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Model Based Verification (MBV) is a systematic approach to finding defects (errors) in 
software requirements, designs, or code. MBV involves creating essential models of system 
behavior and analyzing these models against formal representations of expected properties, 
known as claims. Claim generation has been identified as a particularly complex activity 
within model-based verification. This technical note describes a pattern-based approach to 
facilitate claim generation. The report includes a list of directly usable patterns for the most 
frequent expected properties found in system specifications. 
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Model Based Verification (MBV) is a systematic approach to finding defects (errors) in 
software requirements, designs, or code [Gluch 98]. The approach judiciously incorporates 
mathematical formalism, in the form of models, to provide a disciplined and logical analysis 
practice, rather than a “proof” of correctness strategy. MBV involves creating essential 
models of system behavior and analyzing these models against formal representations of 
expected properties. 

The artifacts and the key processes used in Model-Based Verification are shown in Figure 1. 
Model building and analysis are the core parts of model-based verification practices. These 
two activities are performed using an iterative and incremental approach, where a small 
amount of modeling is followed by a small amount of analysis. A parallel compile activity 
gathers detailed information on errors and potential corrective actions 

Figure 1: Model-Based Verification Process and Artifacts 

Essential models are simplified formal representations that capture the essence of a system, 
rather than provide an exhaustive, detailed description of it. Through the selection of only 
critical (important or risky) parts of the system and appropriately abstracted perspectives, a 
reviewer using model-based techniques, can focus the analysis on the critical and technically 
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difficult aspects of the system. Driven by the discipline and rigor required in the creation of a 
formal model, simply building the model, in and of itself, uncovers errors. 

Once the formal model is built, it can be analyzed (checked) using automated model-
checking tools.  Within this analysis, potential defects are identified both while formulating 
claims about the system’s expected behavior and while formally analyzing the model using 
automated model-checking tools. Model checking has been shown to uncover the especially 
difficult to identify errors: the kind of errors that result due to the complexity associated with 
multiple interacting and inter-dependent components. These include embedded as well as 
highly distributed applications. 

A variety of different formal modeling and analysis techniques are employed within model-
based verification [Gluch 98, Clarke 96].  The choices are based upon the type of system 
being analyzed and the technological foundation of the critical aspects of that system.  This 
decision on the technique(s) involves an engineering trade-off among the technical 
perspective, formalism, level of abstraction, and scope of the modeling effort. 

The specific techniques and engineering practices of applying model-based verification to 
software verification have yet to be fully explored and documented. A number of barriers to 
adoption of model-based verification have been identified including the lack of good tool 
support, expertise in organizations, good training materials, and process support for formal 
modeling and analysis. 

In order to address some of these issues, the SEI has created a process framework for model-
based verification practice. This process framework identifies a number of key tasks and 
artifacts. Additionally, the SEI is working on a series of technical notes that can be used by 
model-based verification practitioners. Each technical note is focused on a particular model-
based verification task, providing guidelines and techniques for one aspect of the model-
based verification practice. Currently, the technical notes that are planned address abstraction 
in building models, generating expected properties, generating formal claims, and 
interpreting the results of analysis. 
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This technical note focuses on claim generation. Specifically, it describes a template-based 
approach to simplify ad speed up this resource-intensive task.  Section 2 introduces the 
problem of claim generation and illustrates its tradeoffs and incoherent complexities.  Section 
3 gives a high-level description of the proposed technique.  Section 4 explains how to use the 
technique with some practical consideration and recommendations.  Section 5 contains the 
actual list of claim templates.  Finally, some conclusions and future lines of work are 
presented.  
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Models in MBV are formal representations of system behavior. Similarly, claims are the 
formal specification of expected properties of the system. The formality of models and claims 
enables automated tools to verify whether particular claims hold against a model. If a claim is 
well written and the model is a faithful representation of the system, the verification using 
model checking will indicate whether the system possesses or does not possess the expected 
property represented by the claim. Additionally, the rigor required to build claims demands a 
level of system understanding that, in and of itself, promotes the uncovering of defects.    

