
A Basis for Composition
Language CL

James Ivers
Nishant Sinha
Kurt Wallnau

September 2002

Predictable Assembly from Certifiable
Components Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2002-TN-026

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2002 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document
for external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web
site (http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Abstract . v

1 Introduction . 1
1.1 Predictable Assembly from Certifiable Components . 1

1.1.1 Prediction-Enabled Component Technology . 1
1.1.2 CL: A Core Composition Language for PECT . 2
1.1.3 CL: Built-In Composition Semantics . 3
1.1.4 CL: Environment-Specific Connectors . 3
1.1.5 CL: The Pin Style . 4

1.2 About This Report . 4
1.2.1 Objective of This Report . 4
1.2.2 Organization of This Report . 5
1.2.3 Audience for This Report . 5
1.2.4 How to Read This Report . 5

2 Related Work . 7

3 Overview of Pin . 9
3.1 Notational Conventions . 9
3.2 Components and Pins . 9
3.3 Pin Data Interface . 9
3.4 Source Pins . 10
3.5 Sink Pins . 10
3.6 Assemblies and Environments . 11
3.7 Behavior: Reaction and Interaction . 12

3.7.1 Component Behavior: Reactions . 13
3.7.2 Assembly Behavior: Interactions . 13

3.8 Hierarchical Assembly . 14
3.8.1 Null Junctions . 15
3.8.2 Gateway Junctions . 16

4 Formal Model of CL . 19
4.1 Conceptual Model . 19
4.2 Formal Definitions . 21

4.2.1 Definition of Sink Pin . 21
4.2.2 Definition of Source Pin . 22
4.2.3 Definition of Reaction . 22
4.2.4 Definition of Logical Thread . 22
4.2.5 Definition of Component . 22
4.2.6 Definition of Assembly . 23
4.2.7 Definition of Interaction . 24

4.3 Composition Semantics . 24
4.3.1 Composition Semantics: Components . 25
4.3.2 Composition Semantics: Interactions . 26

CMU/SEI-2002-TN-026 i

4.3.3 Composition Semantics: Assemblies . 29

5 Compositional Minimization . 31
5.1 Compositional Minimization: Interactions . 31
5.2 Compositional Minimization: Reentrant Interactions . 32
5.3 Compositional Minimization: Assemblies . 33
5.4 Compositional Minimization: Further Optimizations . 34

6 Examples . 35
6.1 Example of Simple Reentrant Interaction . 35
6.2 Example of Simple Mutex Interaction . 37
6.3 Example of Simple Assembly . 39

7 Open Issues . 43
7.1 Representing Pin Events . 43
7.2 Describing Environments . 43
7.3 Relating Assemblies and Environments . 44
7.4 Hiding Internal Behavior . 44
7.5 Defining Language Details . 45

8 Future Work . 47
8.1 Specific Environment Type Definition in CL . 47
8.2 Intermediate Representation . 47
8.3 Visual Composition Tool Set . 47

Appendix A Summary of Formal Notations Used in This Report 49
A.1 CSP . 49
A.2 Formal Logic . 50

References . 51

ii CMU/SEI-2002-TN-026

List of Figures

Figure 1: Interpretations Between Constructive and Analysis Views 2
Figure 2: Graphical Notation for a Component and Its Pins . 9
Figure 3: Graphical Notation for an Assembly . 11
Figure 4: Reactions Partitioning the Behavior of a Component . 13
Figure 5: Intra-Assembly Hierarchy with Null Junctions . 15
Figure 6: Intra-Assembly/Inter-Assembly Hierarchy with Gateways 16
Figure 7: A Simple Approach to Composition Semantics . 19
Figure 8: Use of Glue to Model Interaction Behavior . 19
Figure 9: Composition of Two Components . 25
Figure 10: Reentrant Interaction c1.r ❀ c2.s . 35
Figure 11: Mutex Interaction c1.r ❀ c2.s . 37
Figure 12: Simple Assembly . 39

CMU/SEI-2002-TN-026 iii

iv CMU/SEI-2002-TN-026

Abstract

CL is a composition language for predictable assembly from certifiable components. An
application assembly process is predictable if the runtime behavior of an assembly of
components can be predicted from known properties of components and their patterns of
interaction. CL is similar to other composition languages that combine a component and
connector style of description with a core compositional semantics specified in a process
algebra. CL differs from these in its explicit treatment of details that are usually abstracted
or ignored. For example, CL makes explicit the allocation of execution threads to component
behavior; this distinguishes concurrent from sequential behavior, and leads to potentially
smaller state spaces as well as more accurate behavioral descriptions.

This report describes the main concepts of CL and its rudimentary graphical syntax. This
report also defines and illustrates the compositional semantics for CL using Hoare’s CSP. The
twin objectives of this report are to consolidate our current thinking about an ideal CL and
to provide a starting point for the design of a practical and implementable CL. This report
closes with a discussion of several open issues that must be resolved before this second
objective can be satisfied.

CMU/SEI-2002-TN-026 v

vi CMU/SEI-2002-TN-026

1 Introduction

Software component technology emerged in the late 1990s as a promising means of
simplifying the development of software applications. This simplification is achieved by
imposing constraints, in the form of a component model, on component and application
developers. A component model specifies a set of component types and rules for how different
component types can interact. Component life-cycle management and other runtime services
are provided by a component execution environment, often called a container. Component
technology shifts the emphasis from developing new code to integrating or, more stylishly if
not more accurately, composing existing software components in accordance with a
component model.

Application development has indeed been simplified by component models and containers (in
effect, component standards), but they apply almost exclusively to the syntactic or
constructive aspects of composition, with the benefits typical of standard interfaces and
interaction protocols. What has yet to be adequately addressed is the semantic or behavioral
aspects of composition—how will a composite behave at runtime? Will it meet deadline,
availability, safety, and security requirements?

1.1 Predictable Assembly from Certifiable
Components

The Software Engineering Institute’s (SEI’s) Predictable Assembly from Certifiable
Components (PACC) Initiative is addressing these behavioral aspects of composition. In this
report, the term assembly will be used synonymously with the terms composition and
composite. In our vocabulary, predictable assembly means that the runtime behavior of an
assembly of components can be predicted from the properties of the components and their
patterns of interaction. Further, components are certifiable if their properties can be
ascertained and/or validated by disinterested third parties.

The following sections outline the key aspects of our overall approach to PACC and establish
the context for the composition language CL.

1.1.1 Prediction-Enabled Component Technology

Our technical approach to PACC is to extend component technology with analysis
technologies that support compositional reasoning, as entailed by our definition of predictable
assembly. We call such an extension a prediction-enabled component technology (PECT). A
PECT guarantees that assemblies are, by construction, predictable with respect to a selected
set of runtime properties. Figure 1 depicts the fundamental idea of PECT and provides a
framework to introduce PECT concepts and terminology.

The PECT component model defines assembly rules that are concerned exclusively with the
constructive or syntactic aspects of composition; the Constructive Assembly in Figure 1 has

CMU/SEI-2002-TN-026 1

Constructive
Assembly

Latency
Analysis View

Safety Analysis
View

Availability
Analysis View

ILATENCY

ISAFETY

IAVAIL

1

1

1

Figure 1: Interpretations Between Constructive and Analysis Views

been composed in accordance with this component model. Associated with each constructive
assembly is one or more analysis views: latency, safety, and availability. Each analysis view
can be thought of as input to a particular compositional reasoning technique. Analysis views
are automatically derived from constructive views by means of a syntactic transformation,
called an interpretation. Three interpretations are depicted in Figure 1: ILATENCY , ISAFETY ,
and IAVAIL.

Interpretation may impose constraints on constructive assemblies beyond those found in the
component model; these constraints take two forms. The first form is that specific component
properties might be required. For example, ILATENCY might require that components have
an associated property that describes their execution time or the scheduling priorities
assigned to any independent threads within the component. The second form is topological
constraints. Continuing with this example, ILATENCY might disallow any topology that does
not enforce the priority ceiling protocol, that is, where the priority of a server is at least as
high as the highest priority of any of its clients.

An interpretation is consistent if each constructive assembly is related to at most one
analytic view under that interpretation. An interpretation is valid if there is empirical or
formal justification for the claim that behaviors predicted in the analytic view will be
manifested by the assembly of components specified in the constructive view.

1.1.2 CL: A Core Composition Language for PECT

The analogy between component models and programming languages is quite natural. In the
former case, we are concerned with the well formedness of assemblies with respect to
construction rules and one or more interpretations; in the latter case, we are concerned with
the well formedness of programs with respect to a syntax and associated type theory. Each
analysis view in Figure 1 reflects some theory about the runtime behavior of an assembly; no
less is true of type systems. Type systems guarantee, by rules of syntax, the absence of
certain classes of runtime behavior [Cardelli 97]. PECT guarantees, by rules of syntax, the
analyzability of certain classes of runtime behavior.

The strength of this analogy and our own experience in building PECTs strongly motivate
the need for a composition language, which we denote CL. CL gives formal meaning to a
PECT component model—each constructive assembly is a sentence in the language of CL.
The major syntactic elements of CL are components and connectors, something that CL has

2 CMU/SEI-2002-TN-026

in common with most architecture description languages (ADLs). An annotation mechanism
allows us to attach 〈property , value〉 pairs to components and connectors, and to finer-grained
syntactic elements of CL. The values of these properties can be used to construct
analysis-specific interpretations. Thus, CL is a core which can be extended with one or more
analysis technologies, each of which imposes additional behavioral semantics on CL.

1.1.3 CL: Built-In Composition Semantics

One behavioral semantics is fundamental to the meaning of many interpretations and so is
incorporated into the core CL. The semantics of component and interaction
behavior—specifiable in a number of process algebras, notably CSP [Hoare 85], CCS
[Milner 89], π-Calculus [Milner 99], and, more recently, FSP [Magee 01]—must be common to
every interpretation.

While various ADLs [Magee 93, Allen 97] and self-described composition languages
[Achermann 02] have also combined component and connector syntax with process algebraic
semantics, CL differs by treating software components as implementations rather than as
design abstractions. For example, CL preserves the asymmetry of the caller and callee;
distinguishes asynchronous, synchronous, and reentrant behavior; and makes explicit the
allocation of threads of control to component behavior. These and other “implementation
details” often have a profound impact on assembly behavior.

These details also complicate composition semantics, that is, how assembly behavior is
composed from component behavior specified in CSP. On the other hand, these details also
offer opportunities to reduce the size of the composed state space, for example, by avoiding
unnecessary parallel composition where concurrent behavior is impossible. This, we hope,
will have positive ramifications on the tractability of model checking in PECT.

1.1.4 CL: Environment-Specific Connectors

In CL, the semantics of connectors is defined with respect to specific environment types. For
example, an asynchronous message queue in a real-time environment might implement a
small circular buffer with overwrite, while a non-real-time environment might implement
(effectively) unbounded buffers with no overwrite.

In CL, the behavior of connectors is modeled separately from that of components, and
connectors define the composition semantics of CL. Composition in CL always takes place in
the context of an environment type, and each environment type defines a set of connectors
that are valid within that environment type. Composition of assemblies across heterogeneous
environment types is handled by explicitly modeling the shared environment type and the
bridging connectors it defines.

Specifications of connectors are not trivial and can be simplified using specification patterns.
One objective of this report is to produce a general approach for specifying the composition
semantics for arbitrary interaction schemes (connectors) for arbitrary environment types E .
We hasten to add here that end users of PECTs never see these semantic complexities any
more than users of modern programming languages see the complexity of type checking or
code generators.

CMU/SEI-2002-TN-026 3

1.1.5 CL: The Pin Style

We can think of each CL configuration, set of environment types, and set of interpretations
as defining a distinct composition language or perhaps a distinct family of composition
languages. Yet, despite the variation inherent in this scheme, each configuration shares with
all others a single unifying constructive metaphor: the Pin Style or, more simply, Pin.

In Pin, components communicate exclusively through their pins: components receive stimulus
through their sink pins and can stimulate other components through their source pins. No
component can be its own stimulus, and only the environment can be an originating source of
stimuli (another aspect of the definition of environment types). Therefore, Pin enforces a
model of pure composition—an application is defined entirely in terms of a set of components
and their connections. The behavior of a component is described in terms of reactions that
specify the stimulus-response behavior of a component on its sink and source pins.

Connectors are used to link the source pins of one component to the sink pins of other
components; these links represent the ability of components to interact. The semantics of
connectors define how two or more component reactions are composed into a higher-order
reaction. Two broad classes of interactions, and therefore connectors, are defined in Pin:
asynchronous and synchronous. Beyond this, most of the semantic details of connections, for
example their arity (e.g., 2-ary or N-ary connectors), are environment specific.

Before we proceed, we would like to warn the reader that the distinction between the Pin
architectural style and the CL composition language is not always clear. The Pin style deals
with concepts such as components, pins, their topologies, and so forth; CL is the formal
syntax and semantics for component assemblies documented in the Pin style. CL is also the
language in which the precise interaction semantics for different environment types are
defined.

Determining which concepts belong in Pin and which ones belong in CL is not always an easy
decision. For example, we believe that the distinction between synchronous and asynchronous
pins is universal, so we consider that distinction part of Pin. However, the queueing semantics
of asynchronous sink pins may differ among environment types and so should be part of CL.

Although we have attempted to make the proper distinctions between Pin and CL, we have
not always been successful, primarily because we are still exploring the issue as we gain
experience with defining the semantics of different environment types. When reading Section
3, keep in mind that the concepts described are part of Pin, while the syntax used in
examples is part of CL.

1.2 About This Report

1.2.1 Objective of This Report

CL and its underlying Pin metaphor are under development; this report is a snapshot of our
thoughts about them. Our intent is to both consolidate our understanding and to expose the
main ideas to constructive criticism.

4 CMU/SEI-2002-TN-026

The primary focus of this report is on the specification and composition of component
reactions over different types of connectors. Because the set of connector types and hence
their semantics is open-ended, our long-term objective is to define specification patterns. In
this way, we hope to reduce the complexity involved in developing PECTs and, perhaps, to
automate some of the more tedious aspects of this development.

