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Abstract 

Modern society could hardly function without the large-scale, network-centric information 
systems that pervade government, defense, and industry.  As a result, serious failures or com-
promises carry far-reaching consequences.  These systems are characterized by changing and 
often unknown boundaries and components, constantly varying function and usage, and 
complexities of pervasive asynchronous operations.  Their complexity challenges human in-
tellectual control, and their survivability has become an urgent priority.  Engineering methods 
based on solid foundations and the realities of network systems are required to manage com-
plexity and ensure survivability.  Flow-Service-Quality (FSQ) engineering is an emerging 
technology for management, acquisition, analysis, development, evolution, and operation of 
large-scale, network-centric systems.  FSQ engineering is based on Flow Structures, Compu-
tational Quality Attributes, and Flow Management Architectures.   These technologies can 
help provide stable engineering foundations for the dynamic and often unpredictable world of 
large-scale, network-centric systems. Flow Structures define enterprise mission task flows 
and their refinements into uses of system services in network traversals. Flows are determi-
nistic for human understanding, despite the underlying asynchronism of network operations.  
They can be refined, abstracted, and verified with precision, and deal explicitly with Uncer-
tainty Factors, including uncertain commercial off-the-shelf functionality and system failures 
and compromises.  Computational Quality Attributes go beyond static, a priori estimates to 
treat quality attributes such as reliability and survivability as dynamic functions to be com-
puted in system operation. Computational Quality Attribute requirements are associated with 
flows and can be dynamically reconciled with network service attributes in execution. Flow 
Management Architectures include design and implementation frameworks for dynamically 
managing flows and attribute requirements, as well as processes for their development. FSQ 
foundations are defined by theorems that illuminate engineering practices and automation 
opportunities. 
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1 Network System Realities 

Modern enterprises are irreversibly dependent on large-scale network systems whose com-
plexity frequently exceeds current engineering capabilities for intellectual control.  The result 
has been persistent difficulties in development, management, and evolution, and failures, in-
trusions, and compromises in operation [Schneider 1999].  These systems are characterized 
by very-large-scale heterogeneous networks with often-unknown boundaries and compo-
nents.  Dynamic interconnectivity of systems-of-systems can limit visibility and control of 
security and survivability.  User task flows can traverse systems and boundaries with varying 
security and survivability characteristics.  In addition, these systems must deal with uncertain 
commercial off-the-shelf (COTS) function and quality, unforeseen behaviors and vulnerabili-
ties, and unanticipated inter-system cascade failures. Complexity is compounded by the ex-
tensive asynchronous behavior of the virtually unknowable interleaving of communications 
among system components.  Figure 1 depicts components of such a network-centric system, 
the Future Combat System (FCS), where each component is a complex system in its own 
right. 

Figure 1: Elements of the Network-Centric Future Combat System 
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The FCS is highly distributed, contains hundreds of nodes, is operated by thousands of users, 
conducts complex asynchronous communications and operations, is subject to damage, dis-
ruption, and compromise, and undergoes continual upgrade and evolution.  Controlling com-
plexity and ensuring survivability are priorities for the development of systems such as FCS. 

Similar characteristics are found in commercial network-centric systems.  Consider the sys-
tem-of-systems traversals involved in a gasoline purchase transaction with a credit card de-
picted in Figure 2.  Hundreds of hardware and software components are traversed through 
many systems in the multiple conversations from gas pump to landline and satellite telecom-
munications to credit database and back, with many outcomes possible.  Each system in-
volved in the network exhibits unique functionality and quality attributes, including reliabil-
ity, security, and survivability. 

Figure 2: System-of-Systems Traversals in a Gasoline Purchase Transaction 
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Today, we face complexity and survivability issues on a whole new level in large-scale net-
work systems.  Complexity reduction requires solid foundations and engineering methods to 
maintain intellectual control in specification, design, and operation. Complexity and surviv-
ability are closely related. Complexity diminishes survivability by masking potential failures 
and vulnerabilities, and hiding unforeseen access paths for intrusion.  Survivability improve-
ment requires knowing system component dependencies in all usage situations, preparing for 
component compromises and failures in all situations, and designing system actions for all 
situations [Ellison et al. 1999c, Mead et al. 2000].  In short, survivability requires intellectual 
control.   

This paper describes the emerging Flow-Service-Quality (FSQ) engineering process that pro-
vides foundations and methods for dealing with complexity and survivability in network-
centric systems.  Section 2 provides an overview of FSQ technologies.  Section 3 discusses 
semantic foundations of Flow Structures, and Section 4 provides illustrations of Flow Struc-
ture engineering operations. Section 5 introduces Computational Quality Attributes, and Sec-
tion 6 discusses Flow Management Architectures. Section 7 summarizes the contributions 
and implications of FSQ research.  Future papers will describe mathematical foundations for 
Flow Structures and Computational Quality Attributes, and introduce engineering practices 
for their application.   
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2 Flow-Service-Quality Engineering 

Development of large-scale network systems is essentially a massive integration activity that 
seeks to reconcile and satisfy user requirements through combinations of COTS and unique 
components, often within a framework of predefined environments, legacy systems, enabling 
technologies, and domain architectures. A key issue in modern system development is how to 
maintain intellectual control over such complex structures and the asynchronous behaviors 
they produce.  In this world of large-scale, asynchronous network systems with dynamic and 
often uncertain functionality and structure, we ask three questions that deal with engineering 
methods for complexity reduction and survivability improvement: 

1. What are the unifying engineering foundations for system analysis, specification, design, 
and verification?  

2. How should quality attributes such as survivability, reliability, and performance be 
specified and achieved?  

3. What architecture frameworks can simplify system development and operation? 

In short, what are the stable and dependable anchors for specification and design that can 
provide a unified engineering discipline for large-scale network system analysis and devel-
opment?  Our research is developing new approaches to answer these questions.  The follow-
ing concepts help to structure our research thinking: 

1. Flow Structures 

User task flows and their refinements into system service uses can provide unifying en-
gineering foundations for analysis, specification, design, and verification of functionality 
and quality attributes. 

2. Computational Quality Attributes 

Quality attributes can be associated with both flows and the system services they invoke, 
and specified as dynamic functional properties to be computed, rather than as static, a 
priori predictions of uncertain utility in real-time system operations.   

3. Flow Management Architectures 

Flow Structures and Computational Quality Attributes support canonical architecture 
frameworks that manage flows, network services, and their quality attributes in execu-
tion. 

