof-of-concept
demonstration to show that it could indeed be done. It can. For the demonstration, I modified
the Tcl/Tk processor so that each time it repaints the window it also writes a file containing
the HTML that will generate an equivalent window. This shows that the necessary
information is present within the Tcl/Tk implementation. A practical approach to using
HTML would create a separate GUI interface in parallel with the existing interfaces for Unix,
the Macintosh, and MS Windows.

SM SEI is a service mark of Carnegie Mellon University.
1 More specifically, Web access is via HTTP and port 80 while X Windows uses its own transport

protocol and port 6000. HTTP has been considered security-benign; usually it is.
2 It might even have turned out to be simple had I been familiar with Tcl/Tk and its implementation.

As it was, the three-day exercise served mostly to remind me how bad C is as a programming tool.

2 CMU/SEI-2003-TN-002

There are other alternatives for delivering Tcl applications through a browser.3 The Tcl Plug-
in enables a Web page to incorporate Tcl code to be executed on the client’s machine
[Demailly 2002]. For a database application like SYS this approach entails performance and
security drawbacks. For instance, the code will take a long time to be sent, and detail records
from the database will have to traverse the net for summation at the client machine. This
problem is avoided by Proxy Tk [Roseman 2000]. In this system the Tcl application runs on
the server and communicates to a Java plug-in running through a browser at the client end. A
deeper option is to incorporate Web service into the application. This can be done with the
TclHttpd Web server [Welch 2000] and AOLserver [Davidson 2000], among others. These
other approaches do not offer a migration path away from Tcl/Tk into a Web-based
application.

3 Helpful emails came from Michael Schlenker and Jeffrey Hobbs.

CMU/SEI-2003-TN-002 3

2 Example of the Approach

The window in Figure 1 is generated by the Tcl/Tk code in Figure 2. When this code is
processed by my modified version of Tcl/Tk it creates the HTML shown in Figure 4. The
latter appears in a browser as shown in Figure 3. (I made no attempt to match borders. These
can be added to the HTML to make it appear much closer to the Tcl/Tk generated image.)

Figure 1: A Data Entry Form with Label and Field Widgets

4 CMU/SEI-2003-TN-002

A data entry form.
Eric Johnson 21-Feb-96
adapted 9 August 2002, Fred Hansen

Labels for the data entry fields.
left column
label .l_nm -text "Full name: "
label .l_titlw -text "Title: "
label .l_addr -text "Address: "
label .l_ok -text "Transmit? "
right column
label .l_user -text "User name: "
label .l_email -text "Email: "
label .l_ yes -text "Do you want email: "

Data-entry fields.
left column
entry .e_nm -width 20
entry .e_titlw -width 10
entry .e_addr -width 20
button .e_ok -text OK
right column
entry .e_user -width 12
entry .e_email -width 20
checkbutton .e_yes -text "yes" -width 20

Set up grid layout (instead of packing).
left column
grid config .l_nm -column 0 -row 0 -sticky "e"
grid config .l_titlw -column 0 -row 1 -sticky "e"
grid config .l_addr -column 0 -row 2 -sticky "e"
grid config .l_ok -column 0 -row 3 -sticky "e"
grid config .e_nm -column 1 -row 0 -sticky "snew"
grid config .e_titlw -column 1 -row 1 -sticky "snew"
grid config .e_addr -column 1 -row 2 -sticky "snew"
grid config .e_ok -column 1 -row 3 -sticky "snew"

right column
grid config .l_user -column 2 -row 0 -sticky "e"
grid config .l_email -column 2 -row 1 -sticky "e"
grid config .l_ yes -column 2 -row 2 -sticky "e"
grid config .e_user -column 3 -row 0 -sticky "snew"
grid config .e_email -column 3 -row 1 -sticky "snew"
grid config .e_ yes -column 3 -row 2 -sticky "snew"

Set up grid for resizing.
grid columnconfigure . 1 -weight 1
grid columnconfigure . 3 -weight 1