The secondary focus of this report is to establish preliminary ideas for a visual and textual
language of CL. One premise of our approach to PECT is that, while the infrastructure of a
PECT might be quite complex–comprising as it does different interaction schemes,
interpretations, and behavioral models–much of this complexity can be “packaged” in
high-level notations and tools. In this respect, CL and its supporting language environment
requires serious attention in its own right.

1.2.2 Organization of This Report

We first provide an overview of related work in Section 2 and then introduce the major
features of CL through a graphical syntax in Section 3. In Section 4, we define and illustrate
a naive composition semantics for CL; we extend this definition to address a limited form of
compositional minimization in Section 5. Examples of the naive semantics are provided in
Section 6. The open issues that must be answered before CL can progress from its interim
status are discussed briefly in Section 7. Finally, we close with a brief discussion of directions
for further work in Section 8. In the appendix, we present a brief summary of the formal
notations used in this report.

1.2.3 Audience for This Report

This report is targeted to computer scientists and software engineers interested in the formal
specification of component-based software and in the use of these specifications for
automated composition and compositional reasoning. Sections 2, 3, 7, and 8 require only
general familiarity with component-based software technology, although some background in
ADLs and coordination languages would be helpful. Sections 4-6, however, require the reader
to have advanced knowledge of CSP [Hoare 85].

1.2.4 How to Read This Report

Readers interested in an overview of Pin and CL should read Section 3, the preliminaries of
Section 4, and Section 7. Readers interested in comparing Pin and CL to other approaches
should also include Section 2. Those readers interested in understanding our approach to
compositional semantics should read the entire report.

CMU/SEI-2002-TN-026 5

6 CMU/SEI-2002-TN-026

2 Related Work

There has been substantial research under the general headings of module interconnection
languages (MILs), architecture description languages (ADLs), coordination languages, and,
more recently, composition languages. The extent to which these headings constitute distinct
or overlapping areas of investigation is largely a matter of perspective. For example, one
survey classifies Polylith [Purtillo 94] and Rapide [Luckham 95] under the heading of
coordination languages, while their inventors originally classified them as MILs and ADLs,
respectively [Papadopoulos 98].1 It has even been argued that composition languages
represent an amalgam of scripting, ADLs, and coordination languages [Achermann 02].
Despite some terminological confusion, the exemplars of these categories all seem similarly
concerned with the search for language abstractions and semantics that address issues of
complexity that are not conveniently addressed by the conventional imperative programming
paradigm. What differs is only the type of complexity addressed: concurrency, distribution,
mobility, and so forth. Here, we refer only to those exemplars that most closely resemble, or
have most directly influenced, our thinking about CL.

Wright is an ADL best known for formalizing connectors as first-class abstractions [Allen 97].
Like Wright, CL distinguishes connectors from components and specifies the semantics of
connectors in CSP. CL and Wright are also similar in their concern for representing system
structure by making explicit the semantics of connectors and by exposing the interface
signature of access points—ports in Wright, pins in CL. Unlike Wright, CL does not make
connectors first-class elements of the language: there is no way in CL itself to define new
types of connectors. Whether this makes CL less general than Wright is a long-running
argument among ADL researchers. Darwin is another ADL with strong similarities to CL
that, like Wright, has influenced the design of CL [Magee 93]. Darwin specifies component
and assembly behavior using the FSP process algebra, which is more limited but
substantially simpler than CSP [Magee 01]. Like CL, but unlike Wright, Darwin also makes
structurally explicit the distinction between a component’s incoming (provides) and outgoing
(requires) interfaces. However, Darwin is more concerned with behavior than with system
structure; unlike CL or Wright, it does not explicitly represent the boundaries and interfaces
of deployed components. Koala is a Darwin-based development environment, in industrial
use, for developing consumer electronics [van Ommering 02]. Like CL, it addresses
implementation issues such as concurrency, but whereas concurrency is addressed in CL
composition semantics, in Koala, it is addressed by introducing design primitives called
thread pumps and pump engines. Tracta is a research prototype, also based on Darwin
[Giannakopoulou 99]. Tracta is a toolkit environment for applying a variety of compositional
verification techniques; it also implements a variety of compositional reduction techniques to
ameliorate state space explosion under model checking. In many respects, we are aiming
towards a Tracta-like environment with CL. We generalize from Tracta in two ways. First,
the PECTs we construct using CL (perhaps more accurately, the Pin component model)
include mechanisms to support empirical as well as formal analyses. Second, (although this is
future work) we plan to “compile” CL into a standard intermediate representation such as

1 Although the authors did distinguish MILs and ADLs in their survey, these categories were subsumed by
the coordination languages category.

CMU/SEI-2002-TN-026 7

Bandera Intermediate Representation (BIR) [Corbett 99]; the intent is to simplify the
integration of a variety of existing verification technologies, such as SMV [Cimatti 00], SPIN
[Holzman 97], and FDR [Roscoe 98], into a PECT. In this respect, CL is similarly motivated
to Acme [Garlan 97], an ADL interchange language. However, while Acme, like CL, defines a
component and connector syntax and an annotation mechanism, it does not define a base
composition semantics. PECOS is a component model for field devices [Nierstrasz 02]. Like
Wright and CL, it defines both components and connectors. Like CL and Acme, PECOS
provides an annotation mechanism; in all three, the annotations are used to provide analysis
and tool-specific information. PECOS also specifies component behavior formally, although it
uses petri nets in preference to process algebra. PECOS does not yet make use of petri nets
for behavior analysis, although there are plans to apply it to timing analysis. Should these
plans come to fruition, PECOS would satisfy our definition of PECT. Further, PECOS is
specialized to memory-constrained devices and has, for example, a built-in cyclic scheduler.
Last, Piccola is a composition language that combines aspects of ADL and scripting
[Achermann 02]. Like CL and Wright, Piccola uses a process algebra to specify component
and assembly behavior. However, instead of CSP, it uses πL-calculus, a form of Milner’s
π-calculus, that provides a polymorphic extension to π’s fixed positional, tuple-based
interfaces [Milner 99]; this adds considerable expressive power to the language at the cost of
some increased complexity. Piccola is also more general than CL in that it is not restricted to
pure composition; the scripting language embeds considerable application semantics, as does
a glue language that is used to adapt components to remove mismatches among their
interfaces or behaviors. It is arguable whether this more general focus is laudable or
necessary.

8 CMU/SEI-2002-TN-026

3 Overview of Pin

3.1 Notational Conventions
In the following discussion, entities are denoted by their names. We use component names ci ,
sink pin names sj (for the jth stimulus), and source pin names rk (for the jth response),
where i , j , k ≥ 0. Where the distinction between sink and source pin is irrelevant, we will use
pin names pk (for pink). In all cases, we omit subscripts where they are not required.
Components define a scope for pin names; within the scope of a component, all pin names
must be unique. The expression c.p denotes pin p of component c. We use capitalized names
to denote predicates defined on pins. For example, SomeCondition(c.p) is True if pin c.p
satisfies SomeCondition and is False otherwise. We use lowercase names to denote properties
of pins. For example, someProperty(c.p) denotes the value of property someProperty of pin
c.p.

3.2 Components and Pins
A component interacts with its environment exclusively through its pins; there are no other
communication paths to or from a component. As mentioned in 1.1.5, there are two types of
pins: sink pins and source pins. A component receives communication (stimuli) on its sink
pins and initiates communication (responses) on its source pins. Figure 2 depicts the graphic
notation we use and refer to later. By convention, we put sink pins on the left side of a
component and source pins on the right side. This allows us, at the cost of some cultural
bias, to “read” the component, and sometimes their assemblies, from left to right.

C

�

�

�

�

r1

[r2]
s2 source

pins
sink
pins

pin headpin name

component

component name

�

�
�

s4:t2

s5:t3

s6:t3�

s3

s1:t1

pin

Figure 2: Graphical Notation for a Component and Its Pins

3.3 Pin Data Interface
Each pin has a data interface, denoted by interface(c.p). For some c.p, interface(c.p)
describes the type 〈T0 ×T1 × · · · ×Tn〉, where each Tj is the primitive data type transmitted
on the pin and each primitive type is one of

CMU/SEI-2002-TN-026 9

{SByte,UByte,SWord ,UWord ,SDWord ,UDWord , SDouble,Float ,String}. A complete
specification of CL for a particular environment would specify the representation of these
types; we do not do so here.

As in conventional interface specification, each data type corresponds to a formal argument
that has a parameter-passing mode, where mode is one of {In,Out , InOut}. Note that a pin’s
data type interface might be specified explicitly or be inferred from a CSP specification. This
issue remains open.

3.4 Source Pins
There are two types of source pin–asynchronous and synchronous–that satisfy the predicates
Asynchronous(c.p) and Synchronous(c.p), respectively.2 Source pins represent the ability of
a component to initiate, in response to some original stimulus, an interaction with other
components.

It is reasonable to think of asynchronous source pins as message sends and synchronous source
pins as procedure calls, but too much faith should not be put on this gross interpretation, as
we have not always implemented asynchronous connectors in this way. Nonetheless,
arguments in an asynchronous pin data interface are restricted to mode In. Source pins are
graphically denoted with pin heads 	 if Asynchronous(c.r) and > if Synchronous(c.r). In
Figure 2, c.r1 is an asynchronous source pin, and c.r2 is a synchronous source pin.

If Optional(c.r), then c.r is an optional source pin, otherwise it is mandatory. Mandatory
source pins must be connected in an assembly, while optional source pins need not be
connected. This models the distinction between calls (optional) and uses (mandatory),
respectively. A component c0 uses sink pin c1.s if the behavior of c0 depends on the correct
behavior of c1.s; otherwise it only calls c1.s. Graphically, we distinguish optional source pins
from mandatory ones by enclosing the names of optional sources in braces []. So, c.[r2] is an
optional source pin in Figure 2.

3.5 Sink Pins
There are two types of sink pins, asynchronous and synchronous. Analogously with source
pins, they represent the ability of a component to receive asynchronous or synchronous
stimulus, respectively. As with source pins, the data type interface of an asynchronous sink
pin is restricted to arguments of mode In. Sink pins are graphically denoted with pin heads
	 if Asynchronous(c.s) and > if Synchronous(c.s). In Figure 2, c.s1 is asynchronous, while
{c.sk | 2 ≤ k ≤ 6} are synchronous.

If Threaded(c.s), c.s has its own thread of control, and threadId(c.s) denotes its identity.
Threads represent units of concurrent execution and may be implemented by operating
system threads, processes, tasks, and so forth. Graphically, tj = threadId(c.s) is denoted as a
suffix : tj on the sink pin name. In Figure 2, sink pins c.s2 and c.s3 are unthreaded, but c.s5

2 Currently, Asynchronous(x) ⇔ ¬Synchronous(x), but it seems more flexible, if verbose, to define two
predicates rather than just one. This is true of other predicates as well.

10 CMU/SEI-2002-TN-026

has the thread threadId(c.s5) = t3. Threads may be shared by sink pins. So, in Figure 2, c.s5
and c.s6 share thread t3, but c.s1 and c.s4 have their own threads. Note that asynchronous
sink pins must be threaded, that is, Asynchronous(c.s) ⇒ Threaded(c.s).

If Mutex (c.s), c.s is called a mutex sink, and only one caller may be active on c.s at any
given time; in effect, the caller must obtain the semaphore for c.s. Conversely, if
¬Mutex (c.s), the c.s is called a reentrant sink and is never guarded by a semaphore. Note
that even a reentrant c.s might force a caller to wait while it synchronizes on an internal (to
c.s) resource. We obviously care about this property only for synchronous sink pins, since
asynchronous callers do not wait and cannot be blocked. Graphically, mutex sinks are
represented with the pin head >|. In Figure 2, Mutex (c.sj), 3 ≤ k ≤ 6. Note that
Threaded(c.s) ∧ ¬Asynchronous(c.s) ⇒ Mutex (c.s).

3.6 Assemblies and Environments
An assembly is defined as a set of components and their connections. We denote an assembly
as aj . An assembly is graphically depicted as a box enclosing a set of connected components;
this visually reinforces the notion of an assembly as a scope of, or container for, components.
Thus, a.c denotes component c in the scope of assembly a. Figure 3 depicts a simple
assembly to illustrate key points in the following discussion.

A connection, or connector, is established between two components when some source pin ci .r
is connected to some sink pin cj .s, i �= j (this inequality is assumed in further discussion). In
text, we denote the connection as ci .r ❀ cj .s. Components ci and cj must be contained by
the same assembly if they are to be composed. A connection ci .r ❀ cj .s also requires that
ci .r and cj .s be mutually conformant. The rule for mutual conformance is simple: both pins
must be synchronous, or both must be asynchronous, and their data interfaces must have the
same argument types, modes, and positions. Graphically, we denote a connection as a
double-headed lollipop, with the lollipop heads circumscribing the connected pins.

C0 �r �
[r]

� s2
� s:t C1

� s:t C2

�r1

�
[r2]

C3� r1s:t �

�

� CLOCK

� s1:t

CONSOLE

a0: E0

assembly name environment type

Figure 3: Graphical Notation for an Assembly

Each assembly has an associated environment type, which is denoted by the :Ej suffix of an
assembly name. Environment types play two crucial roles in Pin.

CMU/SEI-2002-TN-026 11

First, they define the services, specified as sink and source pins, that components may use.
Graphically, these services are attached to the assembly by means of environment junctions,
drawn as small black boxes. For example, in Figure 3, a runtime environment associated with
assembly a0 provides two services: the source pin CLOCK and the sink pin CONSOLE .
These services can be thought of as being implemented by an environment-provided
component with a single sink pin (a0.CONSOLE) and source pin (a0.CLOCK).

We denote a connection with an environment service in an analogous way to that defined
earlier, that is, as a0.CLOCK ❀ a0.c0.s1, and a0.c3.r1 ❀ a0.CONSOLE . To make these
expressions easier to read, we allow assembly names to distribute over ❀, so, instead of the
above, we could write a0(CLOCK ❀ c0.s1) and a0(c3.r1 ❀ CONSOLE). If the scope of a0 is
understood, we often omit it altogether.