Flow Structures are compositions of system services that carry out user tasks to accomplish 
enterprise missions.  They employ unique semantics to preserve important deterministic 
properties for precise human understanding and analysis, despite the underlying asynchro-
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nism and unpredictability of network behavior. Flow Structures take into account unpredict-
able events and outcomes that can impact mission survivability.  Computational Quality At-
tributes of flows and the services they invoke can be dynamically managed in execution.  
Thus, the first-class concepts of flow, service, and quality form the basis for the emerging 
discipline of Flow-Service-Quality (FSQ) engineering [Hevner et al. 2001, Hevner et al. 
2002]. A persistent problem in development and management of large-scale network-centric 
systems has been the lack of unified, scale-free engineering foundations for intellectual con-
trol in management, acquisition, analysis, development, evolution, and operation.  FSQ engi-
neering addresses that problem through theoretical foundations and practical engineering 
methods to represent, analyze, develop, and dynamically manage system flows and their 
quality attributes as essential and primary artifacts of network system development.  

Distributed information systems are usefully viewed as networks of asynchronously commu-
nicating components that provide system services whose functions can be combined in vari-
ous patterns to satisfy enterprise mission requirements. System services include all the func-
tional capabilities of a network system, from communication protocols and operating systems 
to databases and applications.  The sequencing of system services in user task flows can be 
mapped into compositions of network hardware, software, and human components that pro-
vide the services.  These compositions are end-to-end traces that define slices of network ar-
chitectures whose net effect is to carry out operations that satisfy user requirements.  Figure 3 
depicts refinement of user task flows based on mission objectives into uses of system archi-
tecture components. 

Figure 3: Refinement into User Task Flows into System Service Uses 
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that is, quality attribute, specification and design.  In execution, services invoked by flows 
can experience a blizzard of asynchronous usage interleavings that defies human understand-
ing. A key property of Flow Structures is a semantic foundation that permits flows to exhibit 
deterministic properties for straightforward human understanding and analysis, despite the 
underlying asynchronous behavior. Thus, flows can be represented as simple procedural 
structures composed of nested and sequenced service invocations and local computations ex-
pressed in terms of ordinary sequence, alternation, iteration, and concurrent structures. Such 
structures define an algebra of component composition with desirable properties. For exam-
ple, Flow Structures preserve effective reasoning methods of composition and referentially 
transparent refinement, abstraction, and verification for human understanding. Flows can be 
expressed in virtually any language using Flow Structure primitives to specify user task uses 
of system services in precise terms.  Services invoked by flows can be refined into flows in-
voking other services, etc., in a recursive design process that employs identical structures and 
engineering methods at all levels of refinement.  Flow Structures are superficially related to 
workflow methods [Leymann and Roller 2000], but define rigorous scale-free foundations for 
large-scale system analysis, development, and operation.    

Flows can be organized into related FlowSets associated with particular components and 
network partitions.  Transitivity analysis of flows can reveal often-unforeseen dependencies.  
Flows define required levels of quality attributes for themselves, as well as for execution of 
the services they reference. FSQ engineering operations for existing and new systems are de-
picted in Figure 4.  For new systems, flow specification begins with user tasks that support 
enterprise mission objectives, thereby ensuring a user-centric approach to design and devel-
opment.  In particular, flows are vehicles for definition of required quality attributes, such as 
reliability and survivability.  Some flows require higher levels of reliability and survivability 
than others, and flow-specific definition of attribute requirements permits informed 
cost/benefit tradeoffs in system design.  For existing systems, flows of mission-critical opera-
tions can be extracted and analyzed to reveal unforeseen dependencies and single points of 
failure. Such analysis permits identification and development of survivability improvements.  
It is important to note that flows can define both legitimate and illegitimate use.  Intruder us-
age of systems can be expressed in flows to reveal compromisable components and help de-
fine security and survivability improvements [Mead et al. 2000, Moore et al. 2001]. 
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Figure 4: FSQ Engineering Operations for New and Existing Systems 
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tial effort has been devoted in the past to development of a priori characterizations of quality 
attributes. Rather than focusing on descriptive methods of limited value for dynamic net-
works, we adopt an alternate approach and ask how such attributes can be defined, computed, 
and acted upon as dynamic characteristics of system operation. That is, we wish to define 
quality attributes as functions to be computed, rather than as static descriptions of capabilities 
to be achieved. While such functions rely on what can be computed and may differ thereby 
from traditional views of quality attributes, they can permit new approaches to attribute 
analysis, design, metrics, and operational evaluation. A key aspect of the computational ap-
proach is the ability to associate quality attributes with specific flows rather than with entire 
systems, thereby permitting differentiation among attribute capabilities based on mission 
criticality in survivability engineering.  Some quality attributes, such as availability and reli-
ability, are readily quantified for computational analysis.  Others, such as security and surviv-
ability will be more difficult.  Nevertheless, we believe the effort must be made, and that new 
approaches and insights will result.  

In a world of Flow Structures and Computational Quality Attributes, it is natural to consider 
system architecture frameworks based on dynamic flow and quality attribute management 
[Sikora and Shaw 1998, Haeckel 1999, Sullivan et al. 1999].  A primary control task in large-
scale systems is managing the sequencing of system services in real time to satisfy flow 
specifications.  FSQ concepts suggest standard, subject-matter-independent Flow Manage-
ment Architecture (FMA) frameworks for dynamic flow and attribute management in execu-
tion.  Such frameworks could reconcile flow requirements with service availabilities, and im-
plement operational management strategies based on dynamic network and service 
capabilities and workloads.  FMA frameworks embody the concept of an FSQ Manager, cen-
tralized or decentralized within the architecture of a system, which provides such flow man-
agement.  In particular, an FSQ Manager could provide dynamic quality attribute evaluation.  
For example, survivability management could include a variety of strategies such as rerouted 
communication paths, resource substitutions, state reconstruction, alternate provisioning, and 
system reinitialization and reconfiguration.  An FSQ Manager could be designed and instan-
tiated in a variety of forms and technologies, depending on user requirements, network con-
figuration, and the operational environment.  

FSQ engineering can reduce complexity and add clarity to network system development.  
Flow Structure specifications of enterprise tasks can be designed and verified with full human 
understanding at various levels of abstraction in a seamless process from user task flows 
down to architecture components. Flow Structures prescribe logical network connections and 
operations, define compositionality among nodes and services, and support both centralized 
and distributed control. The specification of network system behavior and logical connec-
tivity is defined by the set of flows of its service uses. The specification of each service in a 
network system incorporates all its uses in all the flows in which it appears. Flow Manage-
ment Architecture frameworks provide systematic templates for managing flow instantiations 
and reconciling Computational Quality Attributes. 
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3 Flow Structure Semantics 

3.1 The Semantic Model 

In large-scale network systems, flows can engage in extensive traversals of network nodes 
and communication links, where the behavior of invoked services cannot always be known 
and predicted.  In this environment a variety of Uncertainty Factors must be managed, includ-
ing: 

1. Unpredictable function 

A service may be provided by COTS or External Service Provider (ESP) components of 
unpredictable function and reliability that may not perform expected operations every 
time or any time it is invoked. 

2. Compromised function 

A service may have been compromised or disrupted by an intrusion or physical attack 
and may not be able to perform its function correctly or at all. 

