
Plug-In Architecture for Mobile

Devices

Madhu Keshavamurthy
Jung Soo Kim
Mona Li
Vichaya Sagetong

August 2002

Product Line Practice Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2002-TN-023

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2002 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2002-TN-023 i

Contents

Executive Summary ..vii

Abstract...ix

1 Introduction ..1

1.1 Background of and Motivation for Using PAMD....................................1

1.2 Objectives of PAMD ...2

1.3 Roadmap and Intended Audience of This Document2

2 Architectural Requirements of PAMD ...3

3 Overall Architecture of PAMD..4

3.1 Layers and ESCs ...4

3.2 Assumptions to Underlying Platforms...5

3.3 Interface Definition ...6

3.3.1 INTERFACE: PAMDLookupService ..6

3.3.2 INTERFACE: PAMDExecuteService...9

3.4 Sequence of Events ...10

4 Service Broker..12

4.1 Internal Architecture ...12

4.2 Interaction Among Internal Software Components13

5 PAMD Service ...16

5.1 Architectural Diagram...16

5.2 Component Interactions ...17

6 Architectural Alternatives..18

6.1 Plug-In Execution: Indirect Vs. Direct ...18

6.2 Plug-In Identity: Discovery Vs. Registration..19

6.3 Information Reuse: Refresh Vs. Cache ..20

6.4 Service Broker Internal Architecture: Layered Vs. Monolithic21

ii CMU/SEI-2002-TN-023

7 Future Extensions ... 23

7.1 Background ... 23

7.2 Overall Architecture of Distributed PAMD .. 23

8 Conclusion... 26

Appendix A Acme Textual Description.. 27

CMU/SEI-2002-TN-023 iii

List of Figures

Figure 1: Relationship Among the Three Layers of PAMD..................................5
Figure 2: Matching of Client and Service During Lookup....................................8
Figure 3: Sequence of Events Among ESCs and the Underlying Platform10
Figure 4: Internal Architecture Diagram of the Service Broker..........................12
Figure 5: Internal Interaction Diagram of the Service Broker14
Figure 6: Internal Architecture Diagram of the PAMD Service16
Figure 7: Current Architecture Vs. an Alternative with Direct Execution

of Plug-In ..19
Figure 8: Current Architecture Vs. an Alternative with Plug-In Registration20
Figure 9: Current Architecture Vs. an Alternative with the Internal Cache.........21
Figure 10: Current Architecture Vs. an Alternative with Monolithic

Components ...22
Figure 11: D-PAMD Architecture ..24

iv CMU/SEI-2002-TN-023

CMU/SEI-2002-TN-023 v

List of Tables

Table 1: Data Blocks in Example Input Package...9

vi CMU/SEI-2002-TN-023

CMU/SEI-2002-TN-023 vii

Executive Summary

A businessman travels to another city. During the trip, he keeps track of the money he spends
using the Expense application on his mobile device. His secretary asks him to send her the
updated records of his expenses for the trip so that she can close the accounting report for
the month. To do so, he activates the Expense application (which is compliant with the plug-
in architecture for mobile devices [PAMD]), and clicks on its Plug-Ins button. The list of
plug-ins that appears on his device’s screen includes plug-ins for totaling his expenses,
emailing and printing his expense records, and transmitting expense information to other
mobile devices. There are multiple plug-ins for emailing, each from a different vendor—he
chooses the one he prefers and emails his expense records to his secretary.

This real-world scenario explains the aim of PAMD architecture. PAMD enables end users to
satisfy their needs regardless of the mobile application’s original capabilities. This
encourages service providers to provide better services by developing newer plug-ins for the
existing applications, enabling them to capture the market. This also enhances competition
amongst plug-in developers, which, in turn, creates better, more powerful plug-ins to better
serve end users’ needs. And customers don’t have to spend money on new applications to
meets their needs. So as a result of PAMD, customers incur less cost and get better products
and service.

PAMD is an architecture that enables this interoperability between applications and enhances
the usability of mobile devices.

viii CMU/SEI-2002-TN-023

CMU/SEI-2002-TN-023 ix

Abstract

This technical note describes plug-in architecture for mobile devices (PAMD)—an
architectural specification that extends the function of applications in mobile devices. Users
gain major benefits when the functionality of applications that run on these devices can be
extended through the addition of new services that don’t require changes to the application
itself. PAMD provides interoperability between applications and plug-ins without sacrificing
the performance of the mobile devices on which they run. Because existing applications can
be made PAMD compliant with little modification, the development time and costs of adding
functionality to them can be reduced dramatically. As PAMD bears the burden of
communicating with plug-ins, application and plug-in developers can develop their own
products independently and easily use each other’s products.

This technical note also describes PAMD’s interfaces, how applications and plug-ins interact
with them, and the advantages of using PAMD. Also included are several scenarios that
explain the architecture and how it can be implemented, and suggestions for extensions that
enhance it.

x CMU/SEI-2002-TN-023

CMU/SEI-2002-TN-023 1

1 Introduction

This technical note, which was written by students in the Masters of Software Engineering
program at Carnegie Mellon University, describes plug-in architecture for mobile devices
(PAMD). PAMD is an architectural specification that extends the functionality of applications
in mobile devices.

1.1 Background of and Motivation for Using PAMD
Mobile devices have become very popular due to their compact design and usefulness. People
can use them to conveniently organize their day-to-day work. Mobile applications seldom
meet users’ satisfaction because of their increasing demand for new features. Mobile device
end users tend to have individual needs that may go beyond the original capabilities of an
application. This situation has compelled the application developers to bundle more
functionality in an application to please their end users. This, in turn, puts a tremendous
amount of pressure on developers to add new software functionalities to these devices at a
high cost for both developers and users. It also creates the need for the application to extend
the architecture’s functionality by reusing other available services in the mobile device.
Mobile device users gain major benefits when an application can extend its functionality by
adding new services that don’t require changes to the application itself.