Second, environment types supply the interaction models implemented by connectors. For
example, consider the interaction topology in Figure 3, which includes

• a0(CLOCK ❀c0.s1), a0(c3.r1 ❀CONSOLE), and a0(c2.r2 ❀c0.s2)

• c0.r ❀ {c1.s, c2.s}

• {c1.r , c2.r1} ❀ c3.s

where we use sets {c.p1, c.p2, ...} to denote multiple sinks and sources on 1:N and N :1
compositions, respectively. The semantics of the 1:1 composition in the first bullet is likely
to be intuitively clear, but what about the 1:N asynchronous composition in the second
bullet? Does c0.r ❀ {c1.s, c2.s} specify one or two connectors? Does this represent a
broadcast or a sequence of unicasts? If it’s a sequence, what is the order? What is the
semantics of message buffering—FIFO or LIFO? What is the capacity of the message buffers?
Analogously, what is the interaction order of the N :1 synchronous composition in the third
bullet? We may want different answers to these questions in different component runtimes,
and these different answers will result in different connector semantics. So, connectors are
always defined with respect to some environment type.

3.7 Behavior: Reaction and Interaction
So far, we have focused on the syntax of composition. This makes sense, since we have largely
been discussing constructive assemblies that are concerned with enabling runtime interactions
rather than their behavior. Informally, Pin gives us the vocabulary to describe the structure
of an assembly (i.e., the topology of the components and pins), while the compositional
reasoning associated with analysis views describe what the assembly does at runtime. We say
that CL is semantically extensible since different syntactic elements of CL—the language for
documenting architectures in the Pin style—may be annotated with information that is used
to construct, via interpretations, additional semantics for each assembly in the Pin style.

However, one behavioral semantics is fundamental to the meaning of many interpretations
and so is incorporated into the core CL. Component and interaction behavior specifiable in a
process algebra such as CSP [Hoare 85], CCS [Milner 89], π-Calculus [Milner 99], or FSP
[Magee 01] must be common to every interpretation. We have elected to use CSP as the

12 CMU/SEI-2002-TN-026

behavior specification language for CL. In this section, we describe only the essence of
component behavior and its composition; the details are provided in Section 4. We treat the
specification of component behavior first and then turn to composition behavior.

3.7.1 Component Behavior: Reactions

Components have intrinsic behavior: they are, after all, implementations. We model the
behavior of a component in terms of reactions. A reaction is a CSP process that relates one
or more sink pins to one or more source pins, indicating how the component reacts to
stimulation of its sink pins. The general form is a process that looks something like
R = s → r → R, where s is a sink pin that can be stimulated, r is a source pin that is
stimulated in response to a stimulus on s, and R is the CSP process that describes this
pattern of behavior. Note that because reactions are defined within the scope of a
component, we omit usual scoping notation such as c.s, c.r , and c.R.

Reactions reflect the thread structure of a component. For example, all behavior implemented
by a common thread is modeled as a single reaction. This allows analyses to take into
account the actual degree of threading and potential concurrency errors of the component
implementation. The behavior of a component as a whole is specified as the CSP parallel ‖ or
interleaved ||| composition of its reactions, depending on which better models the actual
interaction among the component’s threads. The gist of reaction rules is depicted in Figure 4.

�r4

s1:t�
�

s3�
s4�

�r3

�
r2

�r1

R1

R2

R3

2:t

Figure 4: Reactions Partitioning the Behavior of a Component

In this example, there are three reactions: R1, R2, and R3. The ovals are used to illustrate
which pins are related by each reaction; for example, R1 is shown as relating sink pins s1 and
s2 to source pins r1 and r2. R1 represents the behavior of a single thread t that is shared by
sinks s1 and s2. A definition of R1 could be R1 = (s1 → r1 → R1) ✷ (s2 → r2 → R1).

Reactions allow us to specify the causal dependencies among behaviors in an assembly of
components. The most basic causal dependency is the dependency chain, as illustrated in the
above reaction. More complex behaviors, such as coordination among reactions or changes in
behavior based on accumulated state information, can also be modeled.

3.7.2 Assembly Behavior: Interactions

Up to this point, we have been using the ❀ operator in an informal manner. Although we
never made the claim, a reasonable inference on the part of the reader would be that ❀ has

CMU/SEI-2002-TN-026 13

some sort of composition semantics. We need more detail to justify this inference and outline
its implications for understanding the behavior of assemblies, or, more technically, how
component behaviors interact when composed using ❀.

A simple algebraic model of composition might be ❀: C × C → C , where we take C to
denote the set of all components. That is, C is the carrier for an algebra with a single ❀

operator. We denote this simple algebra as 〈C , ❀〉. To give a concrete example, the pipeline
style satisfies this model, where in place of 〈C , ❀〉, we have 〈P , |〉 >, where P denotes Unix
processes and | denotes the pipeline connector [Garlan 93].

However, Pin is more general and complex than the simple Unix pipeline model. For
example, the constructive meaning of | in P1 | P2 is that the output (stdout) of P1 is
connected to the input (stdin) of P2. Since | always and only connects stdout and stdin, there
is no need to explicitly name these channels. In Pin, however, a component can have many
input and output channels, so we need to make them explicit.

A generalization of the pipeline style to multiple input and output channels can be found in
Pin and its predecessors, WaterBeans [Plakosh 99] and ComTek [Hissam 02]. The equivalent
to a pipeline in Pin, at least syntactically, would be P1.stdout ❀P2.stdin. Note, however,
that P1.stdout and P2.stdin denote a source and sink pin, respectively, not components. This
is not just a lexicographical distinction, but reflects two critical Pin generalizations of the
pipeline style:

• Components are no longer primitive; they are a composite of reactions,
where we use the CSP algebraic operators ‖ and ||| to specify composite
behavior.

• Composition is generalized from data flow to arbitrary interaction schemes,
such as, (a-)synchronous, connection(less), (uni/multi-)cast, and
(2/N-)party rendezvous.

As a result, in place of the simple algebraic model 〈C , ❀〉 we have 〈R,
an

❀| an ∈ E 〉, where,
in place of components, we have reactions R, and in place of the single operator ❀, we have
a set of operators an

❀, one for each interaction scheme a defined for an environment E , where
the operators may have arbitrary arity (i.e., interactions may involve an arbitrary number of
parties).

So, for example, from Figure 3, the N :1 interaction a0(c0.r
�
❀ {c1.s, c2.s}) denotes the

syntactic composition of three components c0, c1, and c2, in assembly a0, on pins c0.r , c1.s
and c2.s. The interaction scheme for this composition is 	, as defined in environment type
E0. We can not tell whether �

❀ is a 2-ary (unicast) or N-ary (broadcast) operator. This and
other aspects of the semantics of this interaction must be formally specified.

3.8 Hierarchical Assembly
So far, we have described a component model that is quite flat: components can interact only
with components in the same assembly and only within a single runtime environment

14 CMU/SEI-2002-TN-026

associated with that assembly. Pin will not scale to interesting problems without introducing
some form of hierarchical composition. In fact, the algebraic model has a hierarchical
meaning, as R3 = R1 ❀ R2, for some arbitrary binary composition operator ❀ and reactions
R{1,2,3}, induces a hierarchy that is rooted at R3 and contains R1 and R2 as leaves.

Hierarchical assembly in Pin always involves treating an assembly as a component. That is,
the assembly has an interface defined in terms of source and sink pins. The correspondence
between component pins and assembly pins is established by means of assembly junctions.
Two forms of junctions are currently defined: null junctions and gateway junctions. We note
at the outset that hierarchical composition introduces many subtle complexities not generally
addressed by component technology. Many of these subtleties, by intent, lie beneath the
surface of the following discussion.

3.8.1 Null Junctions

A null junction has no behavior, hence the name. A null junction is an abstraction
mechanism that is related to the hiding operator in process algebras such as CSP and CCS.
That is, all the pins that do not appear as connected to null junctions are hidden from the
external world. This is the only form of hierarchical composition that is supported by
composition environments such as FSP [Magee 01], Koala [van Ommering 02], and Tracta
[Giannakopoulou 99] (all of these are based on the original work on Darwin [Magee 93]). The
use of null junctions is illustrated in Figure 5. In this figure, we treat a0 as a subassembly
with an interface consisting of a single sink pin a0.s and a single source pin a0.r . In this
example, a0.r is an alias for a0.c0.r , and the real connector is a2(a0.c0.r ❀ a1.c0.s1). Using
null junctions, we can treat a0 and a1 as components and write the interaction as
a2(a0.r ❀ a1.s1).

a2: E0

null junction

outermost
assembly

null
junctions

a0:E0

a1:E0

C0 �r �
[r]

� s2
� s:t C1

� s:t C2

�r1

�
[r2]

C3� r1s:t �

�

� s1:t

CONSOLE

r0s2

s1

�

��

C0C0 �r �
[r]

�� s2
� s:t C1C1

� s:t C2C2

�r1

�
[r2]

C3C3� r1s:t �

�

� s1:t

CONSOLE

r0s2

s1

�

���

C0 �r �
[r]

� s2
� s:t C1

� s:t C2

�r1

�
[r2]

C3� r1s:t �

�

�
CLOCK

� s1:t

CONSOLE

s

r

�

�

C0C0 �r �
[r]

� s2
� s:t C1C1

� s:t C2C2

�r1

�
[r2]

C3C3� r1s:t �

�

�
CLOCK

� s1:t

CONSOLE

s

r

��

�

Figure 5: Intra-Assembly Hierarchy with Null Junctions

CMU/SEI-2002-TN-026 15

Hierarchical assembly using null junctions is useful strictly for analysis purposes when there
is a defined equivalence relation that permits one assembly to be replaced by another that is
behaviorally equivalent with respect to some property. For example, various trace-based
equivalences are defined for CSP and denoted as refinement relations; in CCS, there are
various observational equivalences, denoted as simulation relations. Variations of refinement
and simulation preserve different kinds of properties. Given an equivalence relation that
preserves the property of, say, deadlock freedom, we can be sure that a demonstrably
deadlock free assembly can be replaced with an assembly that is behaviorally equivalent with
respect to deadlock, but whose behavioral model is otherwise more abstract.

Note that the assemblies in Figure 5 are all of environment type E0. The stipulation that null
junctions have no behavior means that they do not introduce interactions; they introduce
only aliases. This means that the null connectors used in a2(a0.r ❀ a1.s1) can be used only
to connect assemblies having the same environment type, in the context of an enclosing
assembly of that same environment type. This restriction is relaxed by gateway junctions.

3.8.2 Gateway Junctions

Assemblies in different types of environments are composed using gateway junctions. Unlike
null junctions, gateway junctions do have behavior. Their purpose is to provide a bridge from
the interaction schemes (and connectors) defined in one environment type to those defined in
some other environment type. The main idea is illustrated in Figure 6, which recasts the
previous illustration (Figure 5) so that assemblies a0 and a1 have different environment
types, E0 and E1, respectively and are composed in an assembly having a still different
environment type, E2. Strictly speaking, it is possible for E0 = E1; however, for gateways to
make sense, E0 �= E2 and E1 �= E2.

C0 �r �[r]

� s2
� s:t C1

� s:t C2

�r1

�
[r2]

C3� r1s:t �

�

�
CLOCK

� s1:t

CONSOLE

s2

r1

�

� Y
Z

Y
Z�

s1

�
r2

C0C0 �r �[r]

�� s2
� s:t C1C1

� s:t C2C2

�r1

�
[r2]

C3C3� r1s:t �

�

�
CLOCK

� s1:t

CONSOLE

s2

r1

��

� Y
Z
Y
Z
Y
Z

Y
Z
Y
Z
Y
Z�

s1

�
r2 a2: E2

gateway

a0: E0

a1: E1

gateway

�

�r �[r]

� s2
� s:t

� s:t
�r1

�
[r2]

� r1s:t �

�

� s1:t

CONSOLE

r1

r2
s� ���

��

�� �
r0

�
s1

s2

�

C0

C2

C1 C3

��

�r �[r]

� s2
� s:t

� s:t
�r1

�
[r2]

� r1s:t �

�

� s1:t

CONSOLE

r1

r2
s� �������

������

������ �
r0

��
s1

s2

�

C0C0

C2C2

C1C1 C3C3

Figure 6: Intra-Assembly/Inter-Assembly Hierarchy with Gateways

16 CMU/SEI-2002-TN-026

In the example in Figure 6, the gateway a0.r2 translates �
❀ interactions, as they are defined

in environment type E0, to �
❀ interactions, as they are defined in environment type E2. The

interaction a2(a0.r2 ❀ a1.s1) is enabled using an operator (connector) �
❀ defined in

environment type E2.

From the composition perspective, the interactions between a0 and a1 are semantically
indistinguishable from those that would arise if either or both a0 and a1 were components
native to E2 and not assemblies that had been transplanted, via gateways, into E2.

The notion of composition across heterogeneous environment types is quite similar to what
Szyperski described as tiered frameworks [Szyperski 97]. Terminology and other subtle
distinctions aside, it is surprising that there are, as far as the authors know, no commercial or
research component technologies (other than Pin) that realize this idea.

CMU/SEI-2002-TN-026 17

18 CMU/SEI-2002-TN-026

4 Formal Model of CL

The formal model for the behavioral semantics of CL is based on the CSP process algebra
[Hoare 85, Roscoe 98]. CSP is used to describe the behavior of components, as well as the
interactions among them.

4.1 Conceptual Model
One goal of compositional reasoning is to combine the behavior of interacting components to
produce a single description that explains the behavior of the composition. Figure 7 shows a
simple way that composition could be approached in CL. The behaviors of components c1

and c2 are specified as CSP processes Pc1 and Pc2 , respectively. Pins show up in these
processes as CSP events, and two processes interact whenever they synchronize on an event.
The simplest form of composition would be to put these processes in parallel over the events
representing pins, defining the composition as Pc1 ‖ Pc2 .

P Pc1 c2

Figure 7: A Simple Approach to Composition Semantics

This approach is too simple though. It represents all interactions as synchronizations of
source pin events with sink pin events, that is, synchronous communication. In practice,
components communicate using several different types of communication, and the differences
matter.

Figure 8 illustrates a more flexible way to model composition. c1 and c2 have CSP behavior
specifications as above, but rather than composing them directly, an additional CSP process
is interposed to represent the semantics of different types of interactions.