3. High-risk function 

A service may not provide adequate levels of quality attributes (Quality of Service)  
required by a flow. 

4. Modified function 

A service may be modified or replaced as part of routine maintenance, error correction, 
or system upgrade, with intentional or inadvertent modification of its function. 

5. Asynchronous function 

A service may be used simultaneously and asynchronously by other flows, and thus pro-
duce results dependent on unpredictable history of use, both legitimate and illegitimate.   

These factors are pervasive behavioral realities of large-scale, network-centric systems 
[Schneider 1999].  Dealing with them is an enterprise risk management problem with poten-
tially serious consequences.  It is important to detect when they have occurred and take ap-
propriate actions to continue operation in the environments they have created.  For mission-
critical flows, these actions must ensure survivability no matter what adverse environments 
are encountered [Mead et al. 2000].  In today's world, it is imprudent from a risk management 
perspective to fail to fully address the Uncertainty Factors at all levels of enterprise and sys-
tem operation. 
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The mathematical semantics of Flow Structures are defined to support development and veri-
fication of flows for such uncertain environments as a standard engineering practice.  To al-
low for unpredictable behavior of services, flow semantics permit specification of only the 
processing that a flow itself performs, and not the processing of the services it invokes.  Flow 
Structure engineering requires definition of appropriate actions by a flow for all possible 
responses of key services, both desired and undesired. Thus, if the behavior of invoked ser-
vices changes for any reason, the specification and verification of the invoking flow need not 
change.  This approach accommodates the realities of today's network systems and offers im-
portant advantages.  It requires for mission survivability that the Uncertainty Factors be dealt 
with explicitly in design, thereby addressing important aspects of enterprise risk manage-
ment. It permits flows and reasoning about them to be localized yet complete.  And it permits 
flows to be defined by simple deterministic structures despite the underlying asynchronous 
behavior of their constituent services. These deterministic structures can be refined, ab-
stracted, and verified using straightforward compositional methods for human understanding 
and intellectual control.   

It turns out that these objectives require extension of the traditional functional semantics 
model.  The FSQ semantic model is based on the well-known concept of services as rules for 
mathematical functions (or relations if flows include concurrent operations), that is, map-
pings from domains (inputs, stimuli) to ranges (outputs, responses) [Linger et al. 1979, Mills 
et al. 1986, Prowell et al. 1999, Hoffman and Weiss 2001, Mills and Linger 2002].  The key 
extension required to deal systematically with the Uncertainty Factors is to make the histories 
of service invocations themselves part of the specified behavior of flows.  Mathematically, 
this is achieved by including the invocation stimulus history (ISH) of every service in the 
range of the function that represents the specification of a flow.  In addition, because subse-
quent flow processing can depend on the responses from these invocations, the invocation 
response history (IRH) must be part of the domain of the mathematical function that repre-
sents the specification of a flow.  The diagram of Figure 6 illustrates these semantics for a 
flow F invoking a service A. 

Figure 6: Elements of Flow-Service Semantics 

I is the set of possible inputs to flow F, and O is the set of possible outputs from flow F.  
Thus, the semantics of F can be given by a mathematical function f with domain I x IRH and 
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and service stimuli in the range of F that allows flows to deal with the Uncertainty Factors.  
In particular, IRH represents the range of possible service responses, and thus embodies the 
Uncertainty Factor possibilities that should be dealt with in flow design.  Dealing with the 
Uncertainty Factors requires assessing and acting upon all possible responses, desired and 
undesired, that service invocations can produce.   Of course, no semantics can force such in-
formed design, they can only illuminate the desirability of doing so.  

In this semantic model, the specification of flow F is not required to account for the behav-
iors that result due to invocation of service A.  Rather, it simply defines the invocation of ser-
vice A with certain parameters, and how the response from that invocation affects subsequent 
processing of F.  This means, for example, that any lower-level services invoked by service A 
need not be part of the ISH and IRH of flow F.  If this were not the case, the specification of 
F would change if service A was modified, for example, to invoke different lower-level ser-
vices.  This approach differs from traditional functional semantics, where the specification of 
F would be required to include the full effects of all lower-level service invocations by ser-
vice A as a part of its functional specification. 

This approach to specification is key to maintaining intellectual control over flow specifica-
tion and design.  As noted, deterministic flows that invoke non-deterministic, asynchronous 
services can be modeled by deterministic mathematical functions, making human reasoning 
and analysis much simpler.  Alternately, if the behavior of flows were non-deterministic, then 
the flows themselves would become far more complicated, and their semantics would need to 
be expressed as a mathematical relation from domain I x IRH to range O x ISH.  This com-
plex situation is avoided by FSQ semantics. 

The flow semantics described above are particularly suited to the common situation where 
service A already exists on a network, or is provided by COTS or ESP components with 
complex and possibly unknown functions.  In cases where service A is new and must be de-
signed as part of the implementation of flow F, these flow semantics can be combined with 
traditional design and verification methods such as those found in object-based box structures 
[Mills et al. 1986] to support reasoning about the combined behavior of the system consisting 
of F and A together.  In this way, the desired behavior of F and A can be used to guide the 
construction of A.  In particular, box structures provide history-, state-, and procedure-
oriented representations of flows and services, and methods for their abstraction, refinement, 
and verification.  

Flow Structure concepts and techniques apply to network flows written in almost any impera-
tive language, including C++ and Java, provided the language includes the basis set of con-
trol structures, namely, sequence, alternation, and iteration.  Specializations and extensions of 
these structures are valuable as well.  Service invocations in these languages are method calls 
on objects.  An abstract Flow Structure Language (FSL) can be defined that captures the es-
sence of FSQ concepts independently of specific implementation language syntax.  To deal 
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with concurrency within a flow itself, a concurrent structure is included in FSL as well.  Be-
cause specifics of language data type and declaration syntax do not affect the applicability of 
FSQ, these features can be de-emphasized in FSL.  Figure 7 illustrates typical FSL control 
structures. 

Figure 7: Typical FSL Control Structures 

The overall behavior of an individual flow is as follows:  A flow is invoked with values as-
signed to its input parameters, and at the termination of flow execution, the final values of 
output parameters are returned to the invoker of the flow, whether a human user or another 
flow.  A flow can define local, non-persistent data to store intermediate values produced by 
flow computations.  Finally, a flow can invoke services to accomplish various network or 
even local activities, including storing, accessing, and modifying persistent data.  In design-
ing flows, this means that the persistent state required by a flow should be encapsulated in 
services.   