The concept of allowing applications to reuse separately developed components is not new. It
is integrated into reusable components commonly known as plug-ins. Plug-ins are software
programs that extend the capabilities of an application in a specific way. A common example
is a browser plug-in for desktop PCs, such as Apple QuickTime, Macromedia’s Shockwave,
and RealNetworks’ RealPlayer. These plug-ins enable users to play audio samples and view
videos from within a Web browser. When the user launches the Web browser and tries to play
the audio sample or view the video, these plug-ins will be loaded dynamically into the Web
browser and executed. An example of a plug-in for mobile platforms is Sony Clie’s
PictureGear Pocket, which enables users to select and display digital images on Address Book,
PhotoStand, or MS Cam. HackMaster for the Palm OS is another good example of a plug-in
that helps applications go beyond their original capability by adding new functionality to the
existing applications. For Palm devices, several plug-in architectures are created. ThinkDB,
an architecture from thinkingBytes Technologies, allows users to add functionality to
ThinkDB plug-ins or to create new ThinkDB plug-ins to access relational databases for mobile
devices. Unlike other plug-ins for mobile platforms that are created for a specific purpose,
PAMD plug-ins can be used by any PAMD-compliant application. This assembly of services
satisfies end users without imposing any cost burden on them.

Similar service-coordination architectures, such as Microsoft’s COM, are also implemented on
desktop PCs. This type of architecture is becoming more popular in the distributed computing

2 CMU/SEI-2002-TN-023

realm in the form of Microsoft’s .NET and Sun’s JINI architectures. PAMD provides benefits
that are similar to these architectures, but is unique in that it is designed specifically for mobile
device platforms such as the Palm OS or Windows CE. On those platforms, the needs and
environments of the end user tend to change unpredictably.

PAMD enables service providers to independently develop components that can provide
specific services in the form of a PAMD plug-in (henceforth referred to as plug-in) that can be
used by any application in a mobile device. PAMD also enables application developers to
independently develop a PAMD application (henceforth referred to as application) to make
use of available plug-ins without knowing any details about their capability.

1.2 Objectives of PAMD
The main objective of PAMD is to achieve interoperability between applications and plug-ins
on mobile devices. PAMD benefits developers by reducing development time and costs, and
benefits end users by dramatically increasing the functionalities that mobile applications can
provide. With PAMD, different stakeholders such as application developers and plug-in
providers can develop their own products independently and easily use each other’s products.

Through the use of plug-ins, PAMD can dramatically increase the functionality that mobile
applications provide to end users, regardless of the applications’ limitations. PAMD also
encourages without restriction a competing market for developing the best plug-ins possible.
End users will benefit from that competing market when better, more powerful plug-ins that
meet their needs are created.

1.3 Roadmap and Intended Audience of This Document
This document elaborates on the following aspects of PAMD:

• Section 2 lists the architectural requirements of PAMD and the major quality requirements
considered for this architecture.

• Section 3 describes the high-level view of PAMD.

• Section 4 describes the PAMD service broker.

• Section 5 describes the PAMD service.

• Section 6 describes the architectural alternatives to the current architecture.

• Section 7 suggests possible future extensions and enhancements for the current
architecture.

The intended audiences for this document include

• those interested in service-coordination architecture, an architecture that enables
applications to use services without specifying them

• application developers who want their applications to use services

• plug-in developers who want to develop plug-ins to provide services to other applications

CMU/SEI-2002-TN-023 3

2 Architectural Requirements of PAMD

The architectural requirements of PAMD are listed below:

• The main business need for PAMD is to enable the end users to use the existing
applications with a new array of services, thus adding value to the mobile devices. The
architecture should provide a mechanism for applications to utilize all services, thus
providing interoperability amongst applications.

• As different applications interact with each other and with different services, the
architecture should handle the error conditions gracefully and prompt the user about the
possible error. As PAMD becomes the intermediary between different applications and
services, it should be reliable.

• As mobile devices are ubiquitous, it is essential to have an architecture that can be adapted
easily to different platforms and different hardware devices. This will reduce the impact
on the existing applications. It is also easier for the developers to follow a standard
architecture. Thus, PAMD needs to be modifiable and portable so that it can be used on
different platforms and devices.

• As mobile devices are performance sensitive, the introduction of a new intermediary
should not reduce the overall performance of the mobile device. Slowing down the
existing applications will be a heavy price to pay for mobile device users. Therefore, the
PAMD architecture should minimize the impact on the performance of mobile device
applications.

• PAMD shall be extensible. Enhancements are inevitable for any architecture to
incorporate new ideas and improve existing ideas. PAMD architecture should make it
easy to add more functionality without affecting the overall architecture.

4 CMU/SEI-2002-TN-023

3 Overall Architecture of PAMD

The high-level structure of PAMD is composed of three layers, each containing different types
of executable software components (ESCs). Defined PAMD interfaces facilitate the sequence
of interactions among these layers.

In this section we first describe those layers and the ESCs that each one contains. Next we
describe the PAMD interfaces that are defined. Finally, we illustrate the sequence of
interactions among the ESCs and the underlying platform, and the sequence of interactions in
a real-world scenario.

3.1 Layers and ESCs
The three layers of PAMD are client, service broker, and service. The service broker acts as an
intermediary between a client and a service. It receives requests from a client and tries to find
the right service to satisfy the client’s requests.

The client and service layers contain different types of ESCs:

• In the client layer, ESCs are entities that are executed directly by an actor.

• In the service layer, ESCs are entities that are executed indirectly through the service
broker.

Figure 1 uses an Acme1 diagram to show the relationship among the three layers.2 The figure
also shows how the client and service layers connect to each other loosely. Notice that the
client layer only needs to interact with the service broker through two interfaces—it does not
need to know the identity of any of the entities in the service layer. The layered style dissolves
the coupling between the client and service layers. In addition, the internal operation and all
the details of the service broker and the entities in the service layer are transparent to the
client. This makes it easy for the ESCs to conform to the PAMD specification.

In some cases such as when different services are chained together (a process of passing the
output of one service as an input to another service to achieve some specific outcome), the
service layer can also be seen as the client layer and can make direct calls to the service
broker. This feature enables a specific application to use different services to achieve the
desired outcome. This kind of setup resembles the “pipe and filter” architectural style in which

1 Acme is a simple, generic software architecture description language (ADL) that can be used as a

common interchange format for architecture design tools and/or as a foundation for developing new
architectural design and analysis tools. For further information, go to
<http://www.cs.cmu.edu/~acme>.