P
Source
Glue

SoG(r)

Connection
Conn(r,s)

Sink
Glue

SiG(s)
Pc1 c2

Figure 8: Use of Glue to Model Interaction Behavior

The CSP process representing interaction semantics is structured as the composition of three
processes: a source glue, a sink glue, and a connection between them. The source glue
describes the interaction semantics from the source’s perspective (e.g., describing that a

CMU/SEI-2002-TN-026 19

synchronous source expects an acknowledgment as part of each interaction). The sink glue
describes the interaction semantics from the sink’s perspective (e.g., describing that
asynchronous interaction requests are queued until an asynchronous sink pin is ready for the
next request). The connection binds a particular source glue to a particular sink glue,
reflecting the topology of the interaction.

This approach, while an improvement, is incomplete since we have not yet addressed
implementation concurrency. Is concurrent activity possible within a component? Can
multiple components concurrently interact with the same sink pin of another component?

We could try to avoid these issues by dictating that all sink pins of a component be threaded
and share the same thread of execution. But this restriction is not very satisfactory: it means
that we cannot model reentrant sink pins, which explicitly permit multiple concurrent
interactions. It also means a loss of useful analysis results. Errors in concurrent systems are
often the result of race conditions among concurrent tasks, conditions that are notoriously
difficult to detect in testing. Model checking, on the other hand, is well suited to detect such
errors; but, we cannot detect them if we do not model the inherent concurrency in the first
place.

Therefore, we address implementation concurrency explicitly in our semantic model. We use
two concepts–reactions and logical threads–to structure a component’s behavior specification
in a way that models the concurrent threads of execution found in its implementation.

Each reaction has a specific interpretation in terms of the threadedness of its component. All
sink pins handled by the same thread are collected into a single reaction that defines the
behavior of that thread. Each sink pin that is not threaded is specified by its own reaction,
which defines the behavior that is executed in the caller’s thread. These interpretations lead
to the following constraints on reactions:

• Every sink pin must appear in exactly one reaction.

• A source pin may appear in more than one reaction, but every source pin
must appear in at least one reaction.

• All sink pins appearing in the same reaction must be handled by the same
thread.

• All sink pins handled by the same thread must appear in the same reaction.

However, the interpretation of reactions does not fully address reentrant sink pins. Can
multiple interactions occur concurrently on a reentrant sink pin? The answer is, of course,
yes, but modeling the reaction for a reentrant sink pin as a single CSP process does not
accurately model this concurrency.

The simplest solution is to copy the reaction N times to permit up to N concurrent
interactions involving a reentrant sink pin. We call each such copy of a reaction a logical
thread. For reentrant sink pins, many logical threads may correspond to the same reaction.
For all other reactions, exactly one logical thread corresponds to each reaction.

A logical thread is a CSP process modeling a thread of execution that is implemented by the
component, regardless of whether that thread of execution occurs on a thread managed by

20 CMU/SEI-2002-TN-026

that component. When describing interactions among components, we use a definition of a
component’s behavior that is structured in terms of logical threads, rather than reactions.
This is a simple transformation of the user’s specification, which is structured in terms of
reactions and models the true concurrency of the component.

Alternatively, we could require that component specifications already have the correct
number of copies of reentrant sink pin reactions. But, what is the correct number of copies to
make? Unfortunately, the answer is: it depends. The number of copies should be the same as
the number of logical threads of other components that can interact with the reentrant sink
pin, and that number depends on what is in the component’s environment. Without knowing
a component’s environment, a component specifier cannot determine the number of copies to
make, and if the component is to be used in several contexts, the number will vary with
context. As such, relating reactions to logical threads is a task best performed when an
environment has been specified (i.e., when we know what other components interact with the
component), rather than when a component is specified.

Returning to the example illustrated in Figure 4, R3 is a reaction for a reentrant sink pin s4.
When the component interacts with only one other component, and that component has two
logical threads that interact with s4, there are two logical threads for pin s4, each of which is
a copy of R3.

4.2 Formal Definitions

4.2.1 Definition of Sink Pin

A sink pin is represented as a CSP event of the same name. Use of a sink pin is represented
by a pair of these events, one denoting the initiation of an interaction on that pin (e.g., a
function being called) and the other denoting the completion of an interaction on that pin
(e.g., a function returning). Any other interactions or activities that are internal to a
component and that are performed before completing the interaction will appear as events
between those two events. Non-sink events may appear after the second occurrence of the
sink event only if the sink pin has a thread.

A reaction describing the behavior of an interaction on reentrant sink pin s that engages in
an interaction on source r before completing the interaction on sink s would be written as:
P = s → r → r → s → P . It would be illegal to put any event after the second s, since a
reentrant sink pin never has a thread.

A sink pin may represent an interaction involving in/out data parameters. This is
represented using CSP compound events, where the sink pin name is the name of the
channel, and data parameters are data components appended to the channel using normal
CSP conventions (i.e., e!x represents event e that supplies data value x , and e?y represents
event e that accepts a data value y).

The first occurrence of a sink event in a reaction may include input data parameters (e.g.,
s?x?y), but may not include output data parameters. The second occurrence of a
synchronous sink event in a reaction may include output data parameters (e.g, s!x !y), but

CMU/SEI-2002-TN-026 21

may not include input data parameters. The second occurrence of an asynchronous sink
event may not include any data parameters.

4.2.2 Definition of Source Pin

A source pin is also represented as a CSP event of the same name. Use of a source pin is
represented by a pair of these events, one denoting the initiation of an interaction on that pin
(e.g., calling a function) and the other denoting the completion of an interaction on that pin
(e.g., the return of the function). No other events may appear between these two events.

A reaction describing the behavior of an interaction on sink pin s that engages in an
interaction on source r before completing the interaction on sink s would be written as:
P = s → r → r → s → P . It would be illegal to put any event between the two occurrences
of r in the reaction.

As with sink pins, source pins may represent an interaction involving in/out data parameters,
and the same CSP representation is used. The first occurrence of a source event in a reaction
may include output data parameters (e.g., r !x !y), but may not include input data
parameters. The second occurrence of a synchronous source event in a reaction may include
input data parameters (e.g., r?x?y), but may not include any output data parameters. The
second occurrence of an asynchronous source event may not include data parameters.

4.2.3 Definition of Reaction

A reaction is represented as a CSP process. The initial set of events accepted by that process
should be the sink pins described by the reaction. Reactions are transformed into logical
threads when a component is composed with other components (i.e., when the environment
of the component is known).

4.2.4 Definition of Logical Thread

A logical thread, which is represented as a CSP process, is a copy of a reaction that executes
in a particular context. A reaction for a component’s thread will equal a logical thread. A
reaction for a reentrant sink pin may be transformed into multiple logical threads, one per
context that can interact with the pin.

4.2.5 Definition of Component

A component is represented by the 3-tuple 〈S, R, P〉 defined below.

• S is the set of the component’s sinks.

• R is the set of the component’s sources.

• P is the component’s behavior, specified as a CSP process. P is structured
as the composition (using ‖ or |||) of the component’s reactions together
with any auxiliary CSP processes needed to coordinate the reactions (e.g.,

22 CMU/SEI-2002-TN-026

to model a lock used by multiple reactions). An auxiliary CSP process is
defined to be any process that does not refer to any of the component’s
pins.

4.2.6 Definition of Assembly

An assembly is represented by the 4-tuple 〈AC, top, T , threadmap〉 defined below.

• AC is the finite set of components in the assembly. No two components
within an assembly can have the same name.

• top is the finite set of 〈source pin, sink pin〉 pairs defining the assembly’s
topology. Each pair represents a source pin that interacts with a sink pin.
The value of top is supplied by the component assembler, but must
conform to the following constraints:

∀(ci .r , cj .s) ∈ top • ci �= cj ∧ r ∈ ci .R ∧ s ∈ cj .S
That is, every connection must be between a source pin and a sink pin of
two different components.

∀ ci .r , cj .si • ((ci .r , cj .si) ∈ top ∧ Synchronous(ci .r)) ⇒
(¬∃ ck , sj • (ci .r , ck .sj) ∈ top ∧ ck .sj �= cj .si))

That is, if a source pin is synchronous, it cannot be connected to more
than one sink pin.

• T is the finite set of 〈pin, logical thread〉 pairs defining the concurrency of
pins in the assembly. Each pair represents a logical thread of the pin’s
component that can interact via the pin. The value of T is calculated
based on components’ reactions and an understanding of the threadedness
of the components’ environments, and satisfies the following constraints:

∀(c.p, c.t) ∈ T • p ∈ (c.S ∪ c.R) ∧ t is a logical thread of c

That is, each logical thread of a component interacts only via pins of that
component.

∀ c.p • (p ∈ c.S ∧ p is not reentrant) ⇒ (#{t | (c.p, c.t) ∈ T } = 1)

That is, all sink pins that are not reentrant have exactly one logical thread.

• threadmap is a finite set of 〈logical thread , logical thread〉 pairs. Each pair
represents a logical thread of one component that interacts (via source and
sink pins) with a logical thread of another component. Like T , the value of
threadmap is calculated based on components’ reactions and an
understanding of the threadedness of the components’ environments. The
calculated value of threadmap must satisfy the following constraints:

∀(ci .ti , cj .tj) ∈ threadmap • ∃ r , s • (ci .r , cj .s) ∈ top ∧ (ci .r , ci .ti) ∈ T ∧
(cj .s, cj .tj) ∈ T

That is, every mapping between logical threads must be between logical
threads of two different components and must correspond to the logical
threads of a pair of pins connected in top.

CMU/SEI-2002-TN-026 23

∀ ci .r , cj .s, ci .ti • (r ∈ ci .R ∧ (ci .r , ci .ti) ∈ T ∧ (ci .r , cj .s) ∈ top) ⇒
(∃ cj .tj • (ci .ti , cj .tj) ∈ threadmap ∧ (cj .s, cj .tj) ∈ T)

That is, every logical thread for a source pin that interacts with some sink
pin must be mapped to at least one logical thread of that sink pin.

∀ ci .r , cj .s, cj .tj • (s ∈ cj .S ∧ (cj .s, cj .tj) ∈ T ∧ (ci .r , cj .s) ∈ top) ⇒
(∃ ci .ti • (ci .ti , cj .tj) ∈ threadmap ∧ (ci .r , ci .ti) ∈ T)

That is, every logical thread for a sink pin that interacts with some source
pin must be mapped to at least one logical thread of that source pin.

∀ ci .r , cj .s, cj .tj • (s ∈ cj .S ∧ (cj .s, cj .tj) ∈ T ∧ cj .s is a reentrant sink pin ∧
(ci .r , cj .s) ∈ top) ⇒ (∃ ci .ti • (ci .ti , cj .tj) ∈ threadmap ∧ (ci .r , ci .ti) ∈ T ∧
∀ ck .tk • (ck .tk , cj .tj) ∈ threadmap ⇒ (ck .tk = ci .ti))

That is, every logical thread for a reentrant sink pin that interacts with
some source pin must be mapped to exactly one logical thread.

4.2.7 Definition of Interaction

An interaction is defined in the context of a particular assembly and is represented by a
〈source pin, sink pin〉 pair that is an element of top. Source r of component ci is the source
pin participating in the interaction. Sink s of component cj is the sink pin participating in
the interaction.

4.3 Composition Semantics
When composing two components, c1 and c2, we define the semantics using the CSP parallel
composition of their behavior specifications, Pc1 and Pc2 . However, as mentioned earlier, it’s
not as simple as defining the composition to be Pc1 ‖ Pc2 . There are other important issues
to consider.

First, we need to transform Pc1 and Pc2 from compositions of reactions to compositions of
logical threads. Then, we need to carefully plan the synchronization between CSP processes
such that synchronization occurs only on certain events. To accomplish this, we apply an
event-renaming convention that gives different names to events that should not be
synchronized. Finally, we need to interpose CSP processes that model the behavior of the
different types of interactions that can occur between components.

The following subsections address these topics. We start by addressing the necessary
transformations to component behavior descriptions (i.e., reaction to logical thread
transformation and event renaming). This is followed by formally defining the different types
of interactions between a source pin and a sink pin. Finally, we present the general model for
defining the behavior of an assembly of components with an arbitrary finite set of
interactions.

24 CMU/SEI-2002-TN-026

4.3.1 Composition Semantics: Components

As mentioned earlier, a component is described by a CSP behavior specification Pc , which is
structured in terms of CSP processes modeling its reactions. This behavior specification
needs to be transformed in two ways to exhibit the correct semantics when combined in an
interaction or assembly.

First, we need to transform reactions into logical threads. For reactions that do not model
reentrant sink pins, the logical thread is equal to the reaction. For reactions that model a
reentrant sink pin, we need to replace the reaction with N copies of the reaction, each of
which is a distinct logical thread and models the possibility of a different concurrent
interaction with the sink pin. For the reaction for reentrant sink pin c.s,
N = #{t | (c.s, c.t) ∈ T }.

For example, consider the composition illustrated in Figure 9. The reaction of reentrant sink
pin s of component c1 is given by Rs = s → x → x → s → Rs . The behavior specification of
the sink pin’s component is defined as Pc1 = Rs ||| Rt , where Rt is another reaction of the
component that handles non-reentrant sink pin t . In this assembly, c1 is composed with c2.
c2 has two logical threads that use a source pin connected to c1’s reentrant sink pin;
consequently, we need two copies of the reaction that handles activity on reentrant sink pin s
(i.e., two logical threads). The transformed behavior of c1 could be rewritten as
P ′

c1
= (|||t∈{t1,t2} t : Rs) ||| Rt . This process has two copies of Rs , each with a different prefix

corresponding to a different logical thread.3

s

t

Rs = s ��� ��� ��� Rs

Rt = t ��� ��� ��� Rt

Pc1 = Rs ||| Rtc1

�

�
x �

a

b
c

Ra = a ��� ��� ��� ��a

Rb = b ��� ��� ��� Rb

Pc2 = Ra ||| Rbc2

�

�
�

a:E

Figure 9: Composition of Two Components

Second, we need to apply an event-renaming convention to Pc1 to ensure proper
synchronization. We use a convention that gives each pin used by each component’s logical
thread a unique name. For example, a source pin that is used by two different logical threads
is renamed by prefixing the name of the source pin with the name of the component and
logical thread in which it used. Thus, each logical thread has its own copy of the event (e.g.,
c1.t1.s and c1.t2.s).