In addition to sequence, alternation, iteration, and concurrent structures, FSL contains a “use” 
statement to invoke services.  The statement incorporates post-fix predicates to evaluate and 
act upon designer-defined equivalence classes on the set of all possible responses, both desir-
able and undesirable.  This partitioning and analysis of response equivalence classes ad-
dresses the requirement to deal with the Uncertainty Factors characteristic of network behav-
ior, and the survivability implications they impose.  Flow designers select key services for 
such response analysis.  The general syntax of the use statement is as follows: 

use <service>.<method>(<parameters>) 

   response <status_variable> is 

       <enumerated_value_1> when <expression> 

     | <enumerated_value_2> when <expression> 

     | ... 

     | <enumerated_value_n> when <expression>; 

For example, the following use statement illustrates invocation of an airline reservation data-
base to reserve space on a flight: 

use Airline.reserve(customer, flight, date, result, seat) 

   response status is 

 

…

sequence iteration concurrencyalternation

…

sequence iteration concurrencyalternation
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       NOTRESERVED when result = false 

     | RESERVEDNOSEAT when (result = true) and (seat = "") 

     | RESERVEDWITHSEAT when (result = true) and (seat != ""); 

In addition to such explicitly enumerated equivalence classes on the response, parameters 
based on network and component status (e.g., NOTCONNECTED, NORESPONSE) could be 
evaluated as well.  Such evaluations are important in assessing and acting upon dynamic sur-
vivability properties of a network. 

3.2 FSQ Theorems 

A number of theorems capture and explore the fundamentals of FSQ semantics.  Example 
theorems are described below. Proofs are beyond the scope of this paper and can be found in 
[Pleszkoch et al. 2002]:   

1. Flow Structure Theorem   

Given any graph representing a flow there exists an equivalent flow that can be imple-
mented using only composition, alternation, and iteration control structures. 

 Engineering Implications: 

This theorem guarantees that composition, alternation, and iteration control structures 
are sufficient to implement any flow.  Thus, flow developers need not use unstructured 
logic or arbitrary branches. 

 

2. Abstraction/Refinement Theorem 

Two flows F and G are equivalent in any network environment if and only if they have 
identical flow specifications. 

 Engineering Implications: 

This theorem is the basic justification that FSQ mathematical semantics are correct.  It 
consists of two parts, necessity and sufficiency.  Sufficiency states that any two flows 
that have the same mathematical specification can be interchanged without affecting the 
results of any larger network environment.  Necessity states that for any two flows that 
have different mathematical specifications, there exists a larger network environment 
that will produce different results if they are interchanged.  In essence, this theorem says 
that everything that is important about the behavior of a flow from the point of view of 
the external network is contained in its specification. 

 

3. Flow Verification Theorem 

The basis set of single-entry, single-exit control structures that comprise flow designs 
can be verified by evaluating the function equations shown below for representative 
structures.  Each equation is followed by a statement of a Correctness Question that ar-
ticulates the verification conditions. Verification requirements for similar control struc-
tures are easily derived.  In order to support function composition of flow specifications 
in verification operations, their domain and range must be extended to a common super-
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set.  In the case of a flow specification [F] = f : I x IRH -> O x ISH, f is first extended to 
the function f' : S x IRH -> S x ISH, where S is the functional verification state space 
corresponding to the input and output parameters and local variables of the flow F.  
Next, f' is extended to the function f'' : S x IRH x ISH -> S x IRH x ISH, given by 
f''(s,rh,sh) = (s', rh', sh'), where (s', sh') = f'(s,rh), and rh' is equal to rh with the first n 
elements removed, where n is the length of sh'.  By making this extension, the semantics 
of an entire flow can be calculated by a functional verification trace table with an extra 
column for the response history variable rh.  Thus, for a given flow specification f, ser-
vices g and h, predicate p, and for all possible arguments to f, control structures can be 
verified as follows: [Mills 1988, Prowell et al. 1999]: 

Composition structure: 

 f = g; h    Does g followed by h do f? 

 Alternation structure: 

 p --> f = g | ~p --> f = h  Whenever p is true, does g do f? and  

 Whenever p is false, does h do f? 

  

 Iteration structure: 

 termination ^   Does the iteration terminate? and  

 p --> f = g o f ^   Whenever p is true does g followed by f do f? and 

 ~p --> f = null   Whenever p is false, does doing nothing do f? 

 

 Engineering implications: 

The Flow Verification theorem reduces verification to a finite and complete process de-
spite the fact that flows can contain a virtually infinite number of paths.  Verification can 
be carried out using Trace Tables [Prowell et al. 1999] as a formal analysis and docu-
mentation process for critical system parts, or applied in team reviews with greater speed 
and little loss of precision. 

   

4. Flow Implementation Theorem 

For each computable function f from I x IRH -> O x ISH that satisfies the following 
condition, there exists a flow F such that [F] = f. 

Condition:  For every n > 0, there exists a function fn : I x IRn -> O x IS(n+1), where IRn is 
the first n elements of IRH, and IS(n+1) is the first (n+1) elements of ISH, such that the 
following diagram commutes: 

 

                                 f 
 I x IRH                                                 O x ISH 
 
                    PIn                                                       POn 
 
                                            fn 
              I x IRn                                                 O x IS(n+1) 
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where PIn : I x IRH -> I x IRn is given by PIn(i, rh) = (i, first n elements of rh), and POn : 
O x ISH -> O x IS(n+1) is given by POn(ø, sh) = (null, first n+1 elements of sh) if sh has at 
least n+1 elements, and by POn(ø, sh) = (ø, sh) if sh has n or fewer elements. 

 Engineering Implications: 

Every flow F has a function [F], but it turns out that not every function f corresponds to 
a flow.  This theorem defines which functions do in fact correspond to flows.  Infor-
mally, the condition states that a function cannot require a flow to predict the future, by 
making decisions based on responses from services before those services are actually in-
voked.  The theorem states that any flow semantics that meets this condition can actually 
be implemented.  Thus, this theorem is important to take into account when designing 
flows top-down. 

 

5. System Testing Theorem 

Let DI be a usage distribution on the input of a flow F, and let DR be a usage distribution 
on the responses to the external service calls made by F.  Then the usage distribution DS 
on the stimuli of the external service calls made by F can be calculated from DI, DR, and 
[F]. 

 Engineering Implications: 

Systems of any size exhibit a virtually infinite population of possible executions.  There-
fore, all testing is sampling, and the only real question is how to draw the sample of test 
cases to be executed.  If a sample is representative of actual field usage, scientifically 
valid predictions based on the sample test results can be made for the population of all 
executions not tested, which, of course, users will encounter in field usage.  Such mod-
ern usage-based statistical testing supports effective test management and risk reduction 
processes.  Flow specifications and effective system testing processes are closely related.  
Flows define how systems are used.  Given usage frequencies for flows that define when 
and how they are used, it is possible to predict the usage of their services.  Such predic-
tions can populate the probability distributions of usage models that are employed to 
generate test cases (samples of the execution population) statistically faithful to antici-
pated usage.  Such an approach to testing permits valid estimates of system performance 
in field use, and thus guides test management and product release decisions.     