Figure 2: Tcl/Tk Code for the Data Entry Example

CMU/SEI-2003-TN-002 5

Figure 3: The Image Displayed by a Browser

<html>
<head>
<title>Window: wjh2.tcl</title>
</head>
<body><form>
<table>
<tr><td><INPUT type="button" disabled value="Full name: "></td>
<td><INPUT type="text" value="" size="20"></td>
<td><INPUT type="button" disabled value="User name: "></td>
<td><INPUT type=”text" value="" size="12"></td>
</tr>
<tr><td><INPUT type="button" disabled value="Title: "></td>
<td><INPUT type="text" value="" size="10"></td>
<td><INPUT type="button" disabled value="Email: "></td>
<td><INPUT type="text" value="" size="20"></td>
</tr>
<tr><td><INPUT type="button" disabled value="Address: "></td>
<td><INPUT type="text" value="" size="20"></td>
<td><INPUT type="button" disabled value="Do you want email: "></td>
<td><INPUT type="checkbox" value="yes"> <INPUT type="button" disabled
value="yes"></td>
</tr>
<tr><td><INPUT type="button" disabled value="Transmit? "></td>
<td><INPUT type="button" value="OK"></td>
<td></td>
<td></td>
</tr>
</table>
</form></body></html>

Figure 4: The HTML Generated by the Modified Tcl/Tk Processor

6 CMU/SEI-2003-TN-002

3 Implementation

Tk is a collection of widgets, each of which is implemented with one routine in the main Tk
source. The central routine calls on a display-specific routine for whichever of the native GUI
interfaces is in service (Unix, Macintosh, or MS Windows). Rather than create an entire GUI
interface, this demonstration was coded by adding one line of code to each of the central Tk
widget routines. This line of code calls on a routine coded for the demonstration. These are
mostly trivial text generation. For instance, here is the code that generates HTML for the Tk
“entry” widget:

char * htmlEntry(win) Tk_Window win; {
Entry *entPtr = (Entry *)win->instanceData;
int nChars = {… compute field width …};
catData *cat = catNew("<INPUT type=\”");
char *type = {… type is “text” or “password” …};
catAdd(cat, type);
catAdd(cat, "\“");
catSPFs(cat, " value=\"%s\"", entPtr->string);
catSPFd(cat, " size=\"%s\"", nChars);
catAdd(cat, ">");
return catDone(cat);

}

An entry widget provides for entering a line of text. The corresponding HTML is an <INPUT
… > with appropriate type and value attributes. A string containing the tag is generated with
the catXxxx calls, which are a set of functions emulating the Java StringBuffer class. The
returned string becomes part of the HTML.

CMU/SEI-2003-TN-002 7

4 What Has Been Demonstrated

This demonstration shows that

• A Web server can be connected to a Tcl/Tk application so that a user can connect through
a browser and see the same screen images that the Tcl/Tk user would see at a display
console.

• Tcl/Tk has enough information to generate the required HTML.

• Since most sites leave the http port open, it will be easier to access the Tcl/Tk application
through the browser than through the X Windows server as required by unmodified
Tcl/Tk.

• Any Tcl/Tk code involved in generating an image as a collection of widgets can be
reused when converting a legacy system to a Web-based approach.

Is there a performance hit for this approach? It is unlikely. Very little computation is required
to produce the HTML. If we assume that the Tcl/Tk application and the Web server are on the
same host computer, negligible time is needed to transfer the HTML to the server. Network
traffic—the biggest bottleneck—will be roughly the same because the generated HTML text
is comparable in size to the corresponding X Windows protocol.

8 CMU/SEI-2003-TN-002

5 Why a Full Conversion Will Be Harder

Please note that this demonstration does not show that it is trivial to convert a Tcl/Tk
application so that it can be presented via a Web browser. There are a number of problems.

Many widget attributes like borders and colors have not yet been converted. These should be
straightforward, if tedious. Converting the widgets I have not tackled will require some
effort, but since HTML and Motif share widget concepts, this should not be hard. It may take
a sizeable effort to convert a drawing widget used for pictures, but I have not seen any such
widget in SYS. The present implementation only handles the “grid” geometry manager. It will
be a bit harder to handle the “pack” manager and quite a bit harder to deal with the “place”
manager. I don’t think SYS uses these, either. Some design effort will be needed to resolve
the issue of returning information from the Web page so as to drive the application.

The existing SYS application is almost entirely widgets of the sort implemented by this
demonstration. The few exceptions can be dealt with by special-purpose coding. There is one
relatively frequent exception: mouse clicks in some non-widget locations are used to invoke
new windows. It may be possible to create a general solution with JavaScript programming.
Otherwise it may be necessary to revise the GUI design. In the worst case, a user would have
to click on a new button instead of on the entire field.

