
Software Process Improvement
and Product Line Practice:
CMMI and the Framework for
Software Product Line Practice

Lawrence G. Jones
Albert L. Soule

July 2002

Product Line Practice Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2002-TN-012

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2002 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Contents

Abstract..vii

1 Introduction..1

2 Product Line Practice..3
2.1 What Is a Product Line? ...3
2.2 The Software Product Line Practice Framework5

3 CMMI ...8
3.1 Capability Maturity Models..8
3.2 CMMI Models..9

4 Applying Product Line Practice and Software Process
Improvement ..12

5 CMMI Models and the Framework for Software Product Line
Practice ..14

6 A Detailed Example: Configuration Management18

7 Conclusions ...21

References...23

CMU/SEI-2002-TN-012 i

ii CMU/SEI-2002-TN-012

List of Figures

Figure 1: Essential Activities for Product Line Practice [Clements 02]4
Figure 2: CMMI-SE/SW/IPPD/SS Staged Representation Process Areas.........10
Figure 3: CMMI Process Area Categories.. 11
Figure 4: Process and Product Line Relationships ..13

CMU/SEI-2002-TN-012 iii

iv CMU/SEI-2002-TN-012

List of Tables

Table 1: General CMMI-Framework Comparisons ...15
Table 2: Associations Between Software Product Line Practice Areas and

CMMI Process Areas ..16

CMU/SEI-2002-TN-012 v

vi CMU/SEI-2002-TN-012

Abstract

Many organizations report dramatic benefits from the adoption of software product line
practice. Organizations that have established software engineering process discipline are
better poised to succeed with product lines. While we acknowledge that there are different
paths to successful process discipline, in this technical note, we concentrate on approaches
based on the Capability Maturity Model Integration (CMMI) models. We describe practices
that are most crucial to product line success. While some of these relate directly to the CMMI
models process areas, others are uniquely important to product lines.

In this technical note, we first present fundamental concepts of software product lines. We
then describe important product line practices as they have been documented in A Framework
for Software Product Line Practice (framework). We next present an overview of the CMMI
models, followed by a description of the general relationships between the framework and
CMMI models. We amplify this comparison with a detailed example showing the relationship
between configuration management practices in CMMI and in the framework. We conclude
by describing the ways in which organizations can build upon their process improvement
efforts to achieve success with product lines and realize additional benefits through the use of
both technologies.

CMU/SEI-2002-TN-012 vii

viii CMU/SEI-2002-TN-012

1 Introduction

New methods and technologies are often developed along different paths. This is natural
since they frequently have different purposes and emphases. Additionally, newer technologies
can naturally incorporate older technologies, while the reverse will not happen without an
explicit revision cycle including this focus. As new technologies prove useful and gain
acceptance, there is a need to compare and relate them to other accepted technologies. This
technical note relates two important software technologies: software engineering process
discipline and software product line practice. Product line practice includes process discipline
at its heart, but the reverse is not generally true. This technical note will focus on the
relationship of two SEI models—one for product line practice and one for software
engineering process discipline—and the benefits of applying both to software development.

Motivating product line technology is the increasing realization among organizations that
they can no longer afford to develop multiple software products one product at a time. They
are pressured to introduce new products and add functionality to existing ones at a rapid pace.
They have explicit needs to achieve large-scale productivity gains, improve time to market,
maintain a market presence, compensate for an inability to hire, leverage existing resources,
and achieve mass customization. Many organizations are finding that the practice of building
sets of related systems together can yield remarkable quantitative improvements in
productivity, time to market, product quality, and customer satisfaction. These organizations
are adopting a product line approach for their software systems.

Meanwhile, the 1990s saw the widespread application of manufacturing process principles to
the development of software. Software engineering process discipline, based on the quality
concepts pioneered by Crosby [Crosby 79], Deming [Deming 86], and others, has resulted in
dramatic benefits. Organizations typically report return on investment (ROI) figures of
between 5:1 and 8:1 resulting from successful software process improvement (SPI) programs.
Additional quantified benefits include productivity gains, improved time-to-market gains,
significantly improved project planning estimations, and reduced defect rates. Other observed
benefits include improved employee morale, less employee turnover, and increased customer
satisfaction.

Software engineering process discipline has a significant relationship to product line practice.
Product line practice is strategic in nature. A strategic effort requires more coordination,
discipline, and commonality of approach than a more independent effort. Dependencies
within an organization are greater, and predictability and quality become even more critical.
Process discipline can provide the basis for a strategic effort and has proven that it can
provide better predictability and quality. Thus, an organization with a culture of process
discipline is much better poised for product line success.