Event renaming is important when c is composed with another component. Interactions on a

3 This is a simplification. By relabeling all events in Rs with a prefix unique to the logical thread, problems
could be introduced if Rs contains any events that are internal to the component. For example, if several
logical threads use an internal event to coordinate access to a shared resource within the component, rela-
beling this event differently in each logical thread would incorrectly eliminate synchronization among the
logical threads.

CMU/SEI-2002-TN-026 25

source pin that occur in one logical thread must be distinguished from interactions on the
same source pin occurring in other logical threads. In particular, if the source pin uses input
and output data parameters, we must distinguish between two interactions to correctly
associate related input and output data parameters.

For a given logical thread, c.t , which is a transformation of reaction R, the behavior of
logical thread c.t is defined by the process LTt , where

LTt = R [∀ p ∈ (c.S ∪ c.R) • c.t .p\p,∀ e ∈ (αR \ (c.S ∪ c.R)) • c.p\p]

Formally, we define the fully transformed behavior specification of component c as P ′
c , where

P ′
c is produced by making substitutions in Pc . As mentioned earlier, Pc is required to be

structured as a composition of CSP processes, including both reactions and auxiliary CSP
processes. In deriving P ′

c , we retain the original composition semantics (the choice of
combining CSP processes using ‖ or |||) among the CSP processes, but we transform each
reaction into its corresponding logical thread(s). To do this, we iterate through each CSP
process P in the composed process Pc and make the following substitution:

• If the process represents a reaction, R, that does not describe the behavior
of a reentrant sink pin, substitute LTt for R.

• If the process represents a reaction, R, that describes the behavior of
reentrant sink pin c.s, substitute |||t |(c.s,c.t)∈T LTt for R.

• If the process represents an auxiliary process, substitute P for P (i.e.,
make no change).

4.3.2 Composition Semantics: Interactions

Interaction ci .r ❀ cj .s is a connection between source r of component ci and sink s of
component cj . Formally, we represent such an interaction as

I (ci .r , cj .s) = P ′(ci) ‖ Glue(ci .r , cj .s) ‖ P ′(cj)

where Glue(ci .r , cj .s) is a process that describes the semantics of the interaction shared
between ci .r and cj .s, and is defined as

Glue(ci .r ,cj .s) = SoG(ci .r) ‖
(|||ti ,tj |(ci .r ,ci .ti)∈T ∧(cj .s,cj .tj)∈T ∧(ci .ti ,cj .tj)∈threadmap Conn(ci .r , ci .ti , cj .s, cj .tj))
‖ SiG(cj .s)

where SoG(ci .r), the source glue for source r of component ci , is the process that defines the
interaction semantics from the source’s perspective (e.g., describing that a synchronous source
expects an acknowledgment as part of each interaction). It takes into account that there
might be multiple logical threads in ci on which interactions on r might occur concurrently.

SiG(cj .s), the sink glue for sink s of component cj , is the process that defines the interaction
semantics from the sink’s perspective (e.g., describing that asynchronous interaction requests
are queued until an asynchronous sink pin is ready for the next request). It takes into

26 CMU/SEI-2002-TN-026

account that there might be multiple logical threads in cj on which interactions on s might
occur concurrently.

Conn(ci .r , ci .ti , cj .s, cj .tj) is the process that binds one logical thread ci .ti of a source r of
component ci to one logical thread cj .tj of a sink s of component cj . This binding is
accomplished by matching left events shared with a particular source glue to right events
shared with a particular sink glue.

The semantics of an interaction vary with the type of interaction, so SoG(ci .r), SiG(cj .s),
and Conn(ci .r , ci .ti , cj .s, cj .tj) are defined differently depending on whether each interaction
is reentrant, mutex, or asynchronous.

Reentrant Interactions

The process definitions for reentrant interactions are as follows:

SoG(ci .r) = |||ti |(ci .r ,ci .ti)∈T SoG(ci .r , ci .ti)
SoG(ci .r , ci .ti) = ci .ti .r → ci .ti .r .left → ci .ti .r .left → ci .ti .r → SoG(ci .r , ci .ti)
Conn(ci .r , ci .ti , cj .s, cj .tj) = ci .ti .r .left → cj .tj .s.right → cj .tj .s.right → ci .ti .r .left →

Conn(ci .r , ci .ti , cj .s, cj .tj)
SiG(cj .s) = |||tj |(cj .s,cj .tj)∈T SiG(cj .s, cj .tj)
SiG(cj .s, cj .tj) = cj .tj .s.right → cj .tj .s → cj .tj .s → cj .tj .s.right → SiG(cj .s, cj .tj)

For reentrant interactions, the mapping between logical threads of a source pin and logical
threads of a sink pin is one to one. As such, we could uniquely identify right events to the
sink glue either by prefixing them with source pin information (component, logical thread,
and pin names) or by prefixing them with sink pin information. We opt for sink pin
information as it allows a simpler SiG(cj .s) process definition.

Mutex Interactions

The process definition of SoG(ci .r) for mutex interactions is the same as for the reentrant
case. The remaining process definitions for mutex interactions are as follows:

Conn(ci .r , ci .ti , cj .s, cj .tj) = ci .ti .r .left → ci .ti .r .right → ci .ti .r .right → ci .ti .r .left →
Conn(ci .r , ci .ti , cj .s, cj .tj)

SiG(cj .s) = SiG(cj .s, cj .tj), where tj = the only element of {t | (cj .s, cj .t) ∈ T }
SiG(cj .s, cj .tj) = WaitRight(cj .s, cj .tj)<>

WaitRight(cj .s, cj .tj)<> = ✷
ci .r |(ci .r ,cj .s)∈top

ci?ti !r !right → cj .tj .s →
WaitRight(cj .s, cj .tj)<ci .ti .r>

WaitRight(cj .s, cj .tj)
Q�<x .y.z>

= (✷
ci .r |(ci .r ,cj .s)∈top

ci?ti !r !right →
WaitRight(cj .s, cj .tj)

<ci .ti .r>�Q�<x .y.z>
)

✷ cj .tj .s → x .y .z .right → Next(cj .s, cj .tj)Q
Next(cj .s, cj .tj)<> = WaitRight(cj .s, cj .tj)<>

Next(cj .s, cj .tj)
Q�<x .y.z>

= cj .tj .s → WaitRight(cj .s, cj .tj)
Q�<x .y.z>

For mutex interactions, the mapping between logical threads of a source pin and logical
threads of a sink pin is many to one since there is always exactly one sink logical thread. As

CMU/SEI-2002-TN-026 27

such, to uniquely identify right events to the sink glue, we must prefix them with source pin
information.

Note that we have modeled the queue of waiting interactors as a FIFO queue. Other queuing
policies are possible and could be introduced as variants of SiG(cj .s).

Asynchronous Interactions

The process definitions for asynchronous interactions are a little more complicated, because it
is possible to connect an asynchronous source pin to multiple asynchronous sink pins.
Whenever a source is connected to multiple sinks, the semantics call for the source to interact
with all the connected sinks, not just a subset of them. Further, the interaction represents a
sequence of two-way interactions, not a single N-way interaction.

Below, we define two alternative meanings for such an interaction. The first meaning, which
we call non-deterministic, leaves the order of two-way interactions unspecified. The order can
be different each time the source pin is activated. The second meaning, which we call
deterministic, allows the order to be explicitly specified and so is the same each time the
source pin is activated.

Non-Deterministic Semantics. The non-deterministic semantics are presented below:

SoG(ci .r) = |||ti |(ci .r ,ci .ti)∈T SoG(ci .r , ci .ti)
SoG(ci .r , ci .ti) = ci .ti .r → SendAll(ci .r , ci .ti)conns ; ci .ti .r → SoG(ci .r , ci .ti)
SendAll(ci .r , ci .ti)∅ = Skip
SendAll(ci .r , ci .ti)S = �

(cj .s,cj .tj)∈S
ci .ti .r .cj .tj .s.left → SendAll(ci .r , ci .ti)S\{(cj .s,cj .tj)}

conns = {(cj .s, cj .tj) | (ci .r , cj .s) ∈ top ∧ (ci .r , ci .ti , cj .s, cj .tj) ∈ threadmap ∧
(cj .s, cj .tj) ∈ T }

Conn(ci .r , ci .ti , cj .s, cj .tj) = ci .ti .r .cj .tj .s.left → cj .tj .s.right → Conn(ci .r , ci .ti , cj .s, cj .tj)

SiG(cj .s) = SiG(cj .s, cj .tj), where tj = the only element of {t | (cj .s, cj .t) ∈ T }
SiG(cj .s, cj .tj) = WaitRight(cj .s, cj .tj)<>

WaitRight(cj .s, cj .tj)<> = cj .tj .s.right → cj .tj .s → WaitRight(cj .s, cj .tj)<s>

WaitRight(cj .s, cj .tj)
Q�<x>

= cj .tj .s.right → WaitRight(cj .s, cj .tj)
<s>�Q�<x>

✷ cj .tj .s → Next(cj .s, cj .tj)Q
Next(cj .s, cj .tj)<> = WaitRight(cj .s, cj .tj)<>

Next(cj .s, cj .tj)
Q�<x>

= cj .tj .s → WaitRight(cj .s, cj .tj)
Q�<x>

Deterministic Semantics. The component assembler must specify additional information
for this alternative. Specifically, the order in which the source will interact with each
connected sink must be specified. The following CSP processes assume that this information
is specified as a sequence of pairs 〈cj .s, cj .tj 〉 called conns. The definitions of
Conn(ci .r , ci .ti , cj .s, cj .tj) and SiG(cj .s) are the same as for the non-deterministic
alternative.

SoG(ci .r) = |||ti |(ci .r ,ci .ti)∈T SoG(ci .r , ci .ti)

28 CMU/SEI-2002-TN-026

SoG(ci .r , ci .ti) = ci .ti .r → SendAll(ci .r , ci .ti)conns ; ci .ti .r → SoG(ci .r , ci .ti)
SendAll(ci .r , ci .ti)<> = Skip
SendAll(ci .r , ci .ti)

Q�<(cj ,tj ,s)>
= ci .ti .r .cj .tj .s.left → SendAll(ci .r , ci .ti)Q

In the context of an interaction between two asynchronous pins, the mapping between logical
threads of a source pin and logical threads of a sink pin is many to one, since there is exactly
one sink logical thread. However, in the context of an assembly, the mapping is many to
many since a source pin can be connected to multiple sink pins. This means that to uniquely
identify right events to the sink glue we must prefix them with source and sink information.

Again, we have modeled the queue of waiting interactors as a FIFO queue. Other queuing
policies are possible and could be introduced as variants of SiG(cj .s). Careful inspection will
reveal that the information being queued is not used beyond keeping tracking of how many
requests are pending. This would not be the case if the interaction included input data
parameters, however, as the parameters are queued as part of the s events. This enables the
sink pin to handle different requests (i.e., those with different input parameters) in the
correct order.

4.3.3 Composition Semantics: Assemblies

The composed behavior of an assembly of a finite set of components AC with connections as
defined in top, logical thread allocation to pins as defined in T , and logical thread
connections as defined in threadmap is given by

Assembly = Components(AC) ‖ SourceGlues(AC) ‖ SinkGlues(AC) ‖ Connections(AC)
Components(AC) = |||c∈AC P ′

c

SourceGlues(AC) = |||c.r∈AllSources SoG(c.r)
AllSources = {c.r | c ∈ AC ∧ r ∈ c.R}
SinkGlues(AC) = |||c.s∈AllSinks SiG(c.s)
AllSinks = {c.s | c ∈ AC ∧ s ∈ c.S}
Connections(AC) = |||(ci .r ,cj .s)∈top Conns(ci .r , cj .s)
Conns(ci .r ,cj .s) =

|||ti ,tj | (ci .ti ,cj .tj)∈threadmap∧(ci .r ,ci .ti)∈T ∧(cj .s,cj .tj)∈T Conn(ci .r , ci .ti , cj .s, cj .tj)

The correct versions of SoG(ci .r), Conn(ci .r , ci .ti , cj .s, cj .tj), and SiG(cj .s) must be used for
each interaction between a pair of pins.

CMU/SEI-2002-TN-026 29

30 CMU/SEI-2002-TN-026

5 Compositional Minimization

The previous section presented simple definitions of composition. The general form has been
to combine the behavior specifications for the interacting components with the behavior
specifications for the glue representing different types of interaction. This general form
results in models that are typically larger than necessary. For example, often, some of a
component’s behavior is irrelevant to a composition, because not all sink pins are stimulated.
This section presents a series of modified composition definitions. Each one attempts to
eliminate unnecessary CSP process descriptions.

One common pattern in eliminating CSP process descriptions is to restrict the process
description of a component to include only some of the logical thread processes of which the
component is composed. The restriction of component process description Pc to a set of
logical threads T , Pc�T , is defined by transforming Pc as follows:

Iterate through each CSP process of which Pc is composed; for each process P
• If P represents a logical thread t and t ∈ T , leave P unchanged.

• If P represents a logical thread t and t /∈ T , replace P with NOTHING .

• If P represents an auxiliary process and ∃ t ∈ T • αP ∩ αt �= ∅, leave P
unchanged.

• If P represents an auxiliary process and ∀ t ∈ T • αP ∩ αt = ∅, replace
P with NOTHING .

All processes remain connected by their original composition operators (i.e., ‖ or |||).

Next, iterate through the composition and collapse the expression by applying the following
two rules:

• P ‖ NOTHING = P

• P ||| NOTHING = P

The result is the value of Pc �T .

The above technique is algorithmic for reasons of simplicity. We considered options that
would replace processes with Stop or Run, but none could be applied as uniformly as the
algorithmic solution. While P ‖ RunαP = P , P ||| RunαP = RunαP . Likewise, while
P ||| StopαP = P , P ‖ StopαP = StopαP . Consequently, tool support would be used to
produce definitions for processes of the form Pc �T , much as tool support would be used to
produce definitions for P ′

c .

