
Experiences in Architecture
Reconstruction at Nokia

Liam O�Brien

March 2002

Architecture Tradeoff Analysis

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2002-TN-004

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2002 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and �No Warranty� statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Contents

Acknowledgments ..v

Executive Summary ..vii

Abstract... ix

1 Introduction..1
1.1 Reconstruction Efforts Performed...1
1.2 Architecture Reconstruction Process..2

2 Case Studies 1, 2, and 3 ..4
2.1 C System ..4

2.1.1 Extraction of the Source-Code Model ...5
2.1.2 Generation of the Architecture Model..6

2.2 Java System ...7
2.3 C++ System..8

2.3.1 Examining the Integration..9
2.3.2 Analyzing the User Interface (UI) Component...............................9

2.4 Observations for Case Studies 1, 2, and 3 ...10

3 Case Study 4 - Dynamic Analysis ..12
3.1 Generation of the Architecture Model ...13
3.2 Observations for Case Study 4 ...16

4 Case Study 5 - Manual Reconstruction Effort...17
4.1 Outline of the Manual Reconstruction...17
4.2 Observations for Case Study 5 ...18

5 Overall Observations and Lessons Learned...20

6 Conclusions ...21

References ..23

CMU/SEI-2002-TN-004 i

ii CMU/SEI-2002-TN-004

List of Figures

Figure 1: Flowchart for Reverse-Architecting Process...3
Figure 2: Example of an Architectural View�Overview Graph................................7
Figure 3: Example of a Prolog Fact Base ..14
Figure 4: Example of an Abstraction in Prolog ...14
Figure 5: Architectural View Generated for Case Study 4....................................15

CMU/SEI-2002-TN-004 iii

iv CMU/SEI-2002-TN-004

Acknowledgments

The author would like to acknowledge the cooperation of Nokia in the generation of this
report: in particular, Claudio Riva, Stefano Campadello, and Petri K. Laine, whose
architecture reconstruction efforts form the basis for this experience report.

CMU/SEI-2002-TN-004 v

vi CMU/SEI-2002-TN-004

Executive Summary

This report outlines experiences from several architecture reconstruction efforts undertaken at
Nokia. These efforts were performed on various systems including network management and
mobile phone systems. The efforts involved the use of various tools and techniques, and in
one of the efforts, the architecture reconstruction work was performed manually. This report
describes these reconstruction efforts and outlines observations noted while performing them.
It also identifies the overall lessons learned.

One of the main lessons learned was to obtain a high-level overview of the system before the
reconstruction process begins, as this helps to identify the information that needs to be
extracted and guides the generation of the architectural views. Reconstructing a system is
easier if it uses good naming conventions and has been decomposed into a hierarchical
directory structure.

It is important to have tools to support the reconstruction effort because they reduce the
amount of time required, compared to a manual reconstruction effort. Tools cannot carry out
an entire reconstruction automatically, and the tools used must be combined and integrated,
since no one tool can support all of the tasks involved in reconstruction.

CMU/SEI-2002-TN-004 vii

viii CMU/SEI-2002-TN-004

Abstract

This experience report outlines details of past and current architecture reconstruction work on
several systems at Nokia. The Dali architecture reconstruction workbench developed by the
Software Engineering Institute supported some of these efforts. Other efforts involved
various tools and techniques, and in one case, the architecture reconstruction was performed
manually.

This report describes five such reconstruction efforts and outlines the observations noted and
lessons learned while performing them. This report also offers some guidelines for those
undertaking a reconstruction effort.

CMU/SEI-2002-TN-004 ix

x CMU/SEI-2002-TN-004

1 Introduction

Several architecture reconstruction projects have been undertaken at Nokia on systems in the
network management and mobile phone domains. Nokia is the world leader in mobile
communications. Worldwide, Nokia employs about 60,000 people and is separated into four
main business groups:

1. Nokia Networks (NET) supplies mobile broadband, Internet Protocol (IP) network
infrastructure, and related services. NET also develops mobile Internet applications and
solutions for operators and Internet service providers.

2. Nokia Mobile Phones (NMP) is the world�s largest mobile phone manufacturer.

3. Nokia Research Center (NRC) drives Nokia�s technological competitiveness and
renewal, through cooperation with Nokia�s other business groups, universities, research
institutes, and other corporations.

4. Nokia Ventures Organization develops innovative ideas for the home, the environment,
and the corporate world, expanding Nokia�s business scope.

Within the NRC, the Software Architecture group provides architecture-related services
throughout Nokia. The case studies outlined in this report were performed mainly by
personnel in the Software Architecture group working with project members from other parts
of Nokia.

1.1 Reconstruction Efforts Performed
Nokia personnel have performed several projects in architecture reconstruction on various
systems within Nokia. The following architecture reconstruction case studies were examined
as part of this report:

• NET on a system implemented in C

• NET on a system implemented in C++ and Java. (Only the part of the system
implemented in Java was considered for architecture reconstruction.)

• two cases with NMP on a system implemented in C++

• NMP on a system implemented in C on which the Dali architecture reconstruction
workbench1 was not used. The main concern here was that dynamic analysis was needed.