CMU/SEI-2002-TN-012 1

In this technical note, we explore the relationship between software product line practice, as
defined by the Framework for Software Product Line Practice (framework), and software
engineering process discipline, as defined by the Capability Maturity Model IntegrationSM
(CMMISM) models. In Section 2, we present fundamental concepts of software product lines.
Then, we describe important product line practices and how they have been documented in
the framework. In Section 3, we present an overview of the CMMI models and their structure
and contents. Given this basis, in Section 4, we describe the way software engineering
process discipline and software product line practice complement each other in practice.
Section 5 highlights general relationships between the framework and CMMI models and the
degree to which CMMI process areas support framework product line practice areas. In
Section 6, we amplify this general comparison with a detailed example showing the
relationship between configuration management practices in CMMI and in the framework.
We conclude by describing the ways in which organizations can build upon their process
improvement efforts to achieve success with product lines and realize additional benefits
through the use of both technologies.

 Capability Maturity Model and CMM are registered in the U.S. Patent and Trademark Office.
SM CMMI and CMM Integration are service marks of Carnegie Mellon University.

2 CMU/SEI-2002-TN-012

2 Product Line Practice

2.1 What Is a Product Line?1
A software product line is a set of software-intensive systems sharing a common, managed
set of features that satisfy the needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way [Clements 02].

According to Clements and Northrop, this definition is consistent with the definition
traditionally given for any product line, but it adds more; it puts constraints on the way the
systems in a software product line are developed because substantial production economies
can be achieved when the systems in a software product line are developed from a common
set of assets in a prescribed way. The product line architecture is central to the set of core
assets used to construct and evolve the products in the product line. This common, product
line software architecture2

 capitalizes on commonalities in the implementation of the line of
products and provides the structural robustness that makes the derivation of software
products from software assets economically viable.

Each product in the product line is formed by taking applicable components from the base of
common assets, tailoring them as necessary through preplanned variation mechanisms such
as parameterization or inheritance, adding any new components that may be necessary, and
assembling the collection according to the rules of the product line architecture.

By product line practice, we mean the systematic use of software assets to assemble,
instantiate, generate, or modify the multiple products that constitute a product line. Building a
new product (system) becomes more a matter of assembly or generation than creation. For
each software product line, there is a predefined guide, called a production plan, which
specifies the exact product building approach3.

Product line practice involves strategic, large-grained reuse as a business enabler. The key
concepts are

1 This section draws substantially from the work of Clements and Northrop [Clements 02].
2 The software architecture of a computing system is the structure or structures of the system that

consist of software components, the externally visible properties of those components, and the
relationships among them [Bass 98].

3 Chastek, G. & McGregor, J. Guidelines for Developing a Product Line Production Plan. Pittsburgh,
PA: Software Engineering Institute, to be published.

CMU/SEI-2002-TN-012 3

• the use of a common asset base (with the architecture being the pivotal asset)

• in the production (according to a predefined and documented production plan)

• of a set of related products (whose scope has been clearly defined and validated with a
business case).

According to Clements and Northrop, at its essence fielding a software product line involves
core asset development, product development from the core assets, and management to staff,
orchestrate, and coordinate the entire product line effort. Figure 1 shows these essential
activities. The arrows signify the high degree of iteration involved and the fact that there is no
prescribed order as to how these activities take place.

����������
	�
����
���

�������
	�
����
���

������
���

Figure 1: Essential Activities for Product Line Practice [Clements 02]

The goal of the core asset development activity (the left side of Figure 1) is to establish a
production capability for products. Inputs to the development of core assets are product
constraints found by analyzing the similarities of and differences between current and
projected products; the production constraints such as those found in a technical architecture;
a production strategy for the assets; an inventory of preexisting assets; and styles, patterns,
and architectural frameworks. The outputs are the core assets, a preliminary list of the
products they will support (the product line scope), and a production plan for how the core
assets will be used in the development or acquisition of products.

On the right side of Figure 1, individual products are developed from the core assets using
the production plan that has been established. Product requirements are developed and

4 CMU/SEI-2002-TN-012

refined with the existing core assets in mind, and products that systematically reuse the core
assets are output.

There is a strong feedback loop between the core assets and products. Core assets are
refreshed as new products are developed, and in fact, the earliest products may well be the
source of the core assets to begin with. In addition, the value of the core assets is realized
through the products that are developed from them. As a result, core assets are made more
generic by considering potential new products on the horizon. There is a constant need for
strong and visionary management to invest the resources in the development of the core
assets and to develop the cultural change needed to view new products through the filter of
the core assets.

2.2 The Software Product Line Practice Framework
The Software Engineering Institute has captured the essential product line activities and
practices in A Framework for Software Product Line Practice. This framework is available as
a Web-based, evolving document and is targeted primarily at members of organizations who
are in a position to make or influence decisions regarding the adoption of product line
practices. Version 4.0 of the framework is published in the book titled Software Product
Lines: Practices and Patterns [Clements 02]. Version 3.0 [Clements 00] can be found on the
SEI's Web site, and Version 5.0 will be available on the Web in fall 2002.