2 For the textual description of the Acme diagram, see Appendix A on page 27.

CMU/SEI-2002-TN-023 5

one service passes some information to another service and so on, until the desired outcome is
achieved.

Client_Layer

Bridge_Layer

Service_Layer

Client_1 Client_2 Client_N

Service_1 Service_2 Service_N

Service_Broker

Legend

ServiceBroker Client Service
Lookup Execute

Figure 1: Relationship Among the Three Layers of PAMD

3.2 Assumptions to Underlying Platforms
PAMD makes the following assumptions about underlying platforms. These assumptions
should be considered when implementing a PAMD-enabled system on a specific platform.

• The platform should support multiple types of executable entities so that the service
broker and plug-ins are distinguishable from applications.

• The platform should enable mobile device users to install and uninstall the service brokers
and plug-ins. Plug-ins may need to be updated to newer versions.

• The platform should enable mobile device users to start and stop the service broker.
(Similar control over plug-ins is not necessary.)

• The platform enables different executable entities to communicate so that applications use
the service broker and the service broker uses plug-ins.

6 CMU/SEI-2002-TN-023

• The communication for executable entities can be bidirectional so that they can receive the
results of requests they make to other executable entities.

• The platform manages the list of plug-ins installed in a device and provides it to the
service broker when requested.

• The platform provides a means for the service broker to identify each plug-in uniquely.

• The platform doesn’t restrict the behavior of plug-ins. In special cases, one plug-in can
use another plug-in through the service broker.

3.3 Interface Definition
The interaction with the underlying platform is hidden inside the service broker. To use a
service, the client only needs to connect to the broker through two interfaces—each of which
is a request to the service broker: one asks for a list of available services, and the other asks for
a particular service to be executed.

3.3.1 INTERFACE: PAMDLookupService

INPUT 1: A package containing services which plug-ins need to satisfy
INPUT 2: An access key to specific whether the service to be looked
up is a private service or a public service
OUTPUT: A list of service names that supports the given data types

PAMDLookupService is an interface accessed through the Service Broker that is used to look
up a specific set of services (plug-ins). This interface queries the access key and data type set
of all the services in a device. A particular service appears in the list only if both its access key
and data type sets match respectively.

Along with the lookup request, the client must specify a data type set package that describes
the type of service to be executed and the access key for accessing the service. A data type set
package describes the capabilities of services that the client can execute. This data type set
consists of 1) an input data type that describes the input data provided by the client and 2) an
output data type that describes the type of output the client can handle. The input data type is
consumed by the service to produce an output that complies with the output data type. A data
type explains how to understand the given data block. For example, standard Multipurpose
Internet Mail Extension (MIME) types (such as text/plain or image/jpeg), or file
extensions (such as txt or jpg) could be used for the data type. There must be at least one
data type block in the data type set package.

Each service provides a data type set package that describes the capabilities or type of data
that the specific service can accept or deliver. This package can contain multiple data type
blocks; each consisting of 1) a current type or an input data type that the service can accept,
and 2) a target type or an output data type that it must deliver using the input.

Each service may optionally specify its access key, which every application must use in order
to look it up or execute it. The service that is created for internal use in a particular client must
have a specific access key for that client to access it and to prevent other clients from using it

CMU/SEI-2002-TN-023 7

without the correct access key. The client that wants to lookup or execute the internal service
must provide the correct access key to be eligible to access the service.

Lookup protocol can find the right service only when the requested data type set contains a
subset of the data types that a service can handle. Matchmaking is a process of matching the
combination of either “input/no input” with “output/no output,” which gives four possibilities.
Figure 2 illustrates the matchmaking process of the lookup service.

In Figure 2, service W can

• consume data type text/plain and produce image/jpeg as a result

• handle data type audio/midi without generating any output

• consume nothing and send text/plain back to a client. In this case, client A can use
service W because that client wants to send text/plain and get image/jpeg back. It
also wants to send audio/midi without receiving any output from the service. On the
other hand, client A cannot use service Y because that service cannot handle the
combination of input text/plain and output image/jpeg. Client B can use Service W
because it wants only the combination of no input and output text/plain, a combination
that service W can handle.

8 CMU/SEI-2002-TN-023

Figure 2: Matching of Client and Service During Lookup

 Service
 Broker

Client A

IN
"text/plain"

OUT
"image/jpeg"

IN
"audio/midi"
OUT
""

Client B
IN
""
OUT
"text/plain"

Client C
IN
""
OUT
""

IN
"text/plain"

OUT
"image/jpeg"

IN
"audio/midi"

OUT
""

IN
""

OUT
"text/plain"

Service W

Service X

IN
""

OUT
"text/plain"

IN
""

OUT
"text/plain"

Service Y

IN
"audio/midi"

OUT
""

IN
""

OUT
""

Service Z

Service

Client

Successful
match request

Failed match
request

Legend

CMU/SEI-2002-TN-023 9

3.3.2 INTERFACE: PAMDExecuteService

INPUT 1: Service identifier
INPUT 2: Input data package (if any) for service to consume
INPUT 3: An access key to specify whether the service to be executed is
a private service or a general service
OUTPUT: Output data package (if any) from service to client

PAMDExecuteService is an interface accessed through the Service Broker to execute a
selected service. A client must send an input package and an access key to execute a specific
service. The input package includes multiple input data blocks. After being executed, the
service sends back an output package if required. The output package can contain multiple
output blocks in response to each input block.

The package is the unit of communication between clients and services. A package is used as
a container to store data blocks. Each data block contains the data; a data type that explains
how to interpret the data’s contents; the status of the data block, which specifies whether to
destroy the data block after deleting the package; and a target data type that describes the data
type of the expected result.

Each data block in a package contains the input data type that a service can handle and an
output data type that the service will produce by consuming that input. A data block is a pair
of data type sets, and a package is a set of data blocks. Each data block in the input package
must be valid. For example, take an input package that contains the three data blocks listed in
Table 1.

Current Type Target Type

text/plain image/jpeg

text/plain “”

image/jpeg text/plain

Table 1: Data Blocks in Example Input Package

A service would have to generate an output package that contains two data blocks: one with a
current type of image/jpeg and a target type of “” to respond to the first input data block;
and the other with a current type of text/plain and a target type of “” to respond to the last
input data block.