 

Other theorems provide additional foundations for FSQ engineering operations, including 
transitive analysis of flow dependencies and derivation of logical system architectures from 
flows. 
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4 Flow Structure Engineering Operations 

Flow Structures support many engineering operations in network system analysis and devel-
opment.  Some representative operations are briefly described below: 

4.1 Flow Engineering for Uncertainty Factors 

Uncertainty Factor engineering requires that flows address all possible responses (IRH) from 
critical services.  This engineering process requires definition of post-fix predicates on re-
sponses to determine and design appropriate actions.  Responses can be organized by design-
ers into subject-matter-dependent equivalence classes of interest.  These equivalence classes 
are the subject matter of risk management and mission continuity in survivability engineer-
ing.  It is up to designers to select those critical service invocations that should undergo re-
sponse analysis. 

Figure 8 illustrates use of post-fix predicates in a notional fragment of an air traffic control 
flow.  A controller using the flow is expecting to identify an aircraft (use a/c ident) and obtain 
its position fix (use a/c position fix).  Three post-fix predicates follow the invocation of the 
a/c ident service.  These predicates parse the service response into equivalence classes deal-
ing with whether any response was received, whether it was an aircraft identification, and 
whether it was a valid aircraft identification.  In this small example, each case of negative 
evaluation notifies the controller through the controller interface service.  But consider de-
sign-time issues and discussions in development of a system to support this mission-critical 
flow.  Failure of the a/c ident service is a very serious matter impacting completion of the 
flow and thereby the safety of aircraft.  Transitivity analysis of other flows upon which a/c 
ident depends may reveal a whole series of cascade failure possibilities that must be dealt 
with to ensure survivability of this critical service.  Such analysis may result in major 
changes to the proposed system architecture.  In any event, it should become clear that notifi-
cation of the controller is an insufficient action for this serious problem, and that this flow 
must be redesigned.  Note in this discussion that the semantics of Flow Structures permit de-
signers to define and act upon response equivalence classes that encompass the Uncertainty 
Factors.  This supports enterprise risk management, which requires analysis of all possible 
outcomes, and survivability management, which requires actions for all possible outcomes. 
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Figure 8: Post-Fix Service Response Evaluation for Survivability Analysis and Risk 
Management 

4.2 Flow Abstraction and Refinement 

The single-entry, single-exit basis set of control structures that comprise FSL can be com-
posed and nested to create Flow Structures of any size and complexity.  As noted above, 
flows and their constituent control structures implement mathematical functions or relations, 
that is, mappings from domains to ranges.  These functions define data to be transformed 
from initial to final values, and can be included in flows as comments attached to their con-
trol structure refinements.  They can be defined in a spectrum of forms, ranging from natural 
language to more mathematics-based notations.   

An algebra of functions permits precise abstraction and refinement in the substitution of func-
tion definitions for their refinements (abstraction to determine what flows actually do) or 
substitutions of designs for their function definitions (refinement to implement what flows 
are intended to do).  Figure 9 depicts these operations in abstract form.  Design abstraction 
occurs in moving left to right, where the overall function of the flow is abstracted in three 
steps to function C.  Design refinement occurs in moving right to left, where the full elabora-
tion of function C is achieved in three steps. 
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Figure 9: Algebraic Operations in Flow Structure Analysis and Design 

Figure 10 provides a miniature notional illustration of flow refinement and abstraction based 
on the example of a gasoline purchase transaction.  This informal depiction shows the flow at 
a mission level of abstraction that is refined into a specification of principal operations and 
their composition.  The first specified operation is further refined into a high-level design.  
Abstraction reverses this process ending in the mission description of the flow [Hausler et al. 
1990, Pleszkoch et al. 1990].     

Figure 10: Flow Abstraction and Refinement in a Transaction-Based System 

Informal methods of abstraction and refinement are depicted in Figure 10.  However, the se-
mantics of Flow Structures permits these operations to be carried out with precision, to sup-
port predictable assembly of components in composition operations, and to allow verification 
of components with respect to their specifications. 
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4.3 Flow Verification 

The Flow Verification theorem provides the basis for an effective team-oriented assurance 
process. Flows annotated with function definitions of their constituent control structures can 
be verified in structured team reviews that ask and answer the Correctness Questions and re-
quire unanimous agreement on each question.   

Flows may contain a virtually infinite number of possible execution paths impossible to ver-
ify on an individual basis.  However, they are composed of a finite number of control struc-
tures, and the Flow Verification Theorem permits every control structure to be verified in a 
finite number of steps [Mills et al. 1986, Prowell et al. 1999].  One step is required for se-
quence verification (function composition), two steps for alternation verification (true and 
false case analysis), and three steps for iteration verification (termination proof, plus true and 
false case analysis and function composition).  Thus, verification is reduced to a finite proc-
ess amenable to team operations. Such team verifications are cost effective in detecting prob-
lems and errors early in development for correction at lowest cost.  Figure 11 illustrates the 
flow verification process.  As shown on the left, a miniature flow composed of a sequence 
followed by an alternation is to be verified.  The sequence, the alternation, and the composi-
tion of these two structures must each be verified to be correct with respect to their intended 
functions.  Errors are discovered in the center of the figure based on application of the Cor-
rectness Questions, and are shown corrected on the right. 

Figure 11: The Correctness Evaluation Process Based on the Flow Verification 
Theorem 
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Each verification of a control structure against its intended function requires only local rea-
soning, and the verifications can be carried out in any order.  When more precision is re-
quired for critical flows, verification can be accomplished with trace tables to document rea-
soning and analysis.  When a service is provided by a COTS component with complex 
functionality, it is necessary only to verify the use actually made of the component.  This 
verification will include the equivalence class evaluations that account for all possible out-
comes of the COTS invocation. 

4.4 Flow Transitivity Analysis 

Flows may invoke services composed of flows that may likewise invoke services composed 
of flows at a lower level, etc.  Thus, a primary flow may depend on completion of many other 
flows, possibly distributed across many components in a large-scale network.  Transitivity 
analysis of flows can reveal such dependencies for analysis of survivability and other quality 
attributes. 

Figure 12 depicts the beginning of such an analysis for the Future Combat System.  The pri-
mary mission control flow in the center of the figure named Target Attack invokes a sensor 
data service and its flow provided by a UAV node, and a fire control service and its flow pro-
vided by a robotic direct fire node.  These flows in turn invoke other services local to their 
nodes.  So the first step in transitivity analysis is to determine what services and their flows 
are directly invoked in satisfying a primary flow.  In addition, every flow can exhibit both 
desired and undesired outcomes as defined by equivalence classes on service responses.  
Clearly, what is intended in a flow invocation is a desired outcome.  It is often the case that 
desired outcomes depend on successful completion of flows not directly invoked.  For exam-
ple, to be operational at all, a UAV component must have undergone successful completion of 
flows dealing with inventory, training, maintenance, weather analysis, mission definition, 
fueling, launch, and flight, to name a few, in order for a desired outcome to be obtained when 
the sensor data service is invoked.  This chain of dependencies represents the complete set of 
UAV flows that supports the mission of the primary target attack flow.  Such analysis can 
reveal surprising and often unforeseen dependencies that must be dealt with to ensure surviv-
ability of mission flows.  Flows important to enterprise objectives may be vulnerable to 
poorly designed and implemented flows that would otherwise be hardly noticed given their 
physical or temporal separation from primary mission flows.   