There are essential practices in a number of specific areas that are required to produce the
core assets and products in a product line and to manage the process at multiple levels. The
framework describes the essential practice areas for software engineering, technical
management, and organizational management, where these categories represent disciplines
rather than job titles. A practice area is a body of work or a collection of activities that an
organization must master to successfully carry out the essential work of a product line. For
individual practice areas, the framework provides

• an introductory description of the practice area

• aspects of this practice area that are peculiar to product lines

• how this practice area is applied to core asset development

• how this practice area is applied to product development

• specific practices in this practice area

• risks in this practice area

• references

The software engineering practice areas include those practices necessary to apply the
appropriate technology to create and evolve both core assets and products as follows:

CMU/SEI-2002-TN-012 5

• Architecture Definition

• Architecture Evaluation

• Component Development

• COTS Utilization

• Mining Existing Assets

• Requirements Engineering

• Software System Integration

• Testing

• Understanding Relevant Domains

The technical management practice areas include those management practices necessary to
engineer the development and evolution of the core assets and products as follows:

• Configuration Management

• Data Collection, Metrics, and Tracking

• Make/Buy/Mine/Commission Analysis

• Process Definition

• Scoping

• Technical Planning

• Technical Risk Management

• Tool Support

Organizational management refers to the management of the business issues that are visible
at the enterprise level, as opposed to those at the project level. Organizational management
includes those practice areas necessary to position the enterprise to take fullest advantage of
the product line capability. The organizational management practices include

• Building a Business Case

• Customer Interface Management

• Developing an Acquisition Strategy

• Funding

• Launching and Institutionalizing

• Market Analysis

• Operations

• Organizational Planning

• Organizational Risk Management

6 CMU/SEI-2002-TN-012

• Structuring the Organization

• Technology Forecasting

• Training

CMU/SEI-2002-TN-012 7

3 CMMI

3.1 Capability Maturity Models
Many organizations have had success by basing their software engineering process discipline
efforts on the Capability Maturity Model (CMM) for Software [Paulk 95]. The CMM
(hereafter referred to as the SW-CMM to differentiate it from subsequent CMMs) is a model
that contains the essential elements of effective processes for software development. The
wide acceptance of this model is evidenced by large annual Software Engineering Process
Group (SEPG) conferences in North America, Europe and Asia. In addition, there are more
than 100 Software Process Improvement Network (SPIN) chapters worldwide. While the
SW-CMM is not the only model for guiding software process improvement based on process
discipline,4 its widespread acceptance makes it a de facto standard, and we will focus on
CMMI-based process discipline in this technical note.

The success of the SW-CMM spawned the development of several maturity models for other
disciplines, for example, systems engineering, software acquisition, workforce practices, and
integrated product and process development. While these models proved valuable to many
organizations, the application of multiple models became expensive and complicated. To
address this problem, the Capability Maturity Model Integration (CMMI) project was
initiated [Phillips 02]. This project resulted in a complete product suite including three
models [SEI]:

• CMMI for Systems Engineering/Software Engineering (CMMI-SE/SW, V1.1)

This model addresses the development of products and services (in particular software-
intensive systems) and provides the foundation for the other two models.

• CMMI for Systems Engineering/Software Engineering / Integrated Product and Process
Development (CMMI-SE/SW/IPPD, V1.1)

 This model builds upon CMMI-SW/SE by introducing integrated product teams and the
context they need to operate effectively toward achieving a systematic, timely
collaboration of relevant stakeholders throughout the life of the product.

• CMMI for Systems Engineering/Software Engineering/Integrated Product and Process
Development/Supplier Sourcing (CMMI-SE/SW/IPPD/SS, V1.1)

This model builds upon CMMI-SW/SE/IPPD with additional focus on proactively
acquiring products and services from external sources.

4 See Zahran for several examples including ISO 15504, ISO 9001, and BOOTSTRAP [Zahran 97].

8 CMU/SEI-2002-TN-012

Because the CMMI models are scheduled to eventually replace the SW-CMM model, the rest
of this note will focus on the CMMI models.

3.2 CMMI Models
A major organizing element for all CMMI models is the process area. A process area is a
group of related activities that are performed collectively to achieve a set of goals. In the
context of these models, processes refer to “what to do” rather than “how to do it.” A process
area specifies goals that describe the result of successful application and practices that
describe required (and expected) activities to achieve those goals. Some goals and practices
are specific to the process area; others are generic and apply across all process areas. These
generics describe essential ways in which a process can be institutionalized.
Institutionalization refers to a process's degree of repeatability, standardization, and
sophistication of control.