10 CMU/SEI-2002-TN-023

3.4 Sequence of Events
To further explain the relationship among the PAMD layers, Figure 3 illustrates the sequence
of interactions among the ESCs and the underlying platform.

Figure 3: Sequence of Events Among ESCs and the Underlying Platform

Service
Broker

Plug-inApplication

Get supported data type
each plug-in*

Return execution result and
output data package (if any)

Underlying
Platform

ESC Underlying
Platform

Iterative

*

Legend

Service
Broker

Plug-inApplication

Request list of plug-ins with
specific data type package
and access key Get all plug-ins

Return all plug-ins

Return supported data type set and access key for each plug-in

Match data type
set and access
key

Execute plug-in with input data package (if any)

Return execution result and output data (if any)

Underlying
Platform

ESC Underlying
Platform Event

*
Return
Event

Event to
Self

Returns a list of matched plug-ins with specific data type sets

Request Execute plug-in with input data package

Service
Broker

Plug-inApplication

Get supported data type
each plug-in*

Return execution result and
output data package (if any)

Underlying
Platform

ESC Underlying
Platform

Iterative

*

Legend

Service
Broker

Plug-inApplication

Request list of plug-ins with
specific data type package
and access key Get all plug-ins

Return all plug-ins

Return supported data type set and access key for each plug-in

Match data type
set and access
key

Execute plug-in with input data package (if any)

Return execution result and output data (if any)

Underlying
Platform

ESC Underlying
Platform Event

*
Return
Event

Event to
Self

Returns a list of matched plug-ins with specific data type sets

Request Execute plug-in with input data package

CMU/SEI-2002-TN-023 11

Consider this real-world scenario:

A businessman travels to another city. During the trip, he keeps track of the
money he spends using the Expense application on his mobile device. His
secretary asks him to send her the updated records of his expenses for the trip
so that she can close the accounting report for the month. To do so, he
activates the Expense application (which is compliant with the plug-in
architecture for mobile devices [PAMD]), and clicks on its Plug-Ins button.
The list of plug-ins that appears on his device’s screen includes plug-ins for
totaling his expenses, emailing and printing his expense records, and
transmitting expense information to other mobile devices. There are multiple
plug-ins for emailing, each from a different vendor—he chooses the one he
prefers and emails his expense records to his secretary.

In terms of the interaction diagram, the interaction starts when the businessman clicks on the
Plug-Ins button in the Expense application. Once the button is pushed, the application sends a
request to the service broker with the access key and MIME-type text/plain, which
describes the type of input data that it wants the plug-in to accept and directs the plug-in to
produce no output. The service broker then contacts the underlying platform of the
businessman’s mobile device to get all the plug-ins in the system. Then the service broker
asks each plug-in for its servable data type set and its access key. It sends back the names of
plug-ins that can serve MIME-type text/plain and produces no output and the access key.
Now the businessman sees the list of plug-ins sent from the service broker on the Expense
application’s screen. After he selects one email plug-in, that plug-in’s name and the expense
records are sent to the service broker. The broker, in turn, passes that information package to
the email plug-in. The plug-in emails the records and displays a confirmation about the
delivery.

12 CMU/SEI-2002-TN-023

4 Service Broker

The service broker serves as a bridge between the client and service layers. In this section, we
describe its role, internal architecture, and other feasible alternatives. We also discuss the
relationship and interaction between the software components inside the service broker and the
sequence of their interactions in the real-world scenario.

4.1 Internal Architecture
The service broker lies between the clients and the services. It encapsulates the interactions
between the clients and the underlying platform and services, and provides two interfaces to
the clients: PAMDLookupService and PAMDExecutiveService. The
PAMDLookupService interface looks up all the available services for a given data type set;
the PAMDExecutiveService interface executes a particular service and passes the result, if
any, to clients.

With this approach, the details and existences of services are hidden from the clients. This
simplifies the concern of clients and makes all services transparent to clients, thus decreasing
the cohesion among components.

Figure 4: Internal Architecture Diagram of the Service Broker

The above diagram shows the internal architecture of the service broker. It consists of five
internal software components (ISCs). Two interface ISCs serve as the front-end of the service
broker and interact directly with the clients. Three agent ISCs perform the core tasks inside
the service broker.

Discovery

MatchMaker Dispatcher

Lookup Execute

Legend

Interface

Agent

CallReturn

Discovery

MatchMaker Dispatcher

Lookup Execute

Legend

Interface

Agent

CallReturn

CMU/SEI-2002-TN-023 13

Each ISC is described briefly below:

• lookup interface ISC—accepts service lookup requests with the desired data type set and
access key from the clients and returns a list of available services that satisfy the given
request

• execution interface ISC—accepts service execution requests with or without data from the
clients along with the access key and returns the result of the execution, usually with
transformed data

• discovery agent ISC—discovers all the existing services in a mobile device

• matchmaker agent ISC—compares a given data type set and access key to the supported
data type set and access key of each service, and produces a list of services that can handle
them

• dispatcher agent ISC—executes a particular service. It checks the validity of the input data
and access key before sending a request to a service.

Note that only the interface ISCs can interact with the clients, and only the agent ISCs can talk
to services. This implies that the service broker itself has a layered structure.

4.2 Interaction Among Internal Software Components
The following diagram explains how ISCs interact for each service request. Two interface
ISCs trigger all the subsequent actions. The lookup service request always precedes the
execute service request. The information retrieved in the lookup service will be used when
serving the execute service request.

14 CMU/SEI-2002-TN-023

Figure 5: Internal Interaction Diagram of the Service Broker

Considering the real-world scenario presented on page 11 in terms of the interaction diagram,
the interaction of this internal architecture starts when the businessman clicks on the Plug-Ins
button in the Expense application, and the service broker, specifically the LookupInterface
component, receives a request along with MIME-type text/plain as the input data type
and output type as none. Inside the service broker, the LookupInterface component requests
the Discovery component to find all the available plug-ins. Next, the LookupService
component requests the MatchMaker component to find plug-ins that can serve MIME-type
text/plain and the access key. MatchMaker uses the plug-in information to contact each
plug-in. It matches the data type set and access key of the incoming request with that of plug-
ins and returns a list of matching plug-ins to the LookupService component. This component
then passes the list back to the Expense application that, in turn, shows it to the businessman.