5.1 Compositional Minimization: Interactions
A more compact representation can be produced using the following redefinition of
I (ci .r , cj .s):

I (ci .r , cj .s) = (P ′
ci �Tci .r) ‖ MinGlue(ci .r , cj .s) ‖ (P ′

cj �Tcj .s)

CMU/SEI-2002-TN-026 31

Tci .r is the set of logical threads of ci that can participate in interactions via source pin r .
Tcj .s is the set of logical threads of cj that can participate in interactions via sink pin s. Tci .r

and Tcj .s are calculated as the union of those logical threads directly involved (Tinv) in
interactions on a pin and those logical threads interacting (Tint) with the logical threads
directly involved. Interacting logical threads are those that can influence the behavior of the
involved logical threads directly or indirectly. interacts is a relation specifying those logical
threads that interact with each other by synchronizing on one or more internal, non-pin
events. Tci .r and Tcj .s are formally defined as

Tci .r= Tinv ∪ Tint , where
Tinv = {ti | (ci .r , ci .ti) ∈ T ∧ ∃ tj • (cj .s, cj .tj) ∈ T ∧ (ci .ti , cj .tj) ∈ threadmap}
Tint = {ti ∈ (Tall \ Tinv) | ∃ tj ∈ Tinv • (ti , tj) ∈ interacts+}
Tall =

⋃
si∈ci .S{t | (ci .si , ci .t) ∈ T }

interacts = {ti , tj ∈ Tall | ti �= tj ∧ ∃ e • e ∈ (αti ∩ αtj) ∧ e /∈ (ci .R∪ ci .S)}

Tcj .s = Tinv ∪ Tint , where
Tinv = {tj | (cj .s, cj .tj) ∈ T ∧ ∃ ti • (ci .r , ci .ti) ∈ T ∧ (ci .ti , cj .tj) ∈ threadmap}
Tint = {ti ∈ (Tall \ Tinv) | ∃ tj ∈ Tinv • (ti , tj) ∈ interacts+}
Tall =

⋃
si∈cs .S{t | (cs , si , t) ∈ T }

interacts = {ti , tj ∈ Tall | ti �= tj ∧ ∃ e • e ∈ (αti ∩ αtj) ∧ e /∈ (cj .R∪ cj .S)}

MinGlue(ci .r , cj .s) =(|||ti | (ci .r ,ci .ti)∈T ∧∃ tj •(cj .s,cj .tj)∈T ∧(ci .ti ,cj .tj)∈threadmap SoG(ci .r , ci .ti)) ‖
(|||ti ,tj | (ci .r ,ci .ti)∈T ∧(cj .s,cj .tj)∈T ∧(ci .ti ,cj .tj)∈threadmap Conn(ci .r , ci .ti , cj .s, cj .tj)) ‖
(|||tj | (cj .s,cj .tj)∈T ∧∃ ti•(ci .r ,ci .ti)∈T ∧(ci .ti ,cj .tj)∈threadmap SiG(cj .s, cj .tj))

Note that the specifications of Tint above are not perfect. The form specified is correct in
that it will not leave out logical threads that could interact with the involved logical threads.
But, it may include logical threads that do not interact with the involved logical threads.
Ideally, a logical thread should be included in Tint only if it contains an event in its alphabet
that is also used by a member of Tinv and the two logical threads are composed using a ‖
operator. Logical threads composed using the ||| operator cannot, by definition, interact, and
therefore should not be retained.

5.2 Compositional Minimization: Reentrant
Interactions

Since reentrant interactions always map logical threads of the source pin’s component to
logical threads of the sink pin’s component in a one-to-one manner, we can actually do away
with the sink and source glues. All we need is a simple process connecting a source pin
directly to a sink pin, for example

SoG(ci .r) = NOTHING
SoG(ci .r , ci .ti) = NOTHING
Conn(ci .r , ci .ti , cj .s, cj .tj) = ci .ti .r → cj .tj .s → cj .tj .s → ci .ti .r → Conn(ci .r , ci .ti , cj .s, cj .tj)
SiG(cj .s) = NOTHING
SiG(cj .s, cj .tj) = NOTHING

32 CMU/SEI-2002-TN-026

As when producing a restriction (e.g., P ′
c �T), the resulting CSP expression (an interaction

composition or assembly composition) should be reduced using the following rules:

P ‖ NOTHING = P
P ||| NOTHING = P

5.3 Compositional Minimization: Assemblies
The simple composition semantics for assemblies given earlier can include more information
than is necessary. For example, sink glues would be included for sinks that are not
stimulated. We can certainly figure out which sinks are not connected to any sources and
exclude their behavior, but we can actually take this idea a bit further. We should also take
into account which sinks can be stimulated by the assembly’s environment.

We use the set EnvSinks to represent which logical threads of which sink pins the
environment is allowed to stimulate. EnvSinks is a set of (sink pin, logical thread) pairs. The
value of EnvSinks is supplied by the component assembler, but must conform to the
constraint: EnvSinks ⊂ T . That is, every pair is well defined, also appearing in T , the set of
allocated logical threads of the assembly.

Given this information, we can determine which logical threads can be stimulated directly or
indirectly within that environment. The set of mappings between logical threads that can be
stimulated is usable, which is defined as

usable = {(ci .ti , cj .tj) ∈ threadmap | ∃(c.s, c.t) ∈ EnvSinks • ((c.t = ci .ti) ∨
(c.t , ci .ti) ∈ threadmap+))

That is, a logical thread of a component can be stimulated only if it can be stimulated
directly by the environment or is connected transitively back to a logical thread that can be
stimulated directly by the environment. Only the subset of logical thread mappings from
threadmap for which the source pin’s logical thread can be stimulated is included in usable.

Using EnvSinks and usable, we define a more compact Assembly CSP process as

Assembly = Components(AC) ‖ SourceGlues(AC) ‖ SinkGlues(AC) ‖ Connections(AC)

Components(AC) = |||c∈AC P ′
c �Tc

Tc= Tinv ∪ Tint

Tinv = {t | ∃ ci .ti • (ci .ti , c.t) ∈ usable} ∪ {t | ∃ p • (c.p, c.t) ∈ EnvSinks}
Tint = {ti ∈ (Tall \ Tinv) | ∃ tj ∈ Tinv • (ti , tj) ∈ interacts+}
Tall =

⋃
s∈c.S{t | (c.s, c.t) ∈ T }

interacts = {ti , tj ∈ Tall | ti �= tj ∧ ∃ e • e ∈ (αti ∩ αtj) ∧ e /∈ (c.R∪ c.S)}

SourceGlues(AC) = |||c.r∈AllSources SoGlue(c.r)
AllSources = {c.r | c ∈ AC ∧ r ∈ c.R ∧ ∃ cj .s • (c.r , cj .s) ∈ top}
SoGlue(c.r) = |||ti | (c.r ,c.ti)∈T ∧∃ cj .tj •(c.ti ,cj .tj)∈usable SoG(c.r , c.ti)

CMU/SEI-2002-TN-026 33

SinkGlues(AC) = |||c.s∈AllSinks SiGlue(c.s)
AllSinks = {c.s | c ∈ AC ∧ s ∈ c.S ∧ ∃ ci .r • (ci .r , c.s) ∈ top}
SiGlue(c.s) = |||tj | (c.s,c.tj)∈T ∧∃ ci .ti•(ct .ti ,c.tj)∈usable SiG(c.s, c.tj)

Connections(AC) = |||(ci .r)∈AllSources,(cj .s)∈AllSinks | (ci .r ,cj .s)∈top Conns(ci .r , cj .s)
Conns(ci .r , cj .s) = |||ti ,tj | (ci .r ,ci .ti)∈T ∧(cj .s,cj .tj)∈T ∧(ci .ti ,cj .tj)∈usable Conn(ci .r , ci .ti , cj .s, cj .tj)

We have restricted the composition to include only behavior that can be stimulated, directly
or indirectly, by the assembly’s environment. This is accomplished using a combination of
techniques:

• usable, the constrained version of threadmap, only contains mappings
between logical threads that can be stimulated in a particular environment,
as given by EnvSinks. This constraint is key to the other restrictions.

• The restriction P ′
c �Tc removes logical threads that cannot be stimulated

from components’ behavior descriptions.

• The use of usable in the quantified ||| operators in the definitions of
SoGlue(ci .r), SiGlue(cj .s), and Conn(ci .r , cj .s) prevents glues and
connections from being included for logical threads that cannot be
stimulated when the assembly is used in a particular environment.

5.4 Compositional Minimization: Further
Optimizations

The previous sections outlined some simple state-space minimization techniques to illustrate
possibilities. We are well aware that many other techniques are likely applicable; this is an
area we continue to explore.

There are also more opportunities to simplify the CSP we have defined for interaction
semantics. For example, we are considering whether the Conn process interposed between
source and sink glues is really necessary. If we can handle the binding of sources’ logical
threads to sinks’ logical threads in sink glue processes (SiGs), we should be able to remove
Conn and reduce the size of generated state spaces a bit more.

Further state-space reduction would be possible when we employ a model checker to verify
such descriptions. In particular, we would like to use well-proven techniques such as
partial-order reduction, assume-guarantee reasoning, and efficient state-space representations
such as ordered binary decision diagrams (OBDDs) for verifying assembly specifications.

34 CMU/SEI-2002-TN-026

6 Examples

The following sections present some simple examples to illustrate the semantics of CL that
have been presented.

6.1 Example of Simple Reentrant Interaction
Component c1 has two sinks, x and y ; both of which are mutex sinks. It has one source, r ,
which is a synchronous source. c1.S = {x , y}. c1.R = {r}.

Component c2 has one sink, s, which is a reentrant sink. It has one source, z , which is a
synchronous source. c2.S = {s}. c2.R = {z}.

Source r is connected to sink s, meaning that top = {(c1.r , c2.s)}. A diagram showing this
assembly is shown in Figure 10.

�r
x

c1 c2� zs�
y� �

a:E

Figure 10: Reentrant Interaction c1.r ❀ c2.s

c1 has two reactions, one for each mutex sink. Pc1 is defined in terms of these reactions, as
follows:

Pc1 = Rx ||| Ry

Rx = x → r → r → x → Rx

Ry = y → r → r → y → Ry

The transformed version P ′
c1

is easy to produce in this case. There are no reentrant sinks, so
each reaction produces one logical thread. Specifically, Rx produces logical thread t1, and Ry

produces t2. Consequently, T for c1 only is equal to {(c1.x , c1.t1), (c1.r , c1.t1), (c1.y , c1.t2),
(c1.r , c1.t2)}. P ′

c1
is defined as

P ′
c1

= LTt1 ||| LTt2

LTt1 = Rx [∀ p ∈ {x , y , r} • c1.t1.p\p]
LTt2 = Ry [∀ p ∈ {x , y , r} • c1.t2.p\p]

c2 only has one reaction. Pc2 is defined in terms of this reaction, as follows:

Pc2 = Rs

Rs = s → z → z → s → Rs

CMU/SEI-2002-TN-026 35

However, in the context of this interaction, c2 has two logical threads (t3 and t4), one for each
logical thread in c2’s environment that can interact with s. Each logical thread is a copy of
Rs . T for c2 only is equal to {(c2.s, c2.t3), (c2.z , c2.t3), (c2.s, c2.t4), (c2.z , c2.t4)}. The
transformed version P ′

c2
is defined as

P ′
c2

= |||t | (c2,s,t)∈T LTt

LTt = Rs [∀ p ∈ {s, z} • c2.t .p\p]

The full definition of T is equal to
{(c1.x , c1.t1), (c1.r , c1.t1), (c1.y , c1.t2), (c1.r , c1.t2), (c2.s, c2.t3),
(c2.z , c2.t3), (c2.s, c2.t4), (c2.z , c2.t4)}.

There are two possible definitions of threadmap that satisfy the constraints identified earlier,
and the choice of allowable values is arbitrary. For this example, we define
threadmap = {(c1.t1, c2.t3), (c1.t2, c2.t4)}.

After filling in values particular to this interaction, Glue(c1.r , c2.s) is

Glue(c1.r , c2.s) =SoG(c1.r) ‖ (Conn(c1.r , c1.t1, c2.s, c2.t3) ||| Conn(c1.r , c1.t2, c2.s, c2.t4)) ‖
SiG(c2.s)

The composed behavior of the interaction between r and s is

I (c1.r , c2.s) = P ′
c1
‖ Glue(c1.r , c2.s) ‖ P ′

c2

Finally, below we re-present all of the CSP processes used in defining the interaction between
c1.r and c2.s after all substitutions and renaming have been performed:

I (c1.r , c2.s) = P ′
c1
‖ Glue(c1.r , c2.s) ‖ P ′

c2

P ′
c1

= LTt1 ||| LTt2

LTt1 = c1.t1.x → c1.t1.r → c1.t1.r → c1.t1.x → LTt1

LTt2 = c1.t2.y → c1.t2.r → c1.t2.r → c1.t2.y → LTt2

P ′
c2

= LTt3 ||| LTt4

LTt3 = c2.t3.s → c2.t3.z → c2.t3.z → c2.t3.s → LTt3

LTt4 = c2.t4.s → c2.t4.z → c2.t4.z → c2.t4.s → LTt4

Glue(c1.r , c2.s) =SoG(c1.r) ‖ (Conn(c1.r , c1.t1, c2.s, c2.t3) ||| Conn(c1.r , c1.t2, c2.s, c2.t4)) ‖
SiG(c2.s)

SoG(c1.r) = SoG(c1.r , c1.t1) ||| SoG(c1.r , c1.t2)
SoG(c1.r , c1.t1) = c1.t1.r → c1.t1.r .left → c1.t1.r .left → c1.t1.r → SoG(c1.r , c1.t1)
SoG(c1.r , c1.t2) = c1.t2.r → c1.t2.r .left → c1.t2.r .left → c1.t2.r → SoG(c1.r , c1.t2)

Conn(c1.r , c1.t1, c2.s, c2.t3) = c1.t1.r .left → c2.t3.s.right → c2.t3.s.right → c1.t1.r .left →
Conn(c1.r , c1.t1, c2.s, c2.t3)

Conn(c1.r , c1.t2, c2.s, c2.t4) = c1.t2.r .left → c2.t4.s.right → c2.t4.s.right → c1.t2.r .left →
Conn(c1.r , c1.t2, c2.s, c2.t4)

36 CMU/SEI-2002-TN-026

SiG(c2.s) = SiG(c2.s, c2.t3) ||| SiG(c2.s, c2.t4)
SiG(c2.s, c2.t3) = c2.t3.s.right → c2.t3.s → c2.t3.s → c2.t3.s.right → SiG(c2.s, c2.t3)
SiG(c2.s, c2.t4) = c2.t4.s.right → c2.t4.s → c2.t4.s → c2.t4.s.right → SiG(c2.s, c2.t4)

6.2 Example of Simple Mutex Interaction
Component c1 has two sinks, x and y , both of which are mutex sinks. It has one source, r ,
which is a synchronous source. c1.S = {x , y}. c1.R = {r}.