Structurally, each CMMI model comes in two representations: a staged representation and a
continuous representation. Each representation organizes process areas and the application of
the generics to them differently. These two representations are really just different views into
the same content. A staged representation may be said to focus on the organization’s
processes as a whole, to provide a roadmap for process improvement with proven predefined
groupings of process areas, and to provide an easy migration path from the SW-CMM. A
continuous representation may be said to focus on improvement to individual process areas
chosen to align with specific organizational needs and to provide an easy migration path from
Electronic Industries Alliance Interim Standard (EIA/IS) 731 [Menezes 02].

Unique to the staged representation is the major organizing element of the maturity level. A
maturity level is an indicator of the extent to which a set of processes is implemented and
institutionalized. Maturity levels recognized by the CMMI are

1. Initial: The organization has informal process control; no process areas are
institutionalized.

2. Managed: Here, relative to basic project management, processes are standardized within
individual projects.

3. Defined: This level is characterized by process standardization across projects.

4. Quantitatively Managed: Quantitative management of processes is the hallmark of this
level.

5. Optimizing: Continual process improvement occurs at this level.

Maturity levels also provide a recommended order for improving processes within an
organization. Maturity levels and their process area groupings for CMMI-SE/SW are shown
in Figure 2.

CMU/SEI-2002-TN-012 9

Level Focus Process Area
5 Optimizing Continuous

Process
Improvement

Organizational Innovation and Deployment
Causal Analysis and Resolution

4 Quantitatively
Managed

Quantitative
Management

Organizational Process Performance
Quantitative Project Management

3 Defined Process
Standardization

Requirements Development
Technical Solution
Product Integration
Verification
Validation
Organizational Process Focus
Organizational Process Definition
Organizational Training
Integrated Project Management for IPPD
Risk Management
Integrated Teaming
Integrated Supplier Management
Decision Analysis Resolution
Organizational Environment for Integration

2 Managed Basic
Project
Management

Requirements Management
Project Planning
Project Monitoring and Control
Supplier Agreement Management
Measurement and Analysis
Process and Product Quality Assurance
Configuration Management

1 Initial N/A N/A

Figure 2: CMMI-SE/SW/IPPD/SS Staged Representation Process Areas

The continuous representation uses the concept of capability level to measure process
improvement within individual process areas. Capability levels represent the application of
the generics to a single process area and indicate the degree of institutionalization of the
process area. Apart from the application of generics to an individual process area, continuous
representation models do not recommend a particular implementation order. Also, though
they recognize relationships within general CMMI categories (see Figure 3), the models
generally treat process areas as independent. While in theory this implies freedom of
implementation order when using a continuous representation, key associations among the
process areas preclude totally arbitrary ordering or implementations.

10 CMU/SEI-2002-TN-012

Category Process Areas
Process
Management

Organizational Process Focus
Organizational Process Definition
Organizational Training
Organizational Process Performance
Organizational Innovation and Deployment

Project
Management

Project Planning
Project Monitoring and Control
Supplier Agreement Management
Integrated Project Management for IPPD
Risk Management
Integrated Teaming
Integrated Supplier Management
Quantitative Project Management

Engineering Requirements Management
Requirements Development
Technical Solution
Product Integration
Verification
Validation

Support Configuration Management
Process and Product Quality Assurance
Measurement and Analysis
Decision Analysis and Resolution
Organizational Environment for Integration
Causal Analysis and Resolution

Figure 3: CMMI Process Area Categories

Experienced implementers often take advantage of the strengths of both representations. For
example, while relying on a staged ordering as a “first cut” prioritization, you might vary the
basic implementation ordering based on business needs or “where it hurts most.”

Finally, when we talk about CMMI-SE/SW/IPPD, V1.1 and CMMI-SE/SW/IPPD/SS, V1.1,
we need to consider that the model implementation now extends beyond the engineering
organization to more overtly include other corporate functions such as procurement,
marketing, human resources, and support in the product or system development effort. As in
the characterization of the organizational implementation of the framework described above,
the addition of these domains requires a strategic perspective on process improvement having
a perspective across these functions within the organization. Therefore, most of the same
attributes that underpin a strategic effort such as product line management (coordination,
discipline, commonality of approach, etc.) are supported by a robust set of cross-functional
process best practices that help organizations better manage dependencies and provide for
improvements in predictability and quality.

CMU/SEI-2002-TN-012 11

4 Applying Product Line Practice and Software

Process Improvement

Clements and Northrop explain the fundamental connection between product line practice
and software engineering process discipline [Clements 02] as follows:

An essential aspect of software engineering is the discipline it requires for a
group of people to work together cooperatively to solve a common problem.
Defined processes set the bounds for each person’s roles and responsibilities
so that the collaboration is a successful and efficient one. … If software
engineering is about a group of people working together to solve a problem
cooperatively, then product line software engineering requires cooperation in
spades. … In fact, organizations that do not have a strong process culture
will find deploying a successful product line a perilous proposition.