 Java and all Java-based marks are trademarks of Sun Microsystems, Inc. in the U.S. and other

countries.
1 The Dali architecture reconstruction workbench was developed by the Software Engineering

Institute (SEI) [SEI 01].

CMU/SEI-2002-TN-004 1

• a manual architecture reconstruction effort on an embedded system within NET
implemented in C++

The first three cases were performed with the support of Dali. The fourth case study was
performed with the support of other technology, and in the last case, no reengineering tools
were used to support the effort except generic UNIX utilities such as Emacs (a text editor)
and Grep (a utility that searches files for particular string patterns).

The details of these case studies will be outlined in the following sections. Section 2 contains
details of the first three case studies. These studies have been grouped because a similar
approach was used in each, and the same technology (i.e., Dali) was used to support them.
Section 3 contains details of the fourth case study, and Section 4 outlines details of the
manual reconstruction effort. Each of these sections contains a list of observations
highlighted during the reconstruction projects. Section 5 outlines an overall set of
observations and lessons learned, which can guide other organizations that are thinking of
undertaking similar architecture reconstruction work. Section 6 concludes this report by
summarizing the main observations and lessons learned.

1.2 Architecture Reconstruction Process
In each case where tools were used to support the architecture reconstruction, most of the
process depicted in Figure 1 was followed. Not all of the phases in the process were
performed in each of the projects, and in most cases there were different goals, objectives,
and questions that the architecture reconstruction effort attempted to answer. In most cases,
the work on the reconstruction project was complete once the architectural views of the
system were documented, the questions were answered, and the objectives were achieved. In
other cases, the goal of the architecture reconstruction work was to support decision making
and not to improve or reorganize the structure of the system.

2 CMU/SEI-2002-TN-004

Documentation Source Code System Experts

Develop

Description of
Architectural

Concepts

Source Code

Extract

Source-Code
Model

Abstraction

Architecture
Model

Redocumenting

Analysis

Improvement
Plans

Architecture
Reorganization

Phase 1

Phase 2 Phase 3

Phase 4

Phase 5

Phase 6

Figure 1: Flowchart for Reverse-Architecting Process

CMU/SEI-2002-TN-004 3

2 Case Studies 1, 2, and 3

Several reconstruction efforts have been supported by Dali [SEI 01]. Some of these efforts
have already been completed, while others are ongoing.

The three architecture reconstruction efforts supported by Dali and covered in these case
studies include

1. a network management system with NET implemented in C

2. a second network management system with NET implemented in C++ and Java. (Only
the part of the system implemented in Java was considered for architecture
reconstruction.)

3. a mobile phone system with NMP implemented in C++

2.1 C System
An architecture reconstruction effort was started to fully understand a network system that
Nokia acquired. The goal was to understand how to improve the system.

The project began with the use of a manual architecture reconstruction effort before tools
were used. The system consisted of embedded distributed software on a VxWorks platform
with several applications running on it. The main focus of the reconstruction effort involved
understanding the communication mechanisms between various components, which were
mainly based on sockets; however, it was also possible for components to communicate using
remote procedure calls (RPCs).

The system also consisted of management software and hardware control software (device
drivers). The main communication mechanisms used in this part of the software consisted
mostly of sockets, pipes, signals, and queues.

The system was approximately 500 KLOC (thousand lines of code) of C plus a user interface
(UI) subsystem for network management. This UI subsystem was not part of the
reconstruction project.

Different views of the software existed from different sources. The main sources were
customers, documentation, and makefiles. (The makefiles were not analyzed in this example.)

The documentation for the system, where available, was not well organized. Documents
existed for different scenarios based upon several tasks that the system could undertake. Thus
the documentation was feature oriented and omitted detailed information about the software

4 CMU/SEI-2002-TN-004

components and their interrelationships. System users needed to have detailed knowledge
about the system before they could use the documentation.

2.1.1 Extraction of the Source-Code Model
Initially SNiFF+ (a source-code analysis environment) was used to analyze the software and
extract information [Wind River 02]. Several problems were encountered; for example, the
tool could not handle the amount of code, and multiple instances of the same symbol in the
SNiFF+ symbol table were not handled well. The main problem with using SNiFF+ was that
external function call references were not highlighted as function calls. (This was a known
problem in an earlier version of SNiFF+ that was used.) It was impossible to do useful
analysis of the software using SNiFF+.

To extract information from the software so that it could be analyzed, several scripts were
written using the Perl Web-programming language. The types of information extracted using
Perl scripts included

• the directory structure of how the software is organized

• function calls

• information about the communication between the various components. This information
included socket use, task queues, pipe use, and so forth, and was available through static
analysis of the software.

The main software entities of most relevance to this study included functions (declared in .h
files and defined in .c files), files, directories, and subsystems. (There was no direct mapping
between subsystems and directories.)

Tasks are executed by function invocations within certain components. A function call to the
task_spawn() function (passing the name of the task to be invoked) was used to initiate a
task. Tasks can communicate using pipes, queues, and signals. A set of custom functions
wrapped the lower-level pipes, queues, and signal calls.