Depending on the kind of expected property and the type of model checker, different 
notations can be used to formalize the claim. For example, classical propositional logic can 
be used if we are concerned about static properties of the system. Using classical 
propositional logic, we can claim that if it is raining then there are clouds. In this report, we 
cover an extension to propositional logic that also considers time. This is called temporal 
logic and enables us to make such interesting claims as if there are clouds then it may finally 
rain.  

Temporal logic is a formal approach for specifying and reasoning about the dynamic 
characteristics of a system. The formalism of temporal logic does not include time explicitly 
(i.e., counting or measuring time in the sense of a timing device). Rather time is represented 
as a sequence of states (a state trace) in the behavior of a system. These sequences of states 
(traces) can be finite  <s0,s1, s2, s3, … sn> or infinite <s0, s1, s2, s3, . . . .>.  In this report, 
we will assume infinite traces. States represent finite time intervals of fixed conditions for a 
system.  For example, the state of red for a traffic light is when the color of the light is red.  

There are two prominent forms of temporal logic:1  

1. Linear Temporal Logic (LTL) 

2. Branching Temporal Logic - Computational Tree Logic (CTL) 

The difference between the two is in the concept of the unfolding of time. In linear temporal 
logic, the evolution of time is viewed as a sequence of statesa single line of possible states. 
In contrast, CTL (a version of branching temporal logic) views the evolution of time as 
possibly proceeding along a multiplicity of paths. Each path is a linear sequence of states. 
Some expected properties can be expressed using any of these formalisms, others require 
either CTL or LTL.   

                                                 
1  Interval logic and other temporal logic variants are not covered in this report 
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Model checking has been used extensively for analyzing concurrent systems. Instead of 
depending on time explicitly, concurrent systems depend on the state of other system 
components.  Take a producer-consumer example in which no overwriting occurs and where 
a producer produces messages, eventually filling up disk space.  The CTL expression below 
states that if the producer produces with infinite frequency and the consumer never 
consumes, the buffer will eventually fill up: 

(AGAF(producer.producing) & !EF(consumer.consuming)) � AF(disk.full) 

It would be useful to claim that when (if) the disk is full, the producer must stop producing 
until the consumer consumes some messages and frees up some buffer space.  Then the 
producer is allowed to continue.  Such a claim may be expressed in CTL as2: 

AG(disk.full � A[( !producer.producing) U consumer.consuming]) 

Defects can usually be categorized as violations of safety, liveness, or fairness properties.  In 
the producer-consumer example, a fairness claim asserts that the consumer will never be 
indefinitely prevented from consuming.  A way to express this is to claim that the consumer 
will consume infinitely often: 

AGAF(consumer.consuming) 

If this claim is false, the counterexample may show an execution sequence where the 
consumer, at some point, is never again allowed to consume a message from the buffer.  A 
liveness claim might assert that both the producer or consumer never stop (i.e., the producer 
produces infinitely often and the consumer consumes infinitely often): 

AG(AF(producer.producing) & AF(consumer.consuming)) 

If the system deadlocks, the counterexample might demonstrate an infinite loop where the 
producer or consumer or both are idle. 

Even from this simple example, you can realize the difficulty in building temporal logic 
claims. Temporal logic syntax is obscure and the semantics can be very tricky. A number of 
strategies have been suggested to deal with this difficult task. Some of these are general to 
any engineering activity; others are specific to claim building. All have weaknesses and 
strengths and can be combined to get the best results. The strategies that we are going to 

                                                 
2  There are subtle aspects to this claim that must be considered in interpreting it.  If this claim is 

true for a system then (1) it is possible that the disk is never full, (2) if the disk does become full 
the consumer must eventually begin to consume, and (3) it is possible that in the same state that 
the consumer begins to consume again after the disk is full, the producer is also producing.     



6  CMU/SEI-2001-TN-018 

mention in this section are visualization, natural language translation, and patterns. The 
pattern strategy will be the foundation for the technique described in the rest of the paper. 