This strong, complementary connection has been proven in practice by leading companies in
various domains. It is not an overstatement to say that successful product line practice
requires a significant degree of process discipline. We will provide two examples: the Boeing
Company, the world-class aircraft manufacturer, and Cummins Engine Inc., the world’s
largest manufacturer of commercial diesel engines above 50 horsepower.

The benefits of SPI based on software engineering process discipline are well documented
and accepted [Ferguson 99, Goldenson 95, Zahran 97]. Organizations successful in moving
from SW-CMM Maturity Level 1 to Level 2 and from Level 2 to Level 3 typically report
ROI figures of 5:1 to 8:1. In particular, John Vu of the Boeing Company has substantial data
supporting this from a number of projects [Vu 97, Vu 00b]. Recently Vu has studied the
improvements in high maturity organizations [Vu 00a]. His studies show that the benefits of
SPI applied to a single-product focus tend to level off between SW-CMM Maturity Level 3
and Maturity Level 4. However, when this improvement includes a shift to a product line
approach, the productivity increase is significant, as much as 70% improvement. A key point
is that this also resulted in a shift to a focus on business benefits rather than merely technical
benefits.

Another case in point is Cummins Engine Inc. [Clements 02]. The role of process discipline
as an enabler is a pervasive theme in Cummins’ product line approach. For example, some of
the first steps that the Cummins product line champion undertook were to

• establish a standard Controls Software workflow process

• form a standard hardware process group

12 CMU/SEI-2002-TN-012

• launch a team to establish common development and configuration management tools
and processes

The results of this successful product line approach included

• dramatically reduced product cycle time

• an all time high for software quality

• high customer satisfaction

• an increased number of successful projects

• productivity improvement of 360%

While it is evident that process discipline and product line practice go hand in hand,
Cummins estimates that process improvement alone resulted in a benefit-to-cost ratio of
between 2:1 and 3:1. It further estimates that software product line practice, applied in
addition to software process discipline, resulted in a benefit-to-cost ratio of 10:1.

Figure 4 summarizes the complementary nature of software engineering process discipline
and software product line practice. It also illustrates a “multiplier” effect, namely that the two
technologies can operate in concert to achieve business goals through a complementary focus
on both process and product. This focus makes it natural to extend process discipline beyond
just the engineering processes. This explicitly brings in non-technical processes and
organizational aspects emphasized in the framework but not in the CMMI models.

Product Line Practice

Software Engineering
Process Discipline

EnablesRequires

Process-Product Focus to
Achieve Business Goals

Enables

Figure 4: Process and Product Line Relationships

Given the complementary nature of software engineering process discipline and software
product line practice, the question is, “how do we coordinate them and maximize the benefits
of each?” The bodies of knowledge in the CMMI models and the framework provide one
basis for a coordinated approach. We next look at how they relate.

CMU/SEI-2002-TN-012 13

5 CMMI Models and the Framework for Software

Product Line Practice

There are several ways to compare the framework with CMMI models. In this section, we
draw both broad and detailed comparisons of framework practice areas and CMMI process
areas.

Table 1 contains some broad comparisons between the CMMI models and the framework.
First, they each have a different focus. CMMI models support generic process improvement
in a product development environment and are intended to be independent of any particular
development methodology. This contrasts with the framework, which is specifically focused
on a product line technical approach. A natural consequence of this difference is that CMMI
models try to avoid providing “how to” information, while the framework contains specific
examples of how to implement the product line practice areas.

Next, consider the areas of coverage. While it will be more apparent when we compare
process areas and practice areas, we may say that the CMMI models contain much greater
emphasis on process and project management, and the framework contains much greater
emphasis on organizational management.

Both the CMMI models and the framework are supported by diagnostic methods to
determine the state of organizational practice; CMMI uses the Standard CMMI Appraisal
Method for Process Improvement (SCAMPISM); the framework uses the Product Line
Technical Probe [Clements 02].

While acceptance of the framework is growing, it is relatively new and, thus, has not had
time to become a de facto standard. While the same may be said about the CMMI models, a
direct ancestor, the SW-CMM, is certainly a de facto standard.

Finally, the staged versions of CMMI models incorporate the concept of a maturity level to
provide a broad roadmap for implementation. The framework has no such concept.
Experience has shown that organizational contexts (as may be revealed by a probe) differ so
greatly that implementation priorities are best determined using the concept of software
product line practice patterns [Clements 02]. Patterns are a way of expressing common
context and problem-solution pairs.

SM SCAMPI is a service mark of Carnegie Mellon University.