Perl scripts were used to print out all function calls and architecturally significant function
calls (socket write, task spawn, signal send, etc.) in Rigi Standard Format (RSF).2

During the project, there was a move away from using Perl scripts, and a decision was made
to use Source-Navigator [Red Hat 01]. Using it overcame a problem with external function
calls not being properly identified. Using pattern detection within Source-Navigator, it was
possible to select particular functions and identify all the parameters in the function call. This
was the same information that the Perl scripts extracted.

 SNiFF+ is a trademark of Wind River Systems, Inc.
2 RSF is a tuple-based data format in the form of relationship entity_1 entity_2 [Müller 93].
 Source-Navigator is a trademark of Red Hat, Inc.

CMU/SEI-2002-TN-004 5

Using Source-Navigator overcame some of the problems in using Perl scripts; however the
following were still issues:

• Patterns may change between different releases of the same software; therefore, there
is a potential for a large amount of work in the management of these patterns. No
other tools were identified that could extract the required information without a
similar detailed pattern definition (as was required in this work).

• Multiple symbols with the same name were not uniquely identifiable when extracted.
A significant amount of work is required to uniquely identify these symbols that have
the same name and to properly sort out all of the references to these symbols within
the system code. Some work on overcoming this problem is being done by other
research groups, such as Beszédes� work on the Columbus reverse-engineering tool
[Beszédes 02].

2.1.2 Generation of the Architecture Model
Once the information was extracted, it was loaded into Dali�s PostgreSQL database, and a set
of about 20 queries was developed to generate various views of the architecture. Creating
various component groupings and then building other layers of architectural abstraction on
top of that allowed for the generation of various architectural views [Kazman 01]. In all, there
were three levels of architectural views.

Overview graphs in Rigi were built using this information. An example of the types of graphs
generated is shown in Figure 2. This shows a set of components�User Interface 1, User
Interface 2, Servers, and Testing Support�and a set of relations between them. In this case,
the relations between the nodes are an aggregate of the lower-level relations between the
elements that make up these components.

6 CMU/SEI-2002-TN-004

Figure 2: Example of an Architectural View�Overview Graph

These graphs were used as the primary mechanism for communicating the recovered
architecture to the architect and developers. It was not difficult to map the architect�s view
onto these pictures. Whether the developers had difficulty mapping their knowledge onto
these views was not investigated in this case.

In the six-phase reconstruction process, the latter two phases are not normally performed,
unless there is a strong need within the project to improve the structure of the system being
analyzed. In this effort, these latter two phases were skipped. To perform them, there must be
a strong collaboration between the reconstructor and the architect, developers, and
maintainers.

In this particular project, there was some slow movement towards improving the architecture.
The architecture of this software was new to most of the Nokia staff; those with detailed
knowledge of it left the company after this software was initially acquired.

2.2 Java System
The Java system analyzed in this effort is about 4-5 years old and contains about 300 KLOC
(of which approximately 100 KLOC is Java). The objective of the architecture reconstruction
effort was to understand the Java part of the system and to determine whether it was possible
to reuse that part of the system in other products.

In this case, the system documentation, which was considered to be up-to-date, identified
some (but not all) of the components and did not identify all of the relationships between
them. Most of the Java functionality was contained within a single large package that was
difficult to read.

CMU/SEI-2002-TN-004 7

Source-Navigator was used to extract the entities and relationships from the source code.
Then this information was loaded into Dali, where components were identified and
architectural views were generated. One of the problems using Source-Navigator was that
many symbols were extracted (including types, constants, system functions, and variables),
but could not be assigned actual types within Dali. However, this did not affect the ability to
generate architectural views.

As this project progressed, it became apparent that some of the dependencies identified using
the tools had not been identified in the documentation and that some of the dependencies
contained in the documentation were incorrect. This was partly due to the implementation in
which some connections between components and certain implementation decisions were not
documented properly.

Using the directory structure of how the software was decomposed and the available
documentation, components within the system were identified. The system was decomposed
into a logical structure, thus making it easy to use queries to group elements into components
and to produce abstractions of that information.

Several areas of the code were examined to determine if they could be reused. In particular,
the interactions between classes were examined through the generation of class-interaction
graphs. Cycles within these graphs mean that the classes are highly coupled and that there is
the potential for classes within a cycle to have an effect on other classes. For example, an
object from one class may change something in the environment that will, in turn, change the
behavior of objects from another class. This makes reusing the classes difficult.

Another area that was examined in this study was the structure of the exceptions, which
affects performance. From the views generated, it was clear that some exceptions were being
inherited from more than one class and that most classes had exceptions. All of these factors
may adversely affect the decision to reuse the component.

2.3 C++ System
This system is a mobile device prototype of approximately one MLOC (million lines of code)
implemented in C++. It is integrated with the Symbian operating system for mobile devices,
which has libraries that can be used for building applications. There were two main
objectives for this study:

1. Examine the integration of the operating system with Nokia�s application and identify
specifically how messages were exchanged between the applications and Symbian.