Mission-oriented flows compose and integrate local network services into coherent capabili-
ties that are the reason for existence of the network system in the first place.  As such, they 
serve as overarching specifications for network-level capabilities and the local services that 
support them. 
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Figure 12: Transitivity Analysis of Flow Dependencies 
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integrate these systems into coherent capabilities.  In this role, mission FlowSets are the pri-
mary specification of network capabilities, and systems within the network must be designed 
to support them. 

Figure 13: Flow-Sets for the Future Combat System 
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threat environment and state of compromise.  These flows of service uses are traced through 
the system architecture to reveal corresponding essential components. Next, representative 
intrusions are identified based on analysis of the threat environment, and expressed as flows 
for tracing through the architecture to reveal compromisible components. With this informa-
tion it is possible to identify softspot components that are both essential and compromisible, 
followed by survivability analysis for improvements to resistance, recognition, and recovery 
strategies within the system architecture. 

Figure 14: Flow Security and Survivability Domain Traversals 
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5 Computational Quality Attributes 

Unless a system is implemented on a closed internal network, many system details may be 
unknowable. Nevertheless, enterprises place extraordinary demands on systems for reliabil-
ity, availability, security, and other key quality attributes [Haeckel 1999]. Substantial effort 
has been devoted to development of descriptive and often subjective characterizations of 
quality attributes, for example, survivability attributes [Ellison et al. 1999c, Sullivan et al.  
1999].  Rather than focusing on descriptive methods, the Computational Quality Attributes 
(CQA) approach defines, computes, and acts upon quality attributes as dynamic characteris-
tics of system operation.  This section describes mathematical foundations and frameworks 
for these operations. 

Many researchers have addressed component-based quality attributes, such as reliability, 
from the perspective of the system as a whole [Siegrist 1988, Krishnamurthy and Mathru 
1997, Gokhale and Trivedi 1998, Yacoub et al. 1999, Hamlet et al. 2001]. However, from the 
perspective of a user of a distributed system, there is no need for a system view of quality 
attributes. The user is concerned with the provision of essential services, not the state of the 
system. The CQA approach addresses the user's concern. Quality attributes are defined at the 
service level, composed to the service and flow levels, and evaluated at either the service or 
flow level, or at both levels, depending on the user-specified CQA request. This CQA ap-
proach, illustrated in Figure 15, provides a consistent semantic framework for acquiring qual-
ity attribute performance information for essential flows and services, and for computing sys-
tem quality capabilities for run-time management of flow execution.   

5.1 The CQA approach 

CQAs are defined as a functional mapping of usage (i.e. the input domain for a particular use, 
environment, and time) into attribute values that represent a measure of quality. This ap-
proach supports the description of any set of quality attributes and any models used to de-
scribe each attribute, provided each model yields a numeric value. 
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Figure 15: The Computational Quality Attribute Approach 

The developer defines CQAs of interest and initializes projected CQA values for each service 
based on assertions from vendors, best estimates, historical records, etc. During operational 
use of the system, the following activities are iteratively performed as services are executed:  

• Service executions are monitored and their quality attributes are measured. 

• The quality attribute values are accumulated. 

• The accumulated history is analyzed and used to update projected CQA values as appro-
priate. (Note that a single observation for a CQA provides almost no information. How-
ever, over time, the cumulative weight of the execution histories informs the methods for 
predicting CQAs for service instances.) 

 

The user requests flows of services to be performed by the system. Flow requests include re-
quired levels of CQAs for the requested flow, as well as for execution of the individual ser-
vices they reference. Thus, user-requested CQAs define constraints for flow execution. 

The system administrator uses the CQA history to support decisions concerning updates to 
the distributed systems (e.g. load balancing and replicated services). The system administra-
tor's knowledge of the state of the system and its services can provide valuable insights to 
support interpretation of the CQA history.  

Because each service's CQAs can be calculated independently of other services and system 
components, both the implementation of the component and the distribution of the instances 
of the component can provide a variety of opportunities to achieve desired values for CQAs 
of interest. Multiple choices may be available to the designer of a component for implementa-
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tion of a service, each choice with different values for quality attributes. In addition, the sys-
tem administrator may distribute one or more instances of a particular implementation of a 
service across a network, where each distribution may yield different values for CQAs. 

5.2 CQA Definition 

The general model for definition of a CQA, qi, is a hierarchy of functional definitions: 

qi = f(qi,1, qi,2, ...), where qi,1 = g(qi,1,1, qi,1,2,...) 

Each CQA has a precise meaning and a formal functional representation. In general, the pro-
cess of CQA definition can be described as follows: 

• Determine the quality attributes of interest.  

• Recursively define the functions for a quality attribute as a hierarchy of functional defini-
tions of attributes until each leaf attribute has been defined as a computational function 
that maps usage into a non-negative real number that represents a measure of quality. 

• Determine the data structure and procedures for storing the attribute values.  
 

Note that measuring and storing CQA values at detailed levels can adversely impact system 
performance. Thus, tradeoff analyses are typically required to determine the appropriate 
granularity of the values to be stored. Issues include frequency of calculation, and whether to 
store actual or average values. 

The approach to CQA definition accommodates all degrees of complexity in quality attribute 
definition. Any number of attributes may be of interest to users of a distributed system, in-
cluding attributes that describe behavioral requirements and attributes that describe perform-
ance characteristics. Some attributes (such as availability, reliability, and response time) have 
a rich literature and can be easily defined as CQAs. Other attributes will require more effort 
to develop a CQA definition. For example: survivability may be defined as a function of sys-
tem architecture and other attributes; system architecture can be defined as a function of a 
variety of attributes including connectivity; etc. Some example CQA definitions are provided 
in [Walton et al. 2002]. 

5.3 Flow Request Analysis 

In order to implement the CQA framework to support distributed system use, a system's ser-
vices must be "attribute-enabled" for the CQAs of concern to users. That is, a mechanism 
must exist to support CQA evaluation and reporting. This mechanism may be implemented 
directly at the level of the service, or computed by evaluation and composition of CQAs from 
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lower-level services. A CQA for which a service is not attribute-enabled will yield a value of 
"0" if any flow request includes a constraint on that attribute.  

Lower level CQAs are composed to establish the value of the CQAs on the next higher level. 
CQAs are also composed across services to establish flow properties. For the sake of simplic-
ity, the CQA approach assumes service executions are independent. (To assume otherwise 
would require knowledge of the designs and implementations of each of the components that 
make up each service.) Because CQAs map usage into attribute values, it is important that 
each CQA value be determined based on the domain of interest to the usage flow.  