Component c2 has one sink, s, which is a mutex sink. It has one source, z , which is a
synchronous source. c2.S = {s}. c2.R = {z}.

Source r is connected to sink s, meaning that top = {(c1.r , c2.s)}. A diagram showing this
assembly is shown in Figure 11.

�r
x

c1 c2� zs�
y� �

a:E

Figure 11: Mutex Interaction c1.r ❀ c2.s

c1 has two reactions, one for each mutex sink. Pc1 is defined in terms of these reactions, as
follows:

Pc1 = Rx ||| Ry

Rx = x → r → r → x → Rx

Ry = y → r → r → y → Ry

The transformed version P ′
c1

is easy to produce; since there are no reentrant sink pins, each
reaction produces one logical thread. Specifically, Rx produces logical thread t1, and Ry

produces t2. Consequently, T for c1 only is equal to {(c1.x , c1.t1), (c1.r , c1.t1), (c1.y , c1.t2),
(c1.r , c1.t2)}. P ′

c1
is defined as

P ′
c1

= LTt1 ||| LTt2

LTt1 = Rx [∀ p ∈ {x , y , r} • c1.t1.p\p]
LTt2 = Ry [∀ p ∈ {x , y , r} • c1.t2.p\p]

c2 has only one reaction, that for its mutex sink. Pc2 is defined in terms of this reaction as
follows:

Pc2 = Rs

Rs = s → z → z → s → Rs

The transformed version P ′
c2

is also easy to produce; since its sink is not a reentrant sink, its
reaction produces one logical thread, t3. T for c2 only is equal to {(c2.s, c2.t3), (c2.z , c2.t3)}.
P ′

c2
is defined as

CMU/SEI-2002-TN-026 37

P ′
c2

= LTt3

LTt3 = Rs [∀ p ∈ {s, z} • c2.t3.p\p]

The full definition of T is equal to {(c1.x , c1.t1), (c1.r , c1.t1), (c1.y , c1.t2), (c1.r , c1.t2),
(c2.s, c2.t3), (c2.z , c2.t3)}.

There is only one definition of threadmap that satisfies the constraints identified earlier:
threadmap = {(c1.t1, c2.t3), (c1.t2, c2.t3)}.

After filling in values particular to this interaction, Glue(c1.r , c2.s) is

Glue(c1.r , c2.s) = SoG(c1.r) ‖ (Conn(c1.r , c1.t1, c2.s, c2.t3) ||| Conn(c1.r , c1.t2, c2.s, c2.t3)) ‖
SiG(c2.s)

The composed behavior of the interaction between r and s is

I (c1.r , c2.s) = P ′
c1
‖ Glue(c1.r , c2.s) ‖ P ′

c2

Finally, below we re-present all of the CSP processes used in defining the interaction between
r and s after all substitutions and renaming have been performed:

I (c1.r , c2.s) = P ′
c1
‖ Glue(c1.r , c2.s) ‖ P ′

c2

P ′
c1

= LTt1 ||| LTt2

LTt1 = c1.t1.x → c1.t1.r → c1.t1.r → c1.t1.x → LTt1

LTt2 = c1.t2.y → c1.t2.r → c1.t2.r → c1.t2.y → LTt2

P ′
c2

= LTt3

LTt3 = c2.t3.s → c2.t3.z → c2.t3.z → c2.t3.s → LTt3

Glue(c1.r , c2.s) =SoG(c1.r) ‖ (Conn(c1.r , c1.t1, c2.s, c2.t3) ||| Conn(c1.r , c1.t2, c2.s, c2.t3)) ‖
SiG(c2.s)

SoG(c1.r) = SoG(c1.r , c1.t1) ||| SoG(c1.r , c1.t2)
SoG(c1.r , c1.t1) = c1.t1.r → c1.t1.r .left → c1.t1.r .left → c1.t1.r → SoG(c1.r , c1.t1)
SoG(c1.r , c1.t2) = c1.t2.r → c1.t2.r .left → c1.t2.r .left → c1.t2.r → SoG(c1.r , c1.t2)

Conn(c1.r , c1.t1, c2.s, c2.t3) = c1.t1.r .left → c1.t1.r .right → c1.t1.r .right → c1.t1.r .left →
Conn(c1.r , c1.t1, c2.s, c2.t3)

Conn(c1.r , c1.t2, c2.s, c2.t3) = c1.t2.r .left → c1.t2.r .right → c1.t2.r .right → c1.t2.r .left →
Conn(c1.r , c1.t2, c2.s, c2.t3)

SiG(c2.s) = SiG(c2.s, c2.t3)
SiG(c2.s, c2.t3) = WaitRight(c2.s, c2.t3)<>

WaitRight(c2.s, c2.t3)<>= ✷
ci .r∈{c1.r} ci?ti !r !right → c2.t3.s →

WaitRight(c2.s, c2.t3)<ci .ti .r>

WaitRight(c2.s, c2.t3)
Q�<x .y.z>

= (✷
ci .r∈{c1.r} ci?ti !r !right →

WaitRight(c2.s, c2.t3)
<ci .ti .r>�Q�<x .y.z>

)

38 CMU/SEI-2002-TN-026

✷c2.t3.s → x .y .z .right → Next(c2.s, c2.t3)Q
Next(c2.s, c2.t3)<> =WaitRight(c2.s, c2.t3)<>

Next(c2.s, c2.t3)
Q�<x .y.z>

=c2.t3.s → WaitRight(c2.s, c2.t3)
Q�<x .y.z>

6.3 Example of Simple Assembly
The example, shown in Figure 12, presents the modeling of a real-life scenario in Pin. The
software assembly consists of two GUIs, G1 and G2, operating on different client machines
that need the services of database server D , statistical library S , and printer P . In order to
complete its job, a GUI component gets data from D (e.g., a list of a firm’s employees and
their salaries or stock indexes over a period), uses functions from S to process it (mean,
correlation), and sends the results to printer P .

GUI
(G1)

� �

�

�

gt:t

gs

gd

gp

GUI
(G2)

� �

�

�

gt:t

gs

gd

gp

� s StatLib
(S)

� d:t DBServer
(D)

p:t PrintServer
(P)

�

simple:E

Figure 12: Simple Assembly

G1 and G2 represent GUI components, D represents the Database server, S represents the
statistical library component, and P represents the printer component.

The component specifications are

PG1 = Rg

PG2 = Rg

Rg = gt → gd → gd → gs → gs → gp → gt → Rg

PD = Rd

Rd = d → pdint → d → Rd (where pdint corresponds to internal processing)

PS = Rs

Rs = s → psint → s → Rs (where psint corresponds to internal processing)

PP = Rp

Rp = p → ppint → Rp (where ppint corresponds to internal processing)

CMU/SEI-2002-TN-026 39

T = {(G1.gt ,G1.t1), (G1.gs,G1.t1), (G1.gd ,G1.t1), (G1.gp,G1.t1), (G2.gt ,G2.t2),
(G2.gs,G2.t2), (G2.gd ,G2.t2), (G2.gp,G2.t2), (D .d ,D .t3), (P .p,P .t4), (S .s,S .t5),
(S .s,S .t6)}

The transformed processes are

P ′
G1

= LTt1

LTt1 = Rg [∀ p ∈ {gt , gd , gs, gp} • G1.t1.p\p]

P ′
G2

= LTt2

LTt2 = Rg [∀ p ∈ {gt , gd , gs, gp} • G2.t2.p\p]

P ′
D = LTt3

LTt3 = Rd [∀ p ∈ {d} • D .t3.p\p,∀ e ∈ {pdint} • D .e\e]

P ′
P = LTt4

LTt4 = Rp [∀ q ∈ {p} • P .t4.q\q ,∀ e ∈ {ppint} • P .e\e]

P ′
S = LTt5 ||| LTt6

LTt5 = Rs [∀ p ∈ {s} • S .t5.p\p,∀ e ∈ {psint} • S .e\e]
LTt6 = Rs [∀ p ∈ {s} • S .t6.p\p,∀ e ∈ {psint} • S .e\e]

threadmap = {(G1.t1,D .t3), (G2.t2,D .t3), (G1.t1,P .t4), (G2.t2,P .t4), (G1.t1,S .t5),
(G2.t2,S .t6)}

AC = {G1,G2,D ,S ,P}
Assembly = Components(AC) ‖ SourceGlues(AC) ‖ SinkGlues(AC) ‖ Connections(AC)

Components(AC) = P ′
G1
||| P ′

G2
||| P ′

D ||| P ′
S ||| P ′

P

SourceGlues(AC) = SoG(G1.gd) ||| SoG(G1.gs) ||| SoG(G1.gp) ||| SoG(G2.gd) |||
SoG(G2.gs) ||| SoG(G2.gp)

SoG(G1.gd) = SoG(G1.gd ,G1.t1) using the mutex SoG
SoG(G1.gs) = SoG(G1.gs,G1.t1) using the reentrant SoG
SoG(G1.gp) = SoG(G1.gp,G1.t1) using the asynchronous SoG
SoG(G2.gd) = SoG(G2.gd ,G2.t2) using the mutex SoG
SoG(G2.gs) = SoG(G2.gs,G2.t2) using the reentrant SoG
SoG(G2.gp) = SoG(G2.gp,G2.t2) using the asynchronous SoG

SinkGlues(AC) = SiG(G1.gt) ||| SiG(G2.gt) ||| SiG(D .d) ||| SiG(S .s) ||| SiG(P .p)
SiG(G1.gt) = SiG(G1.gt ,G1.t1) using the mutex SiG
SiG(G2.gt) = SiG(G2.gt ,G2.t2) using the mutex SiG
SiG(D .d) = SiG(D .d ,D .t3) using the mutex SiG
SiG(S .s) = SiG(S .s,S .t5) ||| SiG(S .s,S .t6) using the reentrant SiG
SiG(P .p) = SiG(P .p,P .t4) using the asynchronous SiG

Connections(AC) =Conns(G1.gd ,D .d) ||| Conns(G2.gd ,D .d) ||| Conns(G1.gs,S .s) |||
Conns(G2.gs,S .s) ||| Conns(G1.gp,P .p) ||| Conns(G2.gp,P .p)

Conns(G1.gd ,D .d) = Conn(G1.gd ,G1.t1,D .d ,D .t3) using the mutex Conn

40 CMU/SEI-2002-TN-026

Conns(G2.gd ,D .d) = Conn(G2.gd ,G2.t2,D .d ,D .t3) using the mutex Conn
Conns(G1.gs,S .s) = Conn(G1.gs,G1.t1,S .s,S .t5) using the reentrant Conn
Conns(G2.gs,S .s) = Conn(G2.gs,G2.t2,S .s,S .t6) using the reentrant Conn
Conns(G1.gp,P .p) = Conn(G1.gp,G1.t1,P .p,P .t4) using the asynchronous Conn
Conns(G2.gp,P .p) = Conn(G2.gp,G2.t2,P .p,P .t4) using the asynchronous Conn

CMU/SEI-2002-TN-026 41

42 CMU/SEI-2002-TN-026

7 Open Issues

There are a number of topics we need to address before completing CL. We are currently
working on refining our representation of pin events, describing environments, defining the
relation between assemblies and environments, hiding internal behavior, and defining all the
details of the CL language.

7.1 Representing Pin Events
Currently, activity on a pin is denoted by a CSP event of the same name, and each
interaction on a pin is denoted by a pair of such events, one for the initiation of the
interaction and one for the completion of the interaction. Unfortunately, this simple approach
leads to difficulty in correctly expressing some behaviors because the events are ambiguous.
Ideally, initiation and completion of an interaction on a pin should be distinct events.

We are considering options for distinguishing these events. One option, similar to that used
in CCS [Milner 89] and Wright [Allen 97], is to use event pairs such as e and e. However,
while CCS and Wright use event pairs to differentiate initiating and observing a synchronized
event, we want to distinguish between initiating and completing an activity, as represented
by a pair of related events. Since this is a different kind of distinction, we are considering
other, similar syntactic conventions to avoid confusing anyone familiar with those languages.

Such a distinction is not just a syntactic aid to the reader. Some of our glue definitions, such
as SiG for mutex interactions, are subtly incorrect in their current form, because we cannot
distinguish initiation from completion events. There are alternative ways to correct these
definitions, but making the proper distinction on pin events is the simplest option and also
improves the readability of CL specifications.

7.2 Describing Environments
In Section 3, we mentioned that assemblies are defined in the context of some environment
and that this environment affects the behavior of the assembly. An environment defines the
semantics of the connectors used in the assembly and provides services (such as a clock) to
the assembly.

An environment is also the boundary through which components interact with things not in
the assembly. In the current CSP semantics, this aspect of an environment is not well
specified. To analyze an assembly, we should define how components interact with the
environment of their assembly.

In particular, four questions stand out:

• Which sinks are exposed to the environment? For those sink that are not
exposed and that do not interact with sources within the assembly, we
should exclude their behavior from the analysis model. One solution to

CMU/SEI-2002-TN-026 43

prevent behavior from unconnected sink s would be to place the assembly
process in ‖ with Stops .

• What is the potential concurrency in the environment with respect to an
exposed sink? Can multiple threads in the environment interact with the
same sink concurrently? We have sketched a solution to this concern in
Section 5.3 with EnvSinks, but we have no threadmap equivalent.

• What types of interactions exist between an environment and sinks? Are
they the same types of interactions that exist within an assembly? If so, we
need to model them explicitly. In the current minimized semantics for
assemblies, we do not include sink glue processes for sinks connected only
to the environment; this may change.