The current approach of writing HTML to a file is ad hoc. The “right thing to do” is to make
the HTML/Web-server appear to Tk as a fourth window manager on a par with Unix, Mac,
and MS Windows. If done thoroughly, it is conceivable that minimal change would be needed
to the SYS code.

A major problem is implementation of user navigation. Browsers are ill suited to immediate
interaction between a system and a user. Immediate feedback to user actions requires an
exchange across the Internet and the attendant delays destroy any illusion the user might have
that the application is a tool with the same immediacy as a pencil. Web-based applications
typically ask the user to fill in data fields and press a button before getting any feedback
(although Java applets and other scripting tools are mitigating this problem). Those parts of
SYS that I witnessed are, however, much like the typical Web application. The user clicks and
another screen comes up. So the conversion of SYS to the Web might not be as bad as for
other systems. What will have to change is the relationship between the various parts of the
application. They must be torn apart so that information exchange with the Web server can be
inserted appropriately. Unless the application was originally built in a highly structured
fashion, it will be a challenge to dissect it as necessary.

CMU/SEI-2003-TN-002 9

Additional development hassles will arise in having to deal with a server system in addition
to Tcl/Tk. There will be additional tasks in infrastructure maintenance, configuration

management, developer training, and a host of other considerations. Testing will be harder.

10 CMU/SEI-2003-TN-002

Conclusion

This note demonstrates a possible path for transition of SYS and similar applications from
Tcl/Tk plus X Windows server to a Web-based approach. The existing application would
remain under the covers and the user would interact via a browser. This is thus an alternative
to the existing options of retaining Tcl/Tk or total rewrite. The HTML approach can also
serve to allow continued use of the existing code as portions of the applications are converted
over to a true Web-based approach.

CMU/SEI-2003-TN-002 11

References

All URLs are valid as of February 2003.

Davidson 2000 Davidson, Jim. “Tcl in AOL Digital City - The Architecture of a
Multithreaded High-Performance Web Site.” Proceedings of the 7th USENIX
Tcl/Tk Conference, Austin, TX, February, 2000. Berkeley, CA: USENIX,
2000. <http://www.aolserver.com/docs/intro/tcl2k/>.

Demailly 2002 “Welcome To The Tcl Plugin.” <http://www.scriptics.com/software/plugin/>
(2000).

Roseman 2000 Roseman, Mark. “Proxy Tk: A Java applet user interface toolkit for Tcl,”
Proceedings of the 7th USENIX Tcl/Tk Conference, Austin, TX, February
2000. Berkeley, CA. USENIX, 2000.
<http://www.usenix.org/publications/library/proceedings/tcl2k/roseman.html>
(2000).

Tcl/Tk 2002 “Tcl Developer Site” <http://tcl.activestate.com/> (2002).

Welch 2000 Welch, Brent. “The TclHttpd Web Server,” USENIX Technical Program, 7th
Tcl/Tk Conference, February 2000. <http://www.tcl.tk/software/tclhttpd/>
(2002).

12 CMU/SEI-2003-TN-002

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and
Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

February 2003

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Rendering Tcl/Tk Windows as HTML

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Wilfred J. Hansen
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2003-TN-002

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Tool Control Language (Tcl) is a programming language having a Toolkit (Tk) library that provides a standard set
of graphical user interface (GUI) widgets. Since these are aimed at direct presentation via a window manager,
Tcl/Tk applications are not compatible with Web-based service delivery environments. Several tools provide some
help, but do not provide a migration path for eventual full conversion to Web-based delivery. This note suggests a
new approach. For the particular application prompting this note, the GUI consists almost entirely of Tk widgets,
especially tables and buttons. Hypertext Markup Language (HTML) offers these same widgets, so it is natural to
consider delivering Tk windows by expressing their contents in HTML. To demonstrate this possibility, the Tk
library was altered to generate HTML. As described in the paper, this shows that the Tcl/Tk internal data structures
are sufficient to generate appropriate HTML commands having the same user interface as that presented by the
application. Consequently, it is possible to add to Tk a fourth GUI interface in parallel to the existing ones for Unix,
Macintosh, and MS Windows.

14. SUBJECT TERMS

Tcl, Tk, Web portal, Web-based, HTML, GUI Interface

15. NUMBER OF PAGES

22
16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Rendering Tcl/Tk Windows as HTML
	Contents
	List of Figures
	Abstract
	1 Introduction
	2 Example of the Approach
	3 Implementation
	4 What Has Been Demonstrated
	5 Why a Full Conversion Will Be Harder
	Conclusion
	References