DispatcherLookupInterface ExecInterface Discovery MatchMaker Plug-in

Find out all available plug-ins

Request a list of plug-ins that can handle given data type set and access key

Get data type set and access key
each plug-in can handle *

Compare data type set and access key

Request execution of a plug-in

Execute plug-in

Return a matched plug-in list

Return data type set and access key

Return execution result
Relay execution result

Returns all available plug-ins

Check data type set and access
key each plug-in can handle

Compare data type set and access key

Return data type set and access key

DispatcherLookupInterface ExecInterface Discovery MatchMaker Plug-in

Find out all available plug-ins

Request a list of plug-ins that can handle given data type set and access key

Get data type set and access key
each plug-in can handle *

Compare data type set and access key

Request execution of a plug-in

Execute plug-in

Return a matched plug-in list

Return data type set and access key

Return execution result
Relay execution result

Returns all available plug-ins

Check data type set and access
key each plug-in can handle

Compare data type set and access key

Return data type set and access key

CMU/SEI-2002-TN-023 15

The interaction resumes when the businessman chooses one email plug-in, and its name and
the expense records are sent to the service broker, specifically to the ExecInterface component.
From there, the following occurs:

1. The ExecInterface component requests the Dispatcher component to execute the
requested email plug-in with the data package and access key.

2. The Dispatcher component makes a sanity check of the plug-in to be executed with the
data type set and access key.

3. The plug-in then emails the expense information to the businessman’s secretary and
displays a confirmation message in the output data package.

16 CMU/SEI-2002-TN-023

5 PAMD Service

In this section, we discuss the internal architecture of a PAMD service, a service that is
provided typically by a plug-in. Recall that a service is an entity that is executed indirectly
through the service broker. This section describes the architecture within the PAMD service
and the interactions among the service’s components.

5.1 Architectural Diagram
The architectural diagram of a service is shown in Figure 6. The square boxes along the top
border represent the lookup service and the execute service for the service broker, respectively.
Each is bounded to the interface components.

Figure 6: Internal Architecture Diagram of the PAMD Service

Data Type Set
Lo okup _Interface Execute_Interface

Internal_Execution

 <<Connector Type
<< Component
Type >> PIFSC

<< Component
Type >> PINSC

<< Component
Type >> PDC

<< Component
Type >> PIFSC

<< Component
Type >> PINSC

<< Component
Type >> PDC

Legend

 Call-Return>>

<<Connector Type

 Access>>

Lookup_Interface Execute_Interface

Internal_Execution

Data Type Set
& Access Key

CMU/SEI-2002-TN-023 17

5.2 Component Interactions
There are three types of components: the Service Interface Software component (SISC), the
Service Data component (SDC), and the Service Execution Software component (SESC).
Each is described below.

• Service Interface Software Component (SISC)—represents the front-end of a service that
interacts with the service broker. There are two SISC components:

- Lookup Interface component—receives a request from the service broker for service
information. It retrieves the data type set and access key from the Data Type Set and
Access Key component (described below) and returns them to the service broker.

- Execute Interface component—receives a request from the service broker to execute
the service. It passes the input data package (if any) to the Internal Execution
component and returns the output data package (if any) back to the service broker.
This component can access the Data Type Set and access key component to check the
accuracy of the input data types before calling the Internal Execution component.

• Service Data Component (SDC)—stores the service information. There is one SDC
component:

- Data Type Set component—stores the data types that the service can handle. The data
types can be retrieved by the Lookup Interface component and sent to the service.
Before executing a service, the Execute Interface and Internal Execution components
check the data type of the inputs through this component.

• Service Execution Software Component (SESC)—performs the specific service. There is
one SESC component:

- Internal Execution component—takes the input data (if any) and performs the
appropriate tasks. It generates output and then passes it back to the Execute Interface
component.

18 CMU/SEI-2002-TN-023

6 Architectural Alternatives

In this section, we discuss the four major architectural decisions made before the final
architecture design. Then we analyze the pros and cons of architectural alternatives to each
decision.

The service broker discovers available services whenever there is a lookup request, rather than
permanently managing them. Some of the issues considered for the current Service Broker
architecture are explained below:

• It might be technically difficult (or even impossible) to keep track of the available plug-ins
in a mobile device since the service broker may not know when services are installed or
removed.

• Though it is possible, letting all services maintain identical functionality for the
registration may waste precious RAM space in mobile devices. Having a separate
component to deal with this problem would help to save considerable space as the services
get rich. The amount of space needed would remain unchanged even if the number of
services in the mobile devices increases.

• Reducing the work needed for each service, even by a small amount, will save a lot of
work when several services coexist. This reduction will eventually promote the popularity
of PAMD in the industry.

6.1 Plug-In Execution: Indirect Vs. Direct
In the current architecture, applications request that the service broker executes a plug-in. One
of the architectural alternatives considered was to provide applications with enough
information about existing plug-ins and let applications execute the plug-in directly. Figure 7
shows how a plug-in is executed in the current and alternative architectures respectively. Note
that this alternative reduces the amount of interface in overall architecture. A single direct
execution connector between applications and plug-ins can replace two execution connectors
between applications and plug-ins passing through the service broker.

CMU/SEI-2002-TN-023 19

Figure 7: Current Architecture Vs. an Alternative with Direct Execution of Plug-In

This alternative reduces the amount of information stored in the service broker. Even though
the alternative architecture will improve performance during plug-in execution, the current
architecture was chosen—the reliability, portability, and modifiability of applications are more
important than performance. In the current architecture, the service broker does error
checking when failures occur during plug-in execution. Doing so promotes reliability. In
addition, if a different platform is used, the service broker hides the changes to the platform
application program interface (API) that the application uses when executing the plug-in. This
makes the architecture more portable. Since the current architecture supports a single point of
contact (i.e., the application does not need to connect to the plug-in directly), it reduces the
concerns of application developers. Thus, the current architecture supports the modifiability
of the application.