Given a constrained flow request and a set of candidate flows, the goal of flow request analy-
sis is to determine whether each candidate flow satisfies the set of CQA constraints. If each 
CQA constraint is defined as a minimum acceptable value, then the set of acceptable flows 
resides within a convex region of acceptable quality as defined by the CQA constraints. De-
tails of CQA composition and flow request analysis are provided in [Walton et al. 2002]. A 
high level description and a simple example are provided here to illustrate the concepts. 

A user specifies a flow request as follows: 

1. Define the flow as a composition of system services that carry out user tasks. 

2. Determine the CQAs of interest for this flow request based on the input domain for this 
particular use, environment, and time. 

3. Specify constraints for the requested services and constraints for the flow in terms of 
acceptable values or ranges of values for CQAs.  

 

A flow request is processed as follows: 

1. Candidate flows are identified that provide the requested composition of system ser-
vices. 

2. Each candidate flow is evaluated based on whether the set of projected CQA values as-
sociated with the services included in the candidate flow satisfy the flow request's CQA 
constraints. (If multiple candidate flows satisfy the flow request, negotiation with the 
user may be performed to select the optimal flow based on user-specified priorities.)  

 

Candidate flows are evaluated as follows: 

1. In addition to requested services, represent all network connections as services. 

2. Predict the values for each CQA of interest for each service in the flow. (If a service is 
not attribute-enabled for a CQA of interest, assign a value of 0 to that CQA.) 

3. Check the CQA constraints specified for each service by comparing the predicted CQA 
values to the constraints. If all of the service-level constraints are satisfied, continue to 
the next step. Otherwise return a "no" response to the request. 
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4. Check the flow-level CQA constraints: 

a. Develop a state-based graphical model that includes all possibilities for satisfaction 
of the CQA constraints, including adverse results. 

b. Convert each CQA into a probability distribution and annotate the arcs of the 
graphical model with the probability distribution, yielding a probabilistic model.  
(Use weights as needed in the situations where the CQA units are not uniform 
across all the services.) 

c. Compute the projected flow-level CQA based on the probabilistic model. 
 
5. If the projected flow-level CQA satisfies the flow-level constraints, return "yes". Other-

wise return "no". 

 

5.4 A CQA Example 

Consider the simple flow request illustrated by Figure 16. The user has requested a flow in-
stance that consists of the execution of an instance of service A followed by execution of an 
instance of service B. The CQA q1 constrains the flow request. q1 is defined as the predicted 
reliability, represented by a real number in the interval [0,1], and interpreted as the probabil-
ity that a single execution will not fail. 

The following CQA constraints are specified:  

• Service-level constraints: q1 > 0.97 for the instance of service A; and q1 > 0.96 for the 
instance of service B 

• Flow-level constraint: q1 > 0.94 for the entire flow instance. 
 

Figure 16: Simple Constrained Flow Request 

Representing the connections as services Con1, Con2, and Con3, assume that a candidate 
flow is identified with the following CQA predictions:  

q1 = .99 for Con1; q1 = .98 for A and Con2; q2 = .97 for B and Con3.  

Q1 > .96Q1 > .97

A B

Q1 > .94

Q1 > .96Q1 > .97

A B

Q1 > .94
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These predicted CQAs satisfy all the service-level constraints specified by the user. Thus, the 
next step is to determine whether the candidate flow satisfies each flow-level constraint. 

Figure 17 illustrates the state diagram used to analyze the flow-level CQA constraint q1 = 
0.95 for the candidate flow. Each service is represented by a state with two exit arcs: fail to 
satisfy the CQA constraint and continue to the next service. Continue occurs if the service 
satisfies the specified CQA constraint. Failure occurs if the service fails to satisfy the CQA 
constraint. The probabilities associated with the exit arcs for each service sum to 1.0. In this 
example, if one assumes independence in the probabilities that each service will not fail, the 
probability that the candidate flow will execute without failure is the product of the predicted 
q1 values for each service. At the flow-level, predicted q1 is calculated for this candidate flow 
as follows: 

predicted q1 = 0.99 * 0.98 * 0.98 * 0.97* 0.97 = 0.89 

Thus, the candidate flow does not satisfy the flow-level constraint q1>.94. 

Figure 17: State Diagram for Analysis of q1 

5.5 Considerations for CQA Analysis 

Transient faults and considerations of dynamic changes in the CQAs across the input domain 
can cause composition to be problematic, requiring the use of policies and assumptions such 
as the following:  

• If a resource is not available when it is needed by a flow instance, the flow instance will 
abort without waiting for the resource.  

• Flows cannot reserve resources.  

• Flow execution does not include look-ahead. 

1.0

1.0

.03.03.02.02.01

.97.97.98.98.99

start

BA Con
2

Con
1

Con
3

Fail

Success

end

1.0

1.0

.03.03.02.02.01

.97.97.98.98.99

start

BA Con
2

Con
1

Con
3

Fail

Success

end



CMU/SEI-2002-TN-019 33 

• No repairs or replacements are done during a flow. 

• Component and service failures are statistically independent. 

• Probability distributions associated with the CQAs do not change during the execution of 
a flow. 

 

An understanding of both use and replication is required before composition of CQAs can be 
performed. For example, if three nodes are each executing the same service on the same data, 
failure of a node is not a problem unless all three replicated nodes fail. In contrast, if three 
nodes execute the same service on different data, a failure in a single node causes a failure in 
the flow requiring execution of the service on that node's data. 

5.6 Dynamic Updates of Computational Quality 
Attributes 

The algorithm for updating projected CQAs from the history must be sensitive to the fact that 
the system is continually evolving. Replacement or maintenance of a node, communication 
link, or service may change the system properties drastically, but the user may have no way 
to know that the change occurred. Each use of the system may in fact be executing on a dif-
ferent version of the software or in a different usage environment (for example, a different 
network configuration) for which the history is not applicable. Information about system evo-
lution may not be directly available. Traditional statistical inference techniques are inade-
quate to support measuring and prediction of CQA values in these situations. 

To estimate a value for a CQA for an evolving system for which the system state is unknow-
able requires a method that makes the best use of every source of available relevant evidence, 
including information obtained from vendors, personal judgment, accumulated history, and 
knowledge of the occurrence of specific events (updates to a component, etc.) that may in-
validate the history. At present such network-based applications are often adjusted manually 
based on intuition and incomplete knowledge of current system state. The CQA approach 
replaces these informal techniques by using Bayesian statistical methods to provide a system-
atic response-based approach to estimation of CQA values. Bayesian statistical methods pro-
vide a mathematical framework that allows representation of everything known (or assumed) 
about a CQA in a simple functional form, and support updating this functional form with new 
knowledge as it becomes available [Lee 1989, Royall 1997].  