2. Analyze a particular component (developed by Nokia) and determine if it could be
extracted and then reused in other products.

8 CMU/SEI-2002-TN-004

2.3.1 Examining the Integration
To begin the analysis, high-level message sequence charts were generated with the
developers� help so that the reconstructor could obtain a high-level understanding of the
system. The overall structure of the basic Symbian engine consists of clients and an internal
server. The clients connect to the server with a static connect by statically calling a server
function. The server has several classes, representing the messages that can be passed
between the clients and server.

The method applied to extract source information involved

• extracting object-oriented (OO) entities and references among them

• using Grep for detecting code patterns (for example, identifying calls to particular
functions)

• performing direct analysis of source files using regular expressions

The output of the extraction was a file in RSF, which contained the set of entities and
relationships. This file was loaded into Dali, where abstractions were created using several
aggregation and grouping techniques.

The types of aggregations and groupings employed included

• aggregating methods and attributes within classes

• aggregating classes and files within directories

• grouping directories to form components

From these aggregations and groupings, it was possible to generate several architectural
views of the system. From these views, it was possible to identify the connections between
the operating system components and the applications running on top of the operating
system.

Work is ongoing with the developers to reconstruct the architecture with a view to improving
it.

2.3.2 Analyzing the User Interface (UI) Component
The second effort involved analyzing a particular component developed by Nokia. The goal
of the reconstruction work was to examine this component to determine if it could be
extracted and reused in other products.

The same process for extracting information that was outlined earlier was followed in this
case. It is important to note that even though this project focused on a particular part of the
system, all of the system code had to be analyzed so that all dependencies were highlighted.

CMU/SEI-2002-TN-004 9

As the information was being extracted from the source code, a problem was identified: when
analyzing large systems, more than one symbol (such as a variable or function) may have the
same name. These name clashes must be identified and sorted out (i.e., symbols must be
given unique names); otherwise, the views generated may include misleading connections
between components. It may be impossible to identify the function or class that one of these
symbols references without compiling/linking the source code. The linker in the compilation
process sorts out any name clashes.

By preprocessing and linking, most of the problems with duplicate names are eliminated
because the symbol names must be unique. However nonunique names still occur in most of
the information that is extracted statically from source code.

In this effort, the report facility from Rigi was used to generate information, which was then
copied into the report. This effort identified many dependencies between the component and
the rest of the system. This work is ongoing and has continued into 2002, as a much larger
task is being planned. This larger task involves extracting the architecture of the entire system
to identify what is already there and to determine whether it would be possible to generalize
and reuse other parts of the system.

The architects found that the architectural views generated by the tools had sufficient
information to answer their questions and presented the information clearly.

2.4 Observations for Case Studies 1, 2, and 3
The following observations were noted while undertaking these reconstruction efforts:

• Obtain a high-level (logical) view of the architecture before starting the extraction. This
enables you to get an understanding of what to look for when extracting information from
the system and undertaking the reconstruction. Otherwise, you may not extract the right
information from the software and may spend time trying to build abstractions of less
useful information.

• If possible, write patterns for extracting information from the source code that are easily
applicable in other situations. This can save time during other reconstruction efforts.

• Dynamic analysis and views of the system are important for certain types of systems,
such as those with late binding and those that may be configured dynamically.
Understanding how a particular feature is implemented in the system may require
dynamic analysis. Dynamic views of the system such as the sequence of the calls (the
order in which the calls are executed) would be useful because they can show which parts
of a system are involved in the implementation of a particular feature.

• There should be someone working full-time on the architecture reconstruction project.
Architecture reconstruction involves an extensive, detailed analysis of a system and
requires a significant effort.

10 CMU/SEI-2002-TN-004

• Have a list of architecturally relevant information to look for in the code. Is there a list of
code constructs/patterns to look for? Once a pattern is selected, highlight the code, or
instances in the code, where this pattern occurs.

• Sometimes information within data structures in the code (such as a struct in C) may
be architecturally relevant. For example, a data structure may list a set of functions that
can potentially be called at runtime. If a function pointer that points to this data structure
is used, identifying the structure�s function names can provide useful information to the
reconstruction effort. It is necessary to parse this information and possibly load it into the
database so that it is available for later analysis.

• To gain people�s confidence in architecture reconstruction methods and tools, it may help
to undertake a pilot project to show the benefits of using them.

• Architecture reconstruction tools could also be used when a system is being developed to
check the conformance of the software architecture to some reference architecture.

• Architecture reconstruction tools should not be complicated to use. The time spent
learning how to use a particular tool could consume a large portion of the effort required
to do the architecture reconstruction work itself.

• The ability to have better integration/connection across tools would be very useful for
navigating the information generated from the reconstruction effort. For example, when a
graphical view is generated, it should be possible to click on a node or connection to go
directly to the source code to identify what that connection means.