���� �	�
��	 ��	���

Visual analogies have successfully been used to attack complex problems in all fields of 
engineering. In fact, the model-building phase of model-based verification uses statecharts 
and other graphic representation of state models [Harel 87]. If we can identify a good visual 
analogy of a temporal logic statement, we can also visually map the expected properties into 
temporal logic claims. There are various informal graphical analogies to depict temporal 
logic claims. Figure 2 illustrates a widely used analogy to represent the state space of a given 
state machine. The state space is represented as a tree, a node represents the system state in a 
particular point of time, and the siblings of a node are the potential next states. Every branch 
is a possible trace execution of the system. The figure includes the graphical representation of 
four basic CTL claims: AG, AF, EG, EF.   The states in which the proposition (lunch is free) is 
true are darkened. 

AF (lunch is free)

… … … …

AG (lunch is free)

… …… …

EG (lunch is free)
… … … …

EF (lunch is free)

… … … …

 

Figure 2: Tree Representation of the State Space 

The tree analogy works well to illustrate simple CTL claims but soon becomes unmanageable 
as the complexity of the claim increases. Additionally, the representation is open to 
ambiguous interpretation. Attempts have been made to define formal graphical 
representations to express temporal logic claims. Graphical Interval Logic (GIL) describes 
linear temporal logic formulas in a way that resembles the informal timing diagrams familiar 
to designers of hardware systems [Dillon 94a, 94b].  

���� !��
��������
����"�������	���

Another technique to simplify claim building is natural language translation. Expected 
properties are often expressed in natural language. Ideally, a tool could accept these English 
expressed properties and generate the claim in the required formalism [Holt 99, Grover 93]. 
Despite the important advances in natural language interpretation, however, the technique 
still presents some limitations. First, the tool has to deal with the inherent ambiguity of 
natural language. Additionally, the practitioner has to learn the natural language style best 
understood by the translation tool.  
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One way to work around some of these problems is not to use natural language but some 
intermediate form, easier to understand than temporal logic but less ambiguous than natural 
language. The Bandera Specification Language, for example, provides syntax for specifying 
general assertions and pre/post conditions on methods [Corbett 00].  Assertions are constructs 
available in many programming languages (e.g., as assert () statements and if-statements in 
sequential programming languages). This syntax is more familiar and manageable than 
temporal logic to the target user; it is, however, more formal than natural language.  

��#� ���������

Design patterns have their roots in the architectural work of Christopher Alexander 
[Alexander 77]. Gamma et al. introduced patterns to software development as a means of 
leveraging the experience of expert system designers [Gamma 94]. There are multiple 
definitions of patterns in the literature; one of the shortest defines patterns as the abstraction 
from a concrete form, which keeps recurring in specific non-arbitrary contexts [Riehle 96]. 

Patterns have been proposed for expected property specification [Dwyer 99]. A property 
specification pattern is a generalized description of a commonly occurring requirement, on 
the permissible state/event sequences, in a finite state model of a system. A property 
specification pattern describes the essential structure of some aspect of a system’s behavior 
and provides expressions of this behavior in a range of common formalisms. Given the 
proper property specification pattern, writing claims is simple. Instantiating a claim pattern is 
trivial in most cases, as the substitution of symbols by specific propositions is 
straightforward.  

Dwyer et al. describe a set of very general patterns that can be customized with temporal 
scopes and used in a wide range of situations [Dwyer 98, 99]. There are five basic kinds of 
scopes: 

1. global (the entire program execution) 

2. before (the execution up to a given state/event) 

3. after (the execution after a given state/event) 

4. between (any part of the execution from one given state/event to another given 
state/event) 

5. after-until (like between but the designated part of the execution continues even if the 
second state/event does not occur)  
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The approach adopted on this report is based on templates. We define templates as very 
specific fine-grained patterns. Our goal has been to provide constructs that are directly usable 
in a model-based verification with little or no customization. The resulting templates are too 
specific and narrow to be called patterns according to the accepted meaning for the term.  

In the last section, we gave a short definition of patterns. However, in order to highlight the 
differences and likeness of our templates to traditional patterns, we need a more extensive 
definition. A popular definition in the research community characterizes a pattern as a named 
nugget of instructive information that captures the essential structure and insight of a 
successful family of proven solutions to a recurring problem that arises within a certain 
context and system of forces [Appleton 00]. As shown below, our templates comply with 
some but not all the characteristics of the “standard” patterns definition.  