14 CMU/SEI-2002-TN-012

Table 1: General CMMI-Framework Comparisons

Area of Comparison CMMI Framework

Focus Generic – process improvement Prescriptive for a specific
technical approach

Contains “how to” information No Yes

Coverage Process Management
Project Management
Engineering
Support

Software Engineering
Technical Management
Organizational Management

Diagnostic method Appraisal Probe

De facto standard Yes (SW-CMM) No

Maturity Levels Yes (staged) No

Capability Levels Yes (continuous) No

Having made these broad comparisons, we now proceed to a more detailed look. The most
appropriate units for detailed comparison are between the CMMI process areas and the
framework’s practice areas. How do the CMMI process areas5 compare to the 29 framework
practice areas? While both cover similar subjects, the emphases are different. Roughly
speaking, a CMMI process area describes where an organization should have processes,
whereas a product line practice area describes where an organization should have expertise
(which sometimes includes process expertise). Having said that, Table 2 draws some high-
level associations between practice areas and process areas.

In Table 2, process area names in bold provide fairly direct support for the corresponding
practice areas, while others are less strongly related. The CMMI process areas of Process and
Product Quality Assurance, Organizational Process Focus, Organizational Process
Performance, Quantitative Project Management, Causal Analysis and Resolution, and
Organizational Innovation and Deployment do not correspond to any software product line
practice areas.

5 There are 22 process areas in CMMI-SE/SW, 24 process areas in CMMI-SE/SW/IPPD, and 25 in

CMMI-SE/SE/IPPD/SS.

CMU/SEI-2002-TN-012 15

Table 2: Associations Between Software Product Line Practice Areas and CMMI
Process Areas

Software Product Line Practice Areas CMMI Process Areas
Software Engineering Practice Areas
• Architecture Definition Technical Solution
• Architecture Evaluation Verification
• Component Development Technical Solution
• COTS Utilization Supplier Agreement Management

Technical Solution
Integrated Supplier Management

• Mining Existing Assets (none)
• Requirements Engineering Requirements Development
• Software System Integration Product Integration
• Testing Verification

Validation
• Understanding Relevant Domains (none)
Technical Management Practice Areas
• Configuration Management Requirements Management

Configuration Management
• Data Collection, Metrics, and Tracking Measurement and Analysis

Project Monitoring and Control
Integrated Project Management for IPPD

• Make/Buy/Mine/Commission Analysis Decision Analysis and Resolution
Technical Solution
Supplier Agreement Management
Integrated Supplier Management

• Process Definition Organizational Process Definition
• Scoping (none)
• Technical Planning Project Planning
• Technical Risk Management Risk Management
• Tool Support (none)
Organizational Management Practice Areas
• Building a Business Case (none)
• Customer Interface Management Integrated Project Management for IPPD

Integrated Teaming
• Developing an Acquisition Strategy Supplier Agreement Management

Integrated Supplier Management
• Funding (none)
• Launching and Institutionalizing (none)
• Market Analysis (none)
• Operations (none)
• Organizational Planning Project Planning
• Organizational Risk Management Risk Management
• Structuring the Organization Organizational Environment for Integration

Integrated Teams
• Technology Forecasting Organizational Innovation and Deployment
• Training Organizational Training

This table notwithstanding, bear in mind that any comparison between a CMMI process area
and a software product line practice area is weak. Practice areas and process areas are
fundamentally different. Even, when at first glance, they appear to cover the same topic,
similar names do not mean they cover the same ground. Practice areas also extend the realm
of their coverage into the situation where product lines are the goal, and this is not a focus of

16 CMU/SEI-2002-TN-012

the process areas. Just because your organization has institutionalized the CMMI process
area of Configuration Management, this does not mean that you have mastered the practice
area of “Configuration Management” for software product lines. We will illustrate this point
in detail in the next section.

CMU/SEI-2002-TN-012 17

6 A Detailed Example: Configuration

Management

Software systems and product line development organizations use configuration management
practices to establish and maintain control of the work products, and changes to work
products, throughout the product life cycle. From both the framework and CMMI
perspective, configuration management is a key “infrastructure” activity that is fundamental
to the project's success.

From the CMMI perspective, a configuration management process should achieve three
specific goals:

1. Baselines of identified work products are established.

2. Changes to the work products under configuration management are tracked and
controlled.

3. The integrity of baselines is established and maintained.

The CMMI model goes on to define specific practices6 that an organization must perform in
order to achieve each of these goals. For example, to establish baselines, the organization
must

• Identify the configuration items to be placed under configuration management control.

• Establish and maintain a configuration management and change management system.

• Create or release baselines for internal use or delivery to the customer.

Accomplishing each of these specific practices requires an organization to undertake a
detailed set of steps and produce specific work products. For example, identifying the
configuration items involves a selection process, assigning an identifier, specifying important
characteristics, and determining when the item is to be placed under configuration
management. The output of these steps is a list of discrete configuration items that constitute
the configuration baseline.