6.2 Plug-In Identity: Discovery Vs. Registration
In the current architecture, the service broker discovers the identity of existing plug-ins. One
of the architectural alternatives considered was to provide an interface for plug-ins to register
their identities when they are added to or removed from a mobile device. Figure 8 shows how
to determine the identity of a plug-in in both the current and alternative architectures. Note
that the plug-ins actively register themselves to the service broker in this alternative, rather
than being discovered.

Legend

ServiceBrokerClient Service
Lookup Execute

ServiceBroker1 ServiceBroker2
Applications execute

plug-ins directly
without contacting
the service broker.

The application
requests that the

service broker
executes the desired
plug-in. The service

broker acts as an
execution proxy for the

application.

Application1

Plug-In1

Application2

Plug-In2

Current
Architecture:Indirect

Plug-In Execution

Alternative
Architecture:Direct

Plug-In
Execution

Legend

ServiceBrokerClient Service
Lookup Execute

ServiceBroker1 ServiceBroker2
Applications execute

plug-ins directly
without contacting
the service broker.

The application
requests that the

service broker
executes the desired
plug-in. The service

broker acts as an
execution proxy for the

application.

Application1

Plug-In1

Application2

Plug-In2

Current
Architecture:Indirect

Plug-In Execution

Alternative
Architecture:Direct

Plug-In
Execution

20 CMU/SEI-2002-TN-023

Figure 8: Current Architecture Vs. an Alternative with Plug-In Registration

Assuming that the number of times the plug-in is used is more than the number of times plug-
ins are installed and removed, this architecture improves performance during service
execution. Even though the alternative architecture will improve performance, the current
architecture was chosen—the reliability and modifiability of applications are more important
than performance. In the current architecture, the service broker does not have to keep track
of plug-in registration. Therefore, the lookup mechanism is less error-prone. If there is an
error or a platform upgrade in the development environment, plug-in developers don’t need to
modify their code because of registration mechanism changes. Also, since lookup is the
responsibility of the service broker, the amount of code required to look up plug-ins remains
constant regardless of the number of plug-ins. As the number of plug-ins increases, more
storage space is saved.

6.3 Information Reuse: Refresh Vs. Cache
In the current architecture, the identity of the specified plug-in is discovered again whenever
there is an execute service request. One of the architectural alternatives considered was to
store information about the plug-in’s identity in the internal cache of the service broker. This
information could then be used for executing services. Figure 9 shows how the Dispatcher
component acquires the plug-in identity in the both current and alternative architectures. Note
that interaction with the underlying platform is excluded from the diagrams.

Current
Architecture:

Plug-In Discovery

Alternative
Architecture:

Plug-In Registration

ServiceBroker1
Plug-ins register
themselves when

installed on or
removed from a

device. Service broker
maintains registration

information inside.

Service broker
discovers existing

plug-ins in the device
whenever

applications request
to use a plug-in.

Application1

Plug-In1

Application2

ServiceBroker2

Plug-In2

Legend

ServiceBrokerApplication Plug-In
Lookup Execute

Current
Architecture:

Plug-In Discovery

Alternative
Architecture:

Plug-In Registration

ServiceBroker1
Plug-ins register
themselves when

installed on or
removed from a

device. Service broker
maintains registration

information inside.

Service broker
discovers existing

plug-ins in the device
whenever

applications request
to use a plug-in.

Application1

Plug-In1

Application2

ServiceBroker2

Plug-In2

Legend

ServiceBrokerApplication Plug-In
Lookup Execute

CMU/SEI-2002-TN-023 21

Figure 9: Current Architecture Vs. an Alternative with the Internal Cache

After a performance test, it was determined that there was no performance gain by using cache
because accessing the plug-ins using Palm APIs was as efficient as having a cache. Cache was
also occupying more memory, as it has to maintain the information about the list of plug-ins.
Considering the memory limitation factor in mobile devices, this was expensive. There was
no added benefit in using cache when compared to getting the plug-in information each time
using the continuous approach, so the choice was made to discover the plug-ins and match
them all at once. Plug-ins could be added to or removed from the device at any time. It is
essential to procure the updated list of plug-ins, which adds maintenance overhead for the
cache. Cache also opens up the architecture for more errors because the latest state of the
device must be maintained in the cache. All these factors led us to choose the “refresh
continuously” approach.

6.4 Service Broker Internal Architecture: Layered Vs. Monolithic
In the current architecture, interface logic and internal logic are separated into two different
layers in the service broker. One of the architectural alternatives considered was to merge
them together to reduce the number of components inside the service broker. Figure 10 shows
how internal components of the service broker can be combined. Note that each external
interface has an associated monolithic component. The Discovery and MatchMaker
components are merged together.

Component
Current_Service_Broker
(Refresh_Continuously)

Discovery

MatchMaker Dispatcher

Lookup Execute Discovery

MatchMaker Dispatcher

Lookup Execute

Cache

Component
Alternate_Service_Broker

(Internal_Cache)

Component
Current_Service_Broker
(Refresh_Continuously)

Discovery

MatchMaker Dispatcher

Lookup Execute Discovery

MatchMaker Dispatcher

Lookup Execute

Cache

Component
Alternate_Service_Broker

(Internal_Cache)

22 CMU/SEI-2002-TN-023

Figure 10: Current Architecture Vs. an Alternative with Monolithic Components

Since there are fewer components and connectors involved in the alternate architecture, the
processing time will be reduced a bit. Even though the alternative architecture will improve
performance, the current architecture was chosen—the modifiability and portability of
applications is more important than performance. When there are changes in the underlying
platform of the current architecture, the interface components can simply be modified to deal
with them. When this architecture must be implemented on a new platform, the code of the
Discovery, MatchMaker, and Dispatcher components can be reused, thus decreasing the time
required.

Component
Current_Service_Broker

(Layered_Internal_Component)

Discovery

MatchMaker Dispatcher

Lookup Execute

Component
Alternative_Service_Broker

(Monolithic_Internal_Component)

Lookup Execute

Component
Current_Service_Broker

(Layered_Internal_Component)

Discovery

MatchMaker Dispatcher

Lookup Execute

Component
Alternative_Service_Broker

(Monolithic_Internal_Component)

Lookup Execute

CMU/SEI-2002-TN-023 23

7 Future Extensions

In this section, we show how PAMD can be extended to support distributed operation and how
this extension affects existing systems, developers, and users.