CMU/SEI-2002-TN-004 11

3 Case Study 4 - Dynamic Analysis

The fourth reconstruction effort was on a software product family.3 The software system
consisted of about 1.5 MLOC written in C and was more object based than object oriented. In
the product family, there are about 10 products per year (this number is increasing), and there
are variances across these products in terms of the device category, telecommunications
protocol, UI, operating system services, and customer/country customization.

Products are organized in families to achieve reusability, thus driving the need to have a
robust architecture that is shared by all family members. Organizing products as families also
generates dependencies across platforms and products. The development process for these
products is geographically distributed and concurrent. Reducing dependencies and reusing
components across several products should reduce costs. Maintaining the vast portfolio of
products is a huge challenge.

The goal of this case study was to develop techniques and tools to understand how the
features within each product relate to the set of components and to identify the components�
dependencies. The components that implement a feature are potentially the same ones that
can be shared across products. The architecture reconstruction techniques and tools were
applied on various example products. If the applications were successful, these techniques
and tools would be incorporated into the development team�s work so that the developers
could examine the dependencies when adding new features or modifying code. An early
report on this work appears in the Proceedings of the Seventh Working Conference on
Reverse Engineering [Riva 00]. A further report on this work will appear in the Proceedings
of the Sixth European Conference on Software Maintenance and Reengineering.4 This work
started before Nokia acquired Dali.

Using architecture reconstruction/reverse-engineering approaches, the following levels of
abstraction were identified:

• code

• design

• architecture

3 A software product family in the Nokia context is the same thing as a software product line in SEI

terminology: a set of software-intensive systems sharing a common, managed set of features that
satisfy the specific needs of a particular market segment or mission and that are developed from a
common set of core assets in a prescribed way [Clements 01].

4 Riva, C. & Rodriguez, V. J. �Combining Static and Dynamic Views for Architecture
Reconstruction.� Proceedings of the Sixth European Conference on Software Maintenance and
Reengineering (CSMR 2002). Los Alamitos, CA: IEEE Computer Society Press, to be published.

12 CMU/SEI-2002-TN-004

• feature (This is not a direct mapping between features and components in the
architecture.)

• requirements

The approach was to identify these static views of the architecture and to use dynamic
analysis to slice through them to identify the components that are involved in the
implementation of a particular feature. In generating these views, a class-inheritance diagram
was generated and found to be very flat, indicating that there were just a few generic classes
from which most specialized classes were inherited. The following problems were identified
in trying to reconstruct the architecture:

• The source files were generated by a computer-aided software engineering (CASE) tool,
thus making it difficult to parse the code.

• Existing source-code analyzers were not sufficient to achieve the goal of the project.

• Poor naming conventions were used.

• Because the implementation language was nonstandard, it was difficult to get tools to
analyze it.

3.1 Generation of the Architecture Model
In this case, a high-level overview of the system was obtained. This overview guided the
extraction of information from the source so that useful architectural views of the system
could be built. The relevant architecture components consisted of servers, clients,
applications, and delegate applications with message passing between these various
components along a software bus. The code entities that were extracted included directories,
files, and applications; the relationships that were extracted included send_message,
subscribe_event, and calls.

From the static analysis, it was possible to identify the server to which messages were sent.
There was a SEND function whose first parameter was the name of the server to which the
message was routed. Knowing this made the work much easier and eliminated the need for a
more detailed analysis (including dynamic analysis) to identify the destination of messages.
Several architectural views consisting of the applications (directories) and servers were
generated from the information.

One of the difficulties in this project was the lack of support for automating the architecture
reconstruction process. This project was undertaken before Nokia acquired Dali. (Using Dali
has overcome some of these difficulties for other Nokia projects.)

At the moment, Prolog is used to carry out further analysis on the information extracted, and
the entities and relationships extracted are stored in a Prolog fact base. An example of a
Prolog fact base is shown in Figure 3. Most of this base is stable across the product family,
but there are parts of it that are specific to a particular product. Some of the information has

CMU/SEI-2002-TN-004 13

to be entered into the Prolog system manually by the architect, who, as a result, must become
familiar with Prolog and the developed system to do further abstraction.

One of the advantages of using Prolog is its expressive power. An abstraction can be
generated by specifying a sequence of facts that must exist for the abstraction to be valid. An
example is shown in Figure 4. Complex queries can be expressed more easily in the Prolog
language than in the Structured Query Language (SQL).

containDir(�/gui�,�/gui/VoiceCall�).
containFile(�/gui/VoiceCall�,�/gui/VoiceCall/mainApp.c�).
defineFunc(�/gui/VoiceCall/mainApp.c�,�init�).
defineFunc(�/gui/VoiceCall/mainApp.c�,�makeCall�).
invocation(�init�,�register�,[�VOICE_CALL�]).
invocation(�makeCall�,�send�,[�CALL_CTRL�, �SETUP�]).
invocation(�makeCall�,�send�,[�CALL_CTRL�, �CALL�]).
invocation(�makeCall�,�send�,[�NET_CTRL�, �ALERT�]).

Figure 3: Example of a Prolog Fact Base

(1) message(Src, Dest) :-
invocation(Src, �send�, List), nth0(0, List, Dest).