Of course, from the CMMI perspective, to accomplish an institutionalized configuration
management process an organization must

6 At this level of detail, there is a terminology clash between the CMMI models and the framework.

In CMMI models, a specific practice is an activity that is considered important in achieving an
associated specific goal. In the framework, a specific practice is an example of a particular way that
organizations have accomplished the work associated with a practice area.

18 CMU/SEI-2002-TN-012

• Train people.

• Assign responsibility to perform these activities.

• Schedule the activities and provide funding.

• Provide other resources (e.g., tools and equipment).

The model also recommends a configuration management plan, as well as periodic
management and quality reviews of the performance of the configuration management
activities against the plan.

By comparison, because framework practice areas almost always describe activities that are
essential for any successful software development, the framework assumes that the critical
role of configuration management for software product line development must be fulfilled by
the organization, then it identifies practices that an organization must adopt to successfully
develop and manage a software product line. From a software product line perspective, the
challenge for the organization with respect to configuration management is the ability to
manage the complexity of the software product line.

So while the CMMI defines configuration management processes in terms of what to do, the
framework provides guidance in the form of how to actually do configuration management
for software product lines, and the attributes necessary for a solid configuration management
system for software product lines. For example, the framework covers issues associated with
the complexity of software product line development and characterizes them in terms of

1. versions of configuration items compared to versions of each item, for each product

2. separate management of configuration items compared to a single, unified configuration
management process

3. control of the configuration while core assets are being developed and used by multiple
team members simultaneously

4. the robustness of the configuration management tool and its ability to support product
line development.

The configuration management mission as stated in the framework is “ …allowing the rapid
reconstruction of any version of any product, which may have been built using various
versions of the core assets and development/operating environment plus various product-
specific artifacts” [Clements 02]. To elaborate, the tools, processes, and environments for
product line configuration management must support the following capabilities:

• support for parallel development such that the same item can be worked on for different
products by different team members

• support for distributed engineering so that the integrity of multiple libraries of the same
configuration items can be controlled when the development and maintenance sites are
not colocated

CMU/SEI-2002-TN-012 19

• build and release management that supports the team's need to release assets to product
developers in addition to releasing completed products into the test environment and
ultimately to the customer

• more robust change management that includes a greater degree of care because changes
may affect the entire product line

• support for configuration and workspace management that carries development and test
environment information as part of the attributes of each configuration item

• process management that defines the life cycle for each configuration item and the
associated management and control “rules”

It is this last item that provides us the needed link between the framework and the CMMI
models. A configuration management system robust enough to manage the complexity of a
typical software product line initiative would be difficult to implement without a solid
process capability to sustain it. So, while the CMMI addresses configuration management
capability in a generic fashion (i.e., the ability to support any software development—product
line or otherwise), the framework practices give “life” to the subject by providing the lens we
need to see the other dimension of the issue—the “expertise” required to implement
configuration management for software product lines.

Referring back to Table 2, it should now be evident why we say that the CMMI
Configuration Management process area provides “fairly direct” support (indicated by being
in bold type) for the framework’s “Configuration Management” practice area. It should also
be evident that the framework extends the realm of the CMMI models.

A similar analysis is possible for the other process-area-to-practice-area associations in Table
2. Readers wishing to make their own detailed comparisons should examine the “Aspects
Peculiar to Product Lines” section for each practice area described by Clements and Northrop
[Clements 02].

20 CMU/SEI-2002-TN-012

7 Conclusions

We have established that software engineering process discipline as specified in the CMMI
models provides an important foundation for software product line practice. We have also
shown that even with a solid process foundation, more work is required for ultimate success
with software product lines. We will conclude with some general recommendations about
which CMMI process areas provide a good basis for product line practice and how the two
CMMI model representations support a software product line approach.

As we have noted, it is not appropriate to prescribe a “one size fits all” adoption approach for
software product line practice. However, we still may conclude that it would be “very useful”
for an organization to achieve CMMI Capability Level 2 (continuous representation) in at
least the following process areas:

• Requirements Management

• Project Planning

• Configuration Management

• Requirements Development

Recall that Maturity Level 2 and Capability Level 2 generally represent institutionalization at
the project level. Because of the coordination required across traditional project boundaries,
we may say that it would be even more useful to standardize these process areas at the
organizational level. This implies achievement of Capability Level 3 for these process areas.

Does this imply that software product line practice is supported better by one representation
over the other? Not really. The continuous representation supports software product line
practice by allowing a focus on a minimum set of essential processes as determined by the
organization’s context and goals. Since broad process discipline is ultimately needed, an
approach based on the staged representation provides an incremental way to achieve this
broad foundation.