7.1 Background
As stated earlier, PAMD architecture is designed for use in a single mobile device. Currently,
mobile device users are able to use only services that are available on their local device.
Whenever they need a new service, they must install it on the device in the form of a plug-in.
The installation process is burdensome for people who only want to use the services for a short
time. Additionally, when their devices don’t have enough storage to maintain many plug-ins,
users often waste a lot of time installing and removing them.

The current trend in mobile computing moves toward the Internet world where abundant
information and services are available and continuously updated. People want to use those
services and be able to locate them quickly. As a result, people have an increasing need to use
multiple services that are distributed over many different machines.

7.2 Overall Architecture of Distributed PAMD
The main goals of distributed PAMD (D-PAMD) are

• Applications should be able to use plug-ins from different devices.

• Plug-ins should be able to serve applications in different devices.

• Different devices with different platforms should be able to work together.

• Any architectural changes should be transparent to existing applications and plug-ins.

To achieve these goals, the service broker needs to be changed to allow the applications, plug-
ins, and platforms to cooperate so that they appear to be a single virtual service broker from
the application’s perspective. This might involve peer-to-peer or group cooperation,
depending on the given interconnection mechanism; in this document, the focus is on
cooperation between a group of service brokers that share their services.

The following diagrams show an overall architecture diagram of distributed PAMD. Since
multiple service brokers are involved, information about their identities should be stored in a
central place that could be accessed by all the service brokers. A new component was
introduced: Federation Hub that manages the list of connected service brokers and is similar to
the Lookup Service (LUS) in the JINI architecture. Service brokers register themselves in a
Federation Hub and form a federation of services. Whenever there is a service request from an
application, service brokers pass it to the Federation Hub that, in turn, spreads it to other
service brokers. After looking up the information about the available plug-ins, the results are

24 CMU/SEI-2002-TN-023

passed back to the Federation Hub. Eventually, the application will get all the available plug-
ins in a federation. Though service brokers form a great federate of services, applications and
plug-ins don’t notice this at all.

Figure 11 illustrates the architecture of D-PAMD.

Figure 11: D-PAMD Architecture

Note that there might be multiple federation hubs, each maintaining a single federation.
Service brokers can decide which federation to join by selecting from among different hubs.
Though we will not discuss the following issues in detail here, they must be addressed to
enable this architectural extension:

Device1 Device2

Plug-in2Plug-in1

Application1 Application2

Device3 Device4

Plug-in4Plug-in3

Application3 Application4

Application ServiceBroker Plug-In

Lookup Service Execute Service

Legend

Federation Hubs keep track of service brokers
that registered themselves as part of a

federation. It also relays lookup and execute
requests to different service brokers back and
forth. This enables multiple devices to form a

big pool of shared services.

ServiceBroker1

ServiceBroker3

ServiceBroker2

ServiceBroker4

HUB

Federation_HUB

Federation Connection

Device1 Device2

Plug-in2Plug-in1

Application1 Application2

Device3 Device4

Plug-in4Plug-in3

Application3 Application4

Application ServiceBroker Plug-In

Lookup Service Execute Service

Legend

Federation Hubs keep track of service brokers
that registered themselves as part of a

federation. It also relays lookup and execute
requests to different service brokers back and
forth. This enables multiple devices to form a

big pool of shared services.

ServiceBroker1

ServiceBroker3

ServiceBroker2

ServiceBroker4

HUB

Federation_HUB

Federation Connection

CMU/SEI-2002-TN-023 25

• design of the new service broker hub

• modification of the existing service brokers

• protocols between service brokers and a hub

• security issues in a federation such as access control and user authentication

• peer-to-peer connection without a federation hub

• modification to the format of plug-in identities (including a device ID)

To allow easy the modification of existing service brokers, an additional federation interface
component needs to be added inside the service brokers. This new component works as a
bridge between the Federation Hub and internal components inside the service brokers—
Discovery, MatchMaker, and Dispatcher. With this approach, existing internal components
can be reused as much as possible, and peer-to-peer service sharing can be achieved by
replacing federation interface components with peer-to-peer interface components.

There might be a problem with identical plug-ins existing in different mobile devices. For this
reason, plug-in identity information should include a unique device identifier.

26 CMU/SEI-2002-TN-023

8 Conclusion

“Jim, Can you send me the financial report from your Palm?”

“Get it from my Palm, Bill. You know the access code.”

“Hmm. Yeah, sure Thanks Jim! I wanted to review it and include it in a press
release today.” (Thanks to PAMD, I can do this easily using my Palm even
though I’m traveling.)

This would be the future of PAMD.

PAMD provides interoperability between applications and plug-ins without sacrificing the
performance of the mobile devices. Because existing applications can be made PAMD
compliant with little modification, the development time and costs of adding functionality to
them can be reduced dramatically. As PAMD bears the burden of communicating with plug-
ins, application and plug-in developers can develop their own products independently and
easily use each other's products. This will certainly create a competitive market to create
better plug-ins, thus benefiting the customer.

PAMD satisfies all the architectural requirements we described in Section 2. Though PAMD is
developed and tested on mobile devices, especially Palm, it could be adapted to any devices
on any platforms that need interoperability. PAMD will handle any failures during the
interaction between applications and plug-ins, thus providing reliability. PAMD imposes
minimal performance overhead with its efficient lookup and execution process.

In this technical note, we described PAMD, its interfaces, how applications and plug-ins
interact with them, and the advantages of using PAMD. Several scenarios were illustrated to
explain the architecture and how it can be implemented. We also suggested some extensions
to enhance the current architecture. We hope that this work is useful to mobile device
application developers, plug-in developers, and manufacturers. We predict that the day when
all mobile devices are equipped with PAMD is not far away.