(2) register(Dir, ID) :-
containFile(Dir,File), defineFunc(File, Func),
invocation(Func, �register�, List), nth0(0, List, ID).

Figure 4: Example of an Abstraction in Prolog

The generated architectural view of the system consists of three layers:

1. the main layer, which consists of the high-level features

2. the middle layer, which consists of the subfeatures that may be reused

3. the server layer

14 CMU/SEI-2002-TN-004

A visual representation of the architectural view that was generated is shown in Figure 5. The
arcs between the nodes in the view show aggregations of the lower-level relations between
the elements extracted from the source code. These relations include those listed in Figure 3.

Figure 5: Architectural View Generated for Case Study 4

Some interlayer bridging was detected and investigated, because it would make reusing
components at the various layers more difficult.

After the abstractions were generated, they were exported to Rigi and viewed using the Rigi
visualization engine. A small project was undertaken to try to generate Unified Modeling
Language (UML) views from the views in Rigi. This was partially successful, and work is
continuing on this project.

In addition to component dependencies, the produced graphs show organizational
dependencies, as the components are developed in different parts of the organization. There is
a basic platform that is common across each work team. Each team implements the features
for which it is responsible. No changes can be made to the platform without issuing a change
request. A change request is analyzed and the effects of the change are determined. If changes
are made to the platform, it is redistributed to every team. The dependencies across the
various teams are identified and maintained manually, and are incomplete. The architect
within a particular team must know these dependencies so that changes can be sorted out with
the other teams that will be affected. One of the goals for this work was to identify the
component and the dependencies, thus providing each of the teams with the capability to
identify the dependencies automatically and making the architect�s job easier.

CMU/SEI-2002-TN-004 15

As a result of this work, the architects have the first model that reflects the current
architecture of their system. This model is navigable using Rigi, which the architects found to
be very useful. One of the tasks that is currently being performed is the analysis of the
INCLUDE file dependencies. This is a difficult task because of the different means of
including files, multiple files with the same names, and the sequence of how the files are
included.

Additional dynamic analysis of the system is being undertaken. Also, the sequence charts are
being analyzed with static analysis to identify groupings in them in terms of the packages and
components that constitute the system. This analysis would give views of the interactions
between the high-level entities in the system.

3.2 Observations for Case Study 4
The following observations were noted while undertaking this reconstruction effort. Some of
them can also be viewed as recommendations for developers and reconstructors.

• When developing a system, use design conventions that make it easier to recover the
software architecture. For example, putting the name of the server in a function call that
sends a message to the server is better than using some variable name as the server name
and not being able to determine the value in the variable statically. If a variable name
were used, dynamic analysis would be required to uncover the server name, thus making
the reconstruction effort more difficult.

• Having unique names in a system helps in recovering the code�s architecture. Nonunique
names must be reconciled before generating architectural views; otherwise nonexistent
relationships between entities may be identified. Therefore, make sure that the
information being used to build the high-level abstraction and architectural view is
correct.

• Lightweight parsing of the code fully satisfied the needs on this project. Therefore, it is
useful to determine what type of information you want to get from the system and
whether lightweight parsing (using Perl and lexical analysis) or more heavyweight (full-
blown) parsing is required.

• Mapping back from the architectural views that were generated to UML-type views
would help the architecture reconstruction work. The UML seems to be the standard for
architecture documentation, and other types of graphical views that are generated by
tools add to the cognitive load of those trying to understand the system�s architecture.

• Talk with the architects in the language and graphical representations with which they are
familiar. There is a need to generate not just box-and-arrow diagrams, but other semantic
information as well. Interactive visualizations help to fill this need, as they provide not
only the graphs, but also the ability to navigate through the information easily.

16 CMU/SEI-2002-TN-004

4 Case Study 5 - Manual Reconstruction Effort

This case study was on a mobile device system of about one MLOC of C++ code. The goal
of this project was to determine what is required to understand the architecture of an OO
system and to develop ideas that can be applied in its development. The specific objective of
this work was to explore the role of software architecture in building OO systems. Laine
discusses the findings of this study [Laine 01]. The outline given here looks at this work from
the viewpoint of the architecture reconstruction effort undertaken in this work and highlights
some of the issues involved in manual architecture reconstruction efforts.

4.1 Outline of the Manual Reconstruction
A high-level overview of the system was generated. Then, starting at the code level, the
reconstructor mapped back to the high-level overview to reason about the system, to
determine how mapping is done, and to investigate the role that architecture plays.

The approach to the manual reconstruction effort was to generate a high-level view of the
system and to assign code to various parts of that view. Certain components were identified
directly by examining the code. Clustering and abstraction were used to build component
views. No tools, such as Rational Rose, were used in generating the high-level views; rather
just pen and paper were used to draw high-level diagrams. Doing so allowed for the free-
form expression of ideas and links to code and other documentation.