In summary, software engineering process discipline is a very helpful foundation for software
product line practice. However, success in software product lines requires mastery of many
other essential practice areas. Neither is a substitute for the other, but the CMMI models and
the software product line practices together can help guide an organization to the state
necessary to achieve product line success.

CMU/SEI-2002-TN-012 21

22 CMU/SEI-2002-TN-012

References

[Bass 98] Bass, L.; Clements, P. & Kazman, R. Software Architecture in Practice.
Reading, MA: Addison-Wesley, 1998.

[Clements 00] Clements, P. & Northrop, L. A Framework for Software Product Line
Practice, Version 3.0 [online]. Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, September 2000.
<http://www.sei.cmu.edu/plp/framework.html>.

[Clements 02] Clements, P. & Northrop, L. Software Product Lines: Practices and
Patterns. Reading, MA: Addison-Wesley, 2002.

[Crosby 79] Crosby, P. Quality is Free. New York, NY: McGraw-Hill, 1979.

[Deming 86] Deming, W. Out of the Crisis. Cambridge, MA: MIT Center for Advanced
Engineering, 1986.

[Ferguson 99] Ferguson, P. et. al. Software Process Improvement Works! (CMU/SEI-99-
TR-027, ADA371804). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, November 1999.
<http://www.sei.cmu.edu/publications/documents/99.reports/99tr027
/99tr027abstract.html>

[Goldenson 95] Goldenson, D. & Herbsleb, J. After the Appraisal: A Systematic Survey of
Process Improvement, Its Benefits, and Factors that Influence Success
(CMU/SEI-95-TR-009, ADA302225). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, August 1995.
<http://www.sei.cmu.edu/publications/documents/95.reports
/95.tr.009.html>

[Menezes 02] Menezes, W. “To CMMI or Not to CMMI: Issues to Think About.”
Crosstalk 15,2 (February 2002): 9-11.

[Paulk 95] Paulk, M. et al. The Capability Maturity Model: Guidelines for Improving
the Software Process. Reading, MA: Addison-Wesley, 1995.

CMU/SEI-2002-TN-012 23

[Phillips 02] Phillips, D. “CMMI Version 1.1: What Has Changed?” Crosstalk 15, 2
(February 2002): 4-6.

[SEI] CMMI Product Suite. <http://www.sei.cmu.edu/cmmi/products>

[Vu 97] Vu, J. "People, Process, Technology : Stuff that Works." Proceedings of
SEPG 97 (Software Engineering Process Group) (CD-ROM). San Jose,
CA, March 17-20, 1997 Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University.

[Vu 00a] Vu, J. “Findings of the Managing Software Innovation and Technology
Change Workshop,” Proceedings of SEPG 2000 (Software Engineering
Process Group)(CD-ROM). Seattle, WA, March 20-23, 2000. Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University.

[Vu 00b] Vu, J. “The SEPG from Level 1 to Level 5.” Proceedings of SEPG 2000
(Software Engineering Process Group)(CD-ROM). Seattle, WA, March
20-23, 2000. Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University.

[Zahran 97] Zahran, S. Software Process Improvement: Practical Guidelines for
Business Success. Reading, MA: Addison-Wesley, 1997.

24 CMU/SEI-2002-TN-012

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and
Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

July 2002
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Software Process Improvement and Product Line Practice: CMMI and the
Framework for Software Product Line Practice

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

Lawrence G. Jones, Albert L. Soule
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2002-TN-012

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Many organizations report dramatic benefits from the adoption of software product line practice. Organizations that
have established software engineering process discipline are better poised to succeed with product lines. While we
acknowledge that there are different paths to successful process discipline, in this technical note, we concentrate
on approaches based on the Capability Maturity Model Integration (CMMI) models. We describe practices that are
most crucial to product line success. While some of these relate directly to the CMMI models process areas, others
are uniquely important to product lines.

In this technical note, we first present fundamental concepts of software product lines. We then describe important
product line practices as they have been documented in A Framework for Software Product Line Practice
(framework). We next present an overview of the CMMI models, followed by a description of the general
relationships between the framework and CMMI models. We amplify this comparison with a detailed example
showing the relationship between configuration management practices in CMMI and in the framework. We
conclude by describing the ways in which organizations can build upon their process improvement efforts to
achieve success with product lines and realize additional benefits through the use of both technologies.

14. SUBJECT TERMS

CMMI, Product Line Practice
15. NUMBER OF PAGES

35
16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Software Process Improvement and Product Line Practice: CMMI and the Framework for Software Product Line Practice
	Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Product Line Practice
	3 CMMI
	4 Applying Product Line Practice and Software Process Improvement
	5 CMMI Models and the Framework for Software Product Line Practice
	6 A Detailed Example: Configuration Management
	7 Conclusions
	References