• What can be assumed regarding how an environment will behave? Is the
behavior of an environment unconstrained? If so, we could model that with
an explicit Run process, or we could leave the environment unspecified as
it is now. Is the environment required to follow some protocol? If so, and if
we want to gather analysis results only for scenarios in which the
environment correctly follows the protocol, the environment’s behavior
must be given an explicit CSP definition.

The next steps will be to better define what we mean by an environment and to provide a
scheme for formalizing the semantics of environments.

7.3 Relating Assemblies and Environments
Assemblies, runtime environments (containers), environment types, and deployable
assemblies are interrelated terms whose meanings are still under consideration. At one point
in this report, we state that an assembly is a scope for components. Likewise, an assembly is
associated with an environment type. But are these really the correct distinctions? What
happens in a case in which subassemblies share the environment type of an encapsulating
assembly? How many runtime environments are there in such a case? Can the subassemblies
be deployed independently?

We are investigating these questions. Some initial thoughts indicate that we may not have all
the concepts separated correctly. For example, each assembly must be associated with an
environment type, as that dictates the interaction semantics within the assembly. However,
this may not imply that there is a unique runtime environment or container associated with
each assembly. In a hierarchy of assemblies of the same environment type, only one runtime
environment of that environment type may exist. Clearly, any assembly that does not have
its own runtime environment cannot be deployed independently, and so not all assemblies are
independently deployable.

7.4 Hiding Internal Behavior
Intuitively, hiding corresponds to abstraction—ignoring certain details and focusing on the
rest of a model. In CSP, events can be hidden from a process, resulting in a new process with

44 CMU/SEI-2002-TN-026

a smaller alphabet. All hidden events are replaced by τ ’s, or internal transitions, often
resulting in a model whose state space can be further minimized.

Hiding has a natural role in composition. Why not hide all the internal activity of an
assembly and focus on its externally visible behavior? We can hide all events for pins that
are not exposed outside of an assembly and get the CSP equivalent. The only question,
however, is what breaks if we do this? By introducing non-determinism (a natural
consequence of hiding), will we be producing analysis results that are misleading?

The next steps will be to examine the consequences of applying hiding to assemblies.

7.5 Defining Language Details
Throughout this report we have shown excerpts of CL specifications, but we have not put all
the pieces together. We have shown pin diagrams in which different types of pins have
different symbols and connections between pins are shown in a certain way. We have shown
CSP specifications for reactions, interactions, and assemblies. But we have not tied them
together formally.

One task that remains is to fully define CL and how these pieces (and others) fit together.
We need a complete visual syntax for pin diagrams, along with rules for valid arrangements
of visual elements and to specify how additional information is associated with these visual
elements. For example, reactions are associated with components, and data interfaces are
associated with pins. We will have a grammar for a textual representation of this information
that is suitable for machine processing and that will likely include a representation of the
information found in pin diagrams.

CMU/SEI-2002-TN-026 45

46 CMU/SEI-2002-TN-026

8 Future Work

The road ahead for predictable assembly is challenging, even if we limit our focus, as we do
here, exclusively to CL. Beyond resolving the open issues discussed in Section 7, there are
several areas of future development, some of which must be completed before we can consider
CL to have a sound basis.

8.1 Specific Environment Type Definition in CL
As we have noted, the composition semantics we defined for CL is relative to abstract
environment type E . A full composition semantics requires that we define environment type
E ′ for a concrete platform. For this purpose, we will use the switch-controller runtime
described in the PACC substation automation experience report.4 This environment type
uses fixed-length queues implemented in shared memory for intercomponent communication
and provides a number of runtime services for real-time computation. We will then refine the
semantics defined earlier with these environment-specific characteristics.

8.2 Intermediate Representation
We have defined a composition semantics in CSP, which would be nearly sufficient if our
intended analysis tool was restricted to just FDR. However, our target set of analysis tools
includes a number of formal analysis systems, and, in addition, empirical analysis tools for
time (latency) and potentially other properties. In compiler terms, we have defined a
high-level intermediate language for CL in CSP, but we must still define one (or more?)
low-level intermediate languages that are suitable for machine processing.

8.3 Visual Composition Tool Set
Our emphasis on pure composition will be most beneficial when we can provide a visual tool
set for composing, analyzing, and deploying component-based software. Only then can we
say that we have successfully defined a composition language and technology that supports
predictable assembly. The visual notation used in this report provides a starting point for
this work. Considerable work remains, however, to completely define the visual and textual
syntax needed to provide automated support for composition, model generation, and, in the
long run, code generation.

4 Hissam, S.; Hudak, J.; Ivers, J.; Klein, M.; Larsson, M.; Moreno, G.; Northrop, L.; Plakosh, D.; Stafford, J.;
Wallnau, K.; & Wood, W. Predictable Assembly of Substation Automation Systems: An Experience Report.
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, to be published.

CMU/SEI-2002-TN-026 47

48 CMU/SEI-2002-TN-026

Appendix A Summary of Formal Notations
Used in This Report

A.1 CSP
We use the following subset of CSP in this paper:5

• processes and events: A process describes an entity that can engage in
communication events. Events may be primitive, or they can have
associated data (as in e?x and e!x , representing input and output data,
respectively).

• prefixing: A process that engages in event e and then becomes process P
is denoted e → P .

• external choice: A process that can behave like P or Q , where the choice
is made by the environment, is denoted P ✷ Q . (“Environment” refers to
the other processes that interact with the process.)

• non-deterministic choice: A process that can behave like P or Q , where
the choice is made (non-deterministically) by the process itself, is denoted
P � Q .

• alphabet: The alphabet of process P is the set of events in which the
process can engage and is denoted αP .

• parallel composition: Processes can be composed using the ‖ operator.
Parallel processes may interact by jointly (synchronously) engaging in
events that lie within the intersection of their alphabets. Conversely, if
event e is in αP1 and αP2, then P1 can engage in the event only if P2 can
also. That is, process P1 ‖ P2 is one whose behavior is permitted by both
P1 and P2.

• interleaving: Processes can also be composed using the ||| operator.
Interleaved processes never interact, even on events that lie within the
intersection of their alphabets.

• sequential composition: A process that behaves like P , until P
terminates (Skip) and then behaves like Q , is denoted P ; Q .

• renaming: Processes can be renamed in two ways. The expression x :P
represents a renamed process in which every event in P is now prefixed
with x . For example, if P = a → b → P , then x :P = x .a → x .b → x :P .
The expression P [x .a\a, x .b\b] represents a renamed process in which all
occurrences of a are replaced with x .a, and all occurrences of b are
replaced with x .b.

In process expressions → associates to the right and binds tighter than ✷. So
e → f → P ✷ g → Q is equivalent to (e → (f → P)) ✷ (g → Q).

5 Much of this CSP primer is borrowed or adapted from Allen and associates [Allen 98].

CMU/SEI-2002-TN-026 49

A.2 Formal Logic
Logic
A ∧ B A and B
A ∨ B A or B
¬A not A
A ⇒ B A implies B
∀ x ∈ S • P(x) universal quantification (P(x) is true of all x in S)
∃ x ∈ S • P(x) existential quantification (P(x) is true for at least one x in S)

Sets
∅ empty set
e ∈ S e is an element of S
S ∪ T set union
S ∩ T set intersection
S \ T set difference⋃

e∈T Se generalized union (the union of all sets Se)
#S set cardinality
{x ∈ S | P(x)} set comprehension (the set of all x in S for which P(x) is true)

Sequences
<> empty sequence
S � T S concatenated with T

50 CMU/SEI-2002-TN-026

References

[Achermann 02] Achermann, F.; Lumpe, M.; Schneider, J.; & Nierstrasz, O.
“Piccola – a Small Composition Language”. Formal Methods
for Distributed Processing–A Survey of Object-Oriented
Approaches, (January 2002): 403–426. Cambridge, UK:
Cambridge University Press.

[Allen 97] Allen, R. “A Formal Approach to Software Architecture”.
PhD diss., Carnegie Mellon University, May 1997.
CMU-CS-97-144.

[Allen 98] Allen, R.; Garlan, D.; & Ivers, J. “Formal Modeling and
Analysis of the HLA Component Integration Standard”,
70–79. Proceedings of the ACM SIGSOFT Sixth International
Symposium on the Foundations of Software Engineering. New
York, NY: ACM Press, November 1998.

[Cardelli 97] Cardelli, L. “Type Systems”. The Computer Science and
Engineering Handbook, (1997): 2208–2236. Boca Raton, FL:
CRC Press. ISBN 0-8493-2909-4.

[Cimatti 00] Cimatti, A.; Clarke, E.; Giunchiglia, F.; & Roveri, M.
“NuSMV: A New Symbolic Model Verifier”. International
Journal on Software Tools for Technology Transition 2, 4
(2000): 410–425.

[Corbett 99] Corbett, J. Bandera Intermediate Representation (BIR)
Specification Version 0.6, November 1999.
<http://www.cis.ksu.edu/∼dwyer/projects/nasa-2-99.ps>.

[Garlan 93] Garlan, D. & Shaw, M. “An Introduction to Software
Architecture”. Advances in Software Engineering and
Knowledge Engineering, (December 1993): 1–39. Singapore:
World Scientific Publishing Company.

[Garlan 97] Garlan, D.; Monroe, R.; & Wile, D. “Acme: An Architecture
Description Interchange Language”, 169–183. Proceedings of
CASCON ‘97. Toronto, Ontario: IBM Canada Ltd.,
November 1997.

[Giannakopoulou 99] Giannakopoulou, D. “Model Checking for Concurrent
Software Architectures”. PhD diss., Imperial College of
Science, Technology, and Medicine, University of London,
England, January 1999.

[Hissam 02] Hissam, S.; Moreno, G.; Stafford, J.; & Wallnau, K.
“Packaging Predictable Assembly”, 108–125. Proceedings of
the First International IFIP/ACM Working Conference on

CMU/SEI-2002-TN-026 51

Component Deployment, number 2370 in LNCS. Berlin,
Germany: Springer-Verlag, June 2002.

[Hoare 85] Hoare, C. A. R. Communicating Sequential Processes.
London, UK: Prentice-Hall, 1985.

[Holzman 97] Holzman, G. “The Model Checker Spin”. IEEE Transactions
on Software Engineering 23, 5 (May 1997): 279–295.

[Luckham 95] Luckham, D. C.; Augustin, L. M.; Kenney, J. J.; Veera, J.;
Bryan, D.; & Mann, W. “Specification and Analysis of
System Architecture Using Rapide”. IEEE Transactions on
Software Engineering 21, 6 (April 1995): 336–355.

[Magee 93] Magee, J.; Dulay, N.; & Kramer, J. “Structuring Parallel and
Distributed Programs”. Software Engineering Journal, IEEE
8, 2 (March 1993): 73–82.

[Magee 01] Magee, J. & Kramer, J. Concurrency: State Models & Java
Programs. West Sussex, England: Wiley Publication, 2001.

[Milner 89] Milner, R. Communication and Concurrency. Hemel
Hempstead, UK: Prentice-Hall, 1989.

[Milner 99] Milner, R. Communicating and Mobile Systems: The
π-Calculus. Cambridge, England: Cambridge University
Press, May 1999.

[Nierstrasz 02] Nierstrasz, O.; Arévalo, G.; Ducasse, S.; Wuyts, R.; Black, A.;
Müller, P.; Zeidler, C.; Genssler, T.; & van den Born, R. “A
Component Model for Field Devices”. Proceedings of the First
International IFIP/ACM Working Conference on Component
Deployment, number 2370 in LNCS. Berlin, Germany:
Springer-Verlag, June 2002.

[Papadopoulos 98] Papadopoulos, G. & Arbab, F. Coordination Models and
Languages (SEN-R9834, ISSN 1386-396X). Amsterdam, The
Netherlands: Centrum voor Wiskunde en Informatica,
December 1998.

[Plakosh 99] Plakosh, D.; Smith, D.; & Wallnau, K. Builder’s Guide for
Waterbeans Components (CMU/SEI-99-TR-024,
ADA373154). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1999.

[Purtillo 94] Purtillo, J. “The Polylith Software Bus”. ACM Transactions
on Programming and Systems 16, 1 (January 1994): 151–174.

[Roscoe 98] Roscoe, A. The Theory and Practice of Concurrency.
London, UK: Prentice-Hall, 1998.

52 CMU/SEI-2002-TN-026

[Szyperski 97] Szyperski, C. Component Software – Beyond Object-Oriented
Programming. Harlow, England: Addison Wesley, 1997. ISBN
0-201-17888-5.

[van Ommering 02] van Ommering, R. “The Koala Component Model”. Building
Reliable Component-Based Software Systems, (July 2002):
223–236. London, England: Artech House.

CMU/SEI-2002-TN-026 53

54 CMU/SEI-2002-TN-026

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and
Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

September 2002

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

A Basis for Composition Language CL

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

James Ivers, Nishant Sinha, Kurt Wallnau
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2002-TN-026

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

CL is a composition language for predictable assembly from certifiable components. An application assembly
process is predictable if the runtime behavior of an assembly of components can be predicted from known
properties of components and their patterns of interaction. CL is similar to other composition languages that
combine a component and connector style of description with a core compositional semantics specified in a
process algebra. CL differs from these in its explicit treatment of details that are usually abstracted or ignored. For
example, CL makes explicit the allocation of execution threads to component behavior; this distinguishes
concurrent from sequential behavior, and leads to potentially smaller state spaces as well as more accurate
behavioral descriptions.

This report describes the main concepts of CL and its rudimentary graphical syntax. This report also defines and
illustrates the compositional semantics for CL using Hoare’s CSP. The twin objectives of this report are to
consolidate our current thinking about an ideal CL and to provide a starting point for the design of a practical and
implementable CL. This report closes with a discussion of several open issues that must be resolved before this
second objective can be satisfied.

14. SUBJECT TERMS

composition language, composition semantics, predictable assembly

15. NUMBER OF PAGES

62
16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	A Basis for Composition Language CL
	Table of Contents
	List of Figures
	Abstract
	1 Introduction
	2 Related Work
	3 Overview of Pin
	4 Formal Model of CL
	5 Compositional Minimization
	6 Examples
	7 Open Issues
	8 Future Work
	Appendix A Summary of Formal Notations Used in This Report
	References