This manual effort took three to four months of intensive study of the code. The reconstructor
knew the architecture of the system quite well before starting this project. The only utilities
that were used to support the manual effort were Emacs and Grep. The system was already
decomposed into a directory structure, so it was relatively easy to know where to look for
certain components. However, some inconsistencies in the placement of code within the
directory structure were identified and highlighted. Also identified were some indirect and
complex dependencies that were previously unknown and undocumented.

Information that was generated manually included call dependencies, class and package
dependencies, and inheritance trees. Although no tools were used, much of this type of
information can be generated more easily using tools. Since the information generated was
captured mostly in free-hand drawings, it was not presented easily to others. Mapping the
generated views to a tool such as the UML was not a straightforward task, so it was not done.

The task was to develop conclusions about the role of software architecture and to generate
sufficient knowledge to back up those conclusions. For example, one question that was asked

CMU/SEI-2002-TN-004 17

about the system was, �Why does the system have particular properties?� To answer this
question, the architecture of the entire system was reconstructed. As the project progressed, it
was obvious that the existing documentation did not accurately reflect the existing system.
Through the reconstruction and generation of the various views, the reconstructor was able to
answer this and other questions.

One of the objectives of this work was to determine what is involved in ensuring that the
architecture of the implemented system conforms to the architecture as it was envisioned and
that nothing has been added to the system that is not in the architecture description. Having
this type of conformance checking (i.e., �round-trip engineering�) could be part of the
development process, as it provides a regular reality check. However, there are probably few
development projects in which this is done.

Overall, tools could have supported this work by automating the extraction and abstraction of
the information from the code to generate architectural views as shown in the earlier projects,
but, as mentioned before, none were used. As the information being generated became more
concrete, the use of free-form diagrams changed. In the early stages of the effort, the high-
level information was captured in free-hand, box-and-arrow diagrams; but as the system
became more familiar, the diagrams changed to be similar to those produced in the UML.
Free-form diagrams were used because it is not easy to capture high-level views in a rigorous
tool or methodology.

Although dynamic analysis was not performed in this reconstruction, it may have been
useful.

4.2 Observations for Case Study 5
The following observations were noted while undertaking this reconstruction effort:

• It may be impossible to formalize all of the dependencies that exist in the software (e.g.,
if there are dependencies that occur at runtime and it is impossible to run the system to
get the dynamic information). Therefore it is necessary to identify those dependencies
that are important to the reconstruction effort, to make sure that they can be formalized,
and to work around those that cannot.

• To undertake a manual reconstruction effort, you should know a great deal about the
software; otherwise, it would very difficult to carry out the reconstruction work. In a
large system, there can be a large amount of information, and it is necessary to determine
which information is relevant and which is irrelevant to the task at hand.

• Recognizing the importance of certain concepts within the software is a manual effort.
However, extracting these concepts from the software can be supported using tools.

• In many cases, the existing documentation for a system may not accurately reflect the
system as it is implemented. Therefore it may be necessary to disregard the existing
documentation and use it only to generate the high-level views of the system, since it
should give an indication of the high-level concepts.

18 CMU/SEI-2002-TN-004

• Using tools to automatically perform many of the tasks that were performed manually
could have significantly reduced the amount of time required to carry out the
reconstruction project. Using utilities such as Emacs and Grep, it is possible to generate
the call graph of a system, but it may take several hours or days to do so. Tools can build
a system�s call graph in a matter of minutes, reducing the risk of human errors being
introduced into the process. The ability to combine various tools is also important. (For
example, linking source-code browsers to graphical tools makes navigation through the
system much easier than having to switch between various tools.)

• Using the manual approach, the person undertaking the reconstruction got to know the
system very well.

• When reconstructing the architecture of a system, a specific goal and set of objectives
must exist to focus the effort.

CMU/SEI-2002-TN-004 19

5 Overall Observations and Lessons Learned

The following observations and lessons learned were gleaned from the projects and can be
used as a set of guidelines for anyone undertaking or considering an architecture
reconstruction effort:

• It is important to have a goal and set of objectives/questions in mind before undertaking
the architecture reconstruction effort. Because a large amount of information can be
extracted from the system�s source code, it is important to make sure that the extracted
information and the analysis that is applied to it help satisfy the goal of the reconstruction
effort. Without specific goals, your analysis may be useful, but may not satisfy the
original goal or answer the questions you have about the system.

• Obtaining a high-level view of the system before beginning the detailed analysis is
important because you need to know what to look for and what information to extract.

• Decomposing the system code into a hierarchical directory structure would aid the
reconstruction effort, as this hierarchy should reflect the architecture of the software.
Having only a few directories where code is lumped together adds to the confusion about
the system�s structure and makes the reconstruction effort difficult. Good configuration-
management tools can provide this information.

• Good naming conventions would assist in the reconstruction process. Therefore using
them should be part of the software development standards. Reconstructing a system that
has a good architecture and that has been worked on by disciplined programmers is easier
than reconstructing a system that has a bad architecture and that has been worked on by
ill-disciplined programmers.

• It is important to involve the maintainers or developers at an early stage of the
reconstruction effort, as this helps you to understand the system being analyzed and to
identify what to look for in the system to satisfy the effort�s goals and objectives and to
answer your questions.