A Bayesian probability is a formalism that supports reasoning about beliefs under conditions 
of uncertainty and using disparate sources of evidence. Unlike classical statistical inference, 
the Bayesian approach considers the observations to be fixed, and the parameters to be ran-
dom variables with their own statistical distributions. The Bayesian approach starts with a 
suitable set of pre-existing beliefs (the "prior distribution"). As new data become available, 
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they are combined with the prior distribution to obtain a new (posterior) distribution that can 
be used to support analysis.  

When there is no credible pre-existing evidence, the priors must be based on professional 
judgment. For example, for critical system use, one might use CQA prior values that repre-
sent the worst case until evidence is available that indicates that the situation is less grim. 
(Start with a prior belief that availability = 0 for a service, where availability is the probabil-
ity that the service will be available when needed. If evidence accumulates that the service is 
indeed consistently available when needed, the prior belief will become increasingly irrele-
vant, and the estimated value for availability should be increased.) 

The Bayesian approach to dynamic updates of CQAs provides several advantages. It 

• Allows both predicted and field/test data to be combined into a precise and convenient 
function for the CQA.  

• Makes available all knowledge of CQA values.  

• Allows easy updates to the knowledge as appropriate. 
 

However, the Bayesian approach assumes independent risk factors and therefore tends to 
overestimate risk when there are multiple correlated risk factors. In addition, the dynamic 
nature of the CQAs and possible correlation between the CQAs can make it difficult to vali-
date the CQA measurements. To further complicate matters, to evaluate functional CQAs, 
flow executions must be treated as statistically independent trials, ignoring potential issues 
such as internal system state and data stores. Thus, care must be taken to ensure: 

• Sufficiently conservative priors are assigned  

• Sufficient experience is gained before it is incorporated into the posterior distribution 

• Each QA function is periodically reevaluated and reinitialized based on history and any 
knowledge about changes to the distributed system. 

 

This Bayesian approach for dynamically updating CQA projections appears to be far better 
than the alternatives, given that complete knowledge of current and future system state is not 
possible. Mathematical details and examples of this approach are provided in [Walton et al. 
2002].  The methods described here, namely the functional attribute model that maps service 
usage into attribute values, the state transition model for evaluating attributes, and the Bayes-
ian methods for dynamic attribute updates, constitute a framework for Computational Quality 
Attribute research.  Work is required to develop attribute-specific models within this frame-
work.  The requirement that attributes be measurable in a defined metric for computational 
purposes also permits human understanding and analysis not otherwise possible.  
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6 Flow Management Architectures 

As noted earlier, Flow Structures and Computational Quality Attributes support system archi-
tectures that carry out dynamic flow and attribute management in execution.  Flow Manage-
ment Architectures can provide design and implementation frameworks for this purpose, as 
well as associated engineering processes for system architecture development. We envision 
an evolving, open family of FMA frameworks for architecture development both in the small 
and in the large.   

FMA templates in the small can define topologies and functional capabilities that satisfy 
quality attributes for localized flow management.  For example, a quality attribute could re-
quire network isolation of a particular class of flows for security purposes.  Such a require-
ment often exists for external user flows that access enterprise Web sites.  The FMA template 
in this case could define a DMZ-based topology to isolate external users from enterprise net-
works, plus functional isolation of operational and developmental Web servers.  Administra-
tive flows would also appear in the relevant FlowSet, and the template would include topo-
logical and functional capabilities for monitoring and controlling Web site operation.  Note in 
this illustration that quality attributes involving flow isolation are imposed by the executing 
enterprise and not by the flow originators.  It is invariably the case that the network services 
traversed by flows implement their own attributes and management procedures for processing 
incoming flows. 

FMA templates in the large can define system-level topologies and functional capabilities for 
managing user-requested flow instantiations and reconciling attribute requirements where 
possible with service capabilities in real time operation.  Such templates can accommodate 
traffic projections, geographic factors, communication patterns, and a host of other factors 
that drive large-scale network design.   

FMA frameworks can also include engineering processes for mapping FlowSet specifications 
into network and service designs.  FlowSets define access requirements for logical connec-
tivity among services as a sufficient network topology, as well as functional requirements for 
the services themselves.  Quality attributes associated with FlowSets impose additional re-
quirements and constraints on network design.  These relationships between network usage 
embodied in flows and attributes and network design embodied in connectivity and function-
ality provide an opportunity to develop systematic engineering practices for network devel-
opment and validation. 
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7 Conclusion 

Identification of flow, service, and quality as first-class concepts for the development of 
large-scale, network-centric systems is important for achieving unification of this complex 
engineering activity. Theoretical foundations developed in this research can prescribe engi-
neering practices that will improve system management, acquisition, analysis, development, 
operation, and evolution.  The following observations summarize this research vision. 

• FSQ engineering supports complexity reduction and survivability improvement in devel-
opment and operation of large-scale network systems composed of any mix of newly de-
veloped and COTS components. 

• FSQ engineering provides systematic, scale-free semantic structures for requirements, 
specification, design, verification, and implementation. 

• FSQ engineering supports seamless decomposition from user task flow, service, and 
quality attribute requirements to flow, service, and quality attribute implementations, 
with intrinsic traceability. 

• User flows of services and quality attributes permit system development in terms of user 
views of services, as opposed to strictly functional decomposition or object-based com-
position. 

• Flow Structures are deterministic for human understanding and analysis, despite the 
asynchronism of network behavior, thus enabling compositional methods of refinement, 
abstraction, and verification.   

• Flow Structures reflect the realities of network-centric systems in dealing the Uncertainty 
Factors, to support enterprise risk management and system survivability. 

• Flow Structures support definition of attack and intrusion flows for assessing system vul-
nerabilities and compromises, as a basis for security and survivability improvements.  

• Computational Quality Attributes reflect the realities of network-centric systems, in as-
sessing and reconciling quality requirements and capabilities as an intrinsically dynamic 
process.  

• Computational Quality Attributes provide a scale-free, computational usage-centric 
(rather than system-centric) view of quality. 

• Flow Management Architectures provide systematic and uniform methods for managing 
user flow instantiation and quality attribute satisfaction in execution.  

• Foundations of Flow Structures can stimulate research on representation and analysis of 
flows at the requirements level within enterprises, and at the implementation level within 
system architectures.  
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• Foundations of Computational Quality Attributes can stimulate research in modeling and 
dynamic evaluation of important quality attributes and metrics. 

 

FSQ research and development efforts will continue to explore foundations for Flow Struc-
tures, Computational Quality Attributes, and Flow Management Architectures.  Several pa-
pers are in preparation that detail the mathematical foundations of Flow Structures and Com-
putational Quality Attributes [Pleszkoch et al. 2002, Walton et al. 2002]. This work will 
provide a basis for engineering practices and support tools. 
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