CMU/SEI-2002-TN-023 27

Appendix A Acme Textual Description

Family PAMD_Outside = {

 Port Type provide;

 Port Type use;

 Component Type Application = {

 Port lookup : use;

 Port execute : use;

 };

 Component Type PAMD-Layer = {

 Port identity : use;

 Port service : use;

 Port lookup : provide;

 Port execute : provide;

 };

 Component Type PlugIn = {

 Port identity : provide;

 Port service : provide;

 };

 Role Type caller;

 Role Type callee;

 Connector Type CallReturn = {

 Role caller : caller;

 Role callee : callee;

 };

};

Family PAMD_Inside = {

 Port Type provide;

 Port Type use;

 Port Type read;

28 CMU/SEI-2002-TN-023

 Port Type write;

 Component Type Interface = {

 Port provide : provide;

 Port use : use;

 };

 Component Type Object = {

 Port provide : provide;

 Port use : use;

 };

 Component Type Repository = {

 Port read : read;

 Port write : write;

 };

 Role Type source;

 Role Type sink;

 Role Type caller;

 Role Type callee;

 Connector Type Access = {

 Role source : source;

 Role sink : sink;

 };

 Connector Type CallReturn = {

 Role caller : caller;

 Role callee : callee;

 };

};

System toplevel : PAMD_Outside = {

 Component PAMD-Layer : PAMD-Layer = {

 Port identity : use;

 Port service : use;

 Port lookup : provide;

 Port execute : provide;

 Representation {

CMU/SEI-2002-TN-023 29

 System inside : PAMD_Inside = {

 Component LookupInterface : Interface = {

 Port provide : provide;

 Port use : use;

 Port use2 : use;

 };

 Component Discovery : Object = {

 Port provide : provide;

 Port use : use;

 Port write : write;

 };

 Component MatchMaker : Object = {

 Port provide : provide;

 Port use : use;

 Port read : read;

 };

 Component Dispatcher : Object = {

 Port provide : provide;

 Port use : use;

 Port read : read;

 };

 Component ExecInterface : Interface = {

 Port provide : provide;

 Port use : use;

 };

 Connector CallReturn1 : CallReturn;

 LookupInterface.use to

CallReturn2.caller;

 MatchMaker.provide to

CallReturn2.callee;

 ExecInterface.use to

CallReturn3.caller;

30 CMU/SEI-2002-TN-023

 Dispatcher.provide to

CallReturn3.callee;

 };

 };

 Bindings {

 execute to ExecInterface.provide;

 service to Dispatcher.use;

 lookup to LookupInterface.provide;

 identity to MatchMaker.use;

 };

 };

 };

 Component Application_1 : Application;

 Component Application_2 : Application;

 Component Application_N : Application;

 Component PlugIn_1 : PlugIn;

 Component PlugIn_2 : PlugIn;

 Component PlugIn_N : PlugIn;

 Connector CallReturn1 : CallReturn;

 Connector CallReturn2 : CallReturn;

 Connector CallReturn3 : CallReturn;

 Connector CallReturn4 : CallReturn;

 Connector CallReturn5 : CallReturn;

 Connector CallReturn6 : CallReturn;

 Connector CallReturn7 : CallReturn;

 Connector CallReturn8 : CallReturn;

 Connector CallReturn9 : CallReturn;

 Connector CallReturn10 : CallReturn;

 Connector CallReturn11 : CallReturn;

 Connector CallReturn12 : CallReturn;

 Attachments {

 Application_1.lookup to CallReturn1.caller;

 Application_1.execute to CallReturn2.caller;

 Application_2.lookup to CallReturn3.caller;

 Application_2.execute to CallReturn4.caller;

 Application_N.lookup to CallReturn5.caller;

 Application_N.execute to CallReturn6.caller;

CMU/SEI-2002-TN-023 31

 PlugIn_1.identity to CallReturn7.callee;

 PlugIn_1.service to CallReturn8.callee;

 PlugIn_2.identity to CallReturn9.callee;

 PlugIn_2.service to CallReturn10.callee;

 PlugIn_N.identity to CallReturn11.callee;

 PlugIn_N.service to CallReturn12.callee;

 PAMD-Layer.lookup to CallReturn1.callee;

 PAMD-Layer.lookup to CallReturn3.callee;

 PAMD-Layer.lookup to CallReturn5.callee;

 PAMD-Layer.execute to CallReturn2.callee;

 PAMD-Layer.execute to CallReturn4.callee;

 PAMD-Layer.execute to CallReturn6.callee;

 PAMD-Layer.identity to CallReturn7.caller;

 PAMD-Layer.identity to CallReturn9.caller;

 PAMD-Layer.identity to CallReturn11.caller;

 PAMD-Layer.service to CallReturn8.caller;

 PAMD-Layer.service to CallReturn10.caller;

 PAMD-Layer.service to CallReturn12.caller;

 };

};

32 CMU/SEI-2002-TN-023

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and
Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

August 2002

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Plug-In Architecture for Mobile Devices

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Madhu Keshavamurthy, Jung Soo Kim, Mona Li, Vichaya Sagetong
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2002-TN-023

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This technical note describes plug-in architecture for mobile devices (PAMD)—an architectural specification that
extends the function of applications in mobile devices. Users gain major benefits when the functionality of
applications that run on these devices can be extended through the addition of new services that don’t require
changes to the application itself. PAMD provides interoperability between applications and plug-ins without
sacrificing the performance of the mobile devices on which they run. Because existing applications can be made
PAMD compliant with little modification, the development time and costs of adding functionality to them can be
reduced dramatically. As PAMD bears the burden of communicating with plug-ins, application and plug-in
developers can develop their own products independently and easily use each other’s products.

This technical note also describes PAMD’s interfaces, how applications and plug-ins interact with them, and the
advantages of using PAMD. Also included are several scenarios that explain the architecture and how it can be
implemented, and suggestions for extensions that enhance it.

14. SUBJECT TERMS

PAMD, plug-in architecture for mobile devices, plug-in

15. NUMBER OF PAGES

44
16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Plug-In Architecture for Mobile Devices
	Contents
	List of Figures
	List of Tables
	Executive Summary
	Abstract
	1 Introduction
	2 Architectural Requirements of PAMD
	3 Overall Architecture of PAMD
	4 Service Broker
	5 PAMD Service
	6 Architectural Alternatives
	7 Future Extensions
	8 Conclusion
	Appendix A Acme Textual Description