• Tools can support the reconstruction effort and shorten the reconstruction process, but
they cannot do an entire reconstruction effort automatically. The work requires the
involvement of people who are familiar with the system. (This point was key in the
decision to develop Dali to be open and interactive.)

• The ability to combine various tools to support the reconstruction effort is very
important. No single tool can provide the necessary functionality, so the ability to
integrate tools easily is required. (This point was also key in the decision to develop Dali
to be open and interactive.)

20 CMU/SEI-2002-TN-004

6 Conclusions

Nokia used Dali to great effect within its own organization. Overall, its architecture
reconstruction efforts have been very successful in providing information that enables the
system architects and developers to better understand their systems and to make strategic
decisions about them. Some improvements have been made in documenting systems,
specifically using tools to support the documentation and the processes used to understand
the software.

Architecture reconstruction was very useful in a variety of contexts and with differing goals
and objectives. As outlined in this report, reconstruction was performed on software for
mobile devices and network management systems, with objectives ranging from gaining an
understanding of various systems to determining if system parts can be generalized and
reused in other products. Reconstruction was used on product families as well as individual
systems and on a variety of different implementation languages.

Tool support is required for architecture reconstruction, and there are tools that can support
the process. However, research and development on improving the reconstruction process
and on tools that can better support the process needs to continue.

CMU/SEI-2002-TN-004 21

22 CMU/SEI-2002-TN-004

References

[Beszédes 02] Beszédes, Á. �List of Publications of Árpád Beszédes� [online].
<http://www.inf.u-szeged.hu/~beszedes/research/eng/> (2002).

[Clements 01] Clements, P. & Northrop, L. Software Product Lines: Practices and
Patterns. Boston, MA: Addison-Wesley, 2001.

[Kazman 01] Kazman, R.; O�Brien, L.; & Verhoef, C. Architecture Reconstruction
Guidelines (CMU/SEI-2001-TR-026, ADA395198). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 2001.
<http://www.sei.cmu.edu/publications/documents/01.reports/
01tr026.html>.

[Laine 01] Laine, P. K. �The Role of Software Architecture in Solving Fundamental
Problems in Object-Oriented Development of Large Embedded Systems,�
14-23. Proceedings of the Working IEEE/IFIP Conference on Software
Architecture. Amsterdam, The Netherlands, August 28-31, 2001. Los
Alamitos, CA: IEEE Computer Society, 2002.

[Müller 93] Müller, H. A.; Mehmet, O. A.; Tilley, S. R.; & Uhl, J. S. �A Reverse
Engineering Approach to System Identification.� Journal of Software
Maintenance: Research and Practice 5, 4 (December 1993): 181-204.

[Red Hat 01] Red Hat, Inc. �The Source-Navigator IDE� [online].
<http://sources.redhat.com/sourcenav/> (2001).

[Riva 00] Riva, C. �Reverse Architecting: An Industrial Experience Report,� 42-50.
Proceedings of the Seventh Working Conference on Reverse Engineering.
Brisbane, Australia, November 23-25, 2000. Los Alamitos, CA: IEEE
Computer Society, 2000.

[SEI 01] Software Engineering Institute. �Architecture Reconstruction� [online].
<http://www.sei.cmu.edu/ata/ata_extraction.html> (2001).

[Wind River 02] Wind River Systems, Inc. �SNiFF+� [online].
<http://www.windriver.com/products/html/sniff.html> (2002).

CMU/SEI-2002-TN-004 23

http://www.sei.cmu.edu/ata/ata_extraction.html

24 CMU/SEI-2002-TN-004

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

March 2002
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Experiences in Architecture Reconstruction at Nokia
5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Liam O�Brien
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2002-TN-004

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This experience report outlines details of past and current architecture reconstruction work on several systems at Nokia.
The Dali architecture reconstruction workbench developed by the Software Engineering Institute supported some of
these efforts. Other efforts involved various tools and techniques, and in one case, the architecture reconstruction was
performed manually.

This report describes five such reconstruction efforts and outlines the observations noted and lessons learned while
performing them. This report also offers some guidelines for those undertaking a reconstruction effort.

14. SUBJECT TERMS

architecture reconstruction, Dali, Dali workbench, Nokia
15. NUMBER OF PAGES

36
16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Experiences in Architecture Reconstruction at Nokia
	Contents
	List of Figures
	Acknowledgments
	Executive Summary
	Abstract
	Introduction
	Reconstruction Efforts Performed
	Architecture Reconstruction Process

	Case Studies 1, 2, and 3
	C System
	Extraction of the Source-Code Model
	Generation of the Architecture Model

	Java System
	C++ System
	Examining the Integration
	Analyzing the User Interface (UI) Component

	Observations for Case Studies 1, 2, and 3

	Case Study 4 - Dynamic Analysis
	Generation of the Architecture Model
	Observations for Case Study 4

	Case Study 5 - Manual Reconstruction Effort
	Outline of the Manual Reconstruction
	Observations for Case Study 5

	Overall Observations and Lessons Learned
	Conclusions
	References