• Named nugget of instructive information: Templates do have names for easy reference 
and contain all the information necessary to apply the template in practice. We have tried 
to avoid names that are heavily used in temporal logic research but do not correspond to 
common terminology in requirements specification (for example, “fairness”).  

• that captures the essential structure and insight: The templates capture the basic temporal 
logic structure to express the concept encapsulated by the template. The templates use 
symbols instead of specific propositions to make the solution general. 

• of a successful family of proven solutions to a recurring problem: As we stated 
previously, there are very few documented uses of MBV in software settings. We have 
collected the solutions that worked for us in real MBV practice. We cannot prove, but we 
believe, that they will be useful for the general user.  

• that arises within a certain context and system of forces: The context considered in this 
report is model-based verification of software systems in general. We have tried to keep 
the context general in order to make the templates useful for as wide an audience as 
possible. However, the templates were developed primarily in an application context 
associated with concurrent systems. Other application contexts would potentially produce 
different templates.   

Given the mismatches between our constructs and the accepted definition of patterns, we did 
not want to use the word “pattern” to refer the approach adopted in this report. However, we 
do want to highlight the similarities between the solution described here and pattern theory.    

Specification templates are less general than specification patterns but may be easier to use 
for the novice practitioner. This level of granularity also allows us to express the templates in 
terms closer to the expected properties an engineer is likely to find in a requirement. 
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specification. In fact, we have different templates with the same temporal logic structure but 
associated with different expected properties.   

After describing what we mean by specification template, we must address the interesting 
question of which templates to include. There is an unlimited number of expressions that can 
be built in either CTL or LTL. In the decision to include or not include a particular template, 
we used two criteria: 1) simplicity and 2) correspondence with a known and commonly used 
expected property.  We elaborate on these criteria below. 

• Simplicity: Many potential CTL templates are too complex to be of any value. For 
example, the claim EG( A (p U s) -> AG( r->t | u)) is a perfectly valid claim. However, 
we should wonder whether the claim “There is a trace in which if p holds until s and s 
occurs then for every possible state if r then t or u or both” would be useful in any 
reasonable context. As claim complexity increases, understanding what we are verifying 
becomes increasingly difficult. Complexity also makes the interpretation of the results of 
the model checker more difficult and error prone. Yet, we don’t want to include templates 
that are too simple to present any challenge even to a novice practitioner. 

• Correspondence to a known expected property: CTL claims are the formalization of 
expected properties. Expected properties are often shared by multiple systems. Deadlock-
free execution, for example, is a common property that is expected from most concurrent 
systems. In fact, even those expected properties that are not shared (system specific 
properties), can often be classified into common categories. For example, expected 
properties about the relation between two or more system events are very common in 
every system. These similar properties often translate into claims with the same structure, 
i.e., claims that are instantiations of the same claim template.  

This report contains a list of those simple claims templates that we have found to match a 
common expected property. This list is neither comprehensive nor finalized; we plan to 
update the list as new templates emerge from common MBV practice. Our goal is not to 
compile every possible claim template, but to have a sufficiently complete list to simplify the 
practice for novice model-based verifiers.  

Apart from the evident benefit of speeding up the building of claims, the template approach 
has some beneficial side effects. First, the templates are good learning tools. Engineers with 
limited modeling experience will first instantiate templates without further manipulation. 
Soon, they will start combining templates to address issues specific to their system. Finally, 
they will be able to create completely new templates that address very specific properties of 
their system. Second, the template approach can help to achieve consistency between 
different verification efforts. Different model-based verifications often focus on different 
aspects of the system, possibly overlooking some properties important enough to be checked 
every time. The templates can be used as a checklist to verify that all important properties of 
a system have been verified.  
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Using the templates is fairly straightforward. We present the claims in a very simple layout 
based on the Alexandrian or Canonical form: 

1. Name: In general we try to use the name of the expected property that the claim is 
formalizing. The name should be familiar to an engineer, as it is based on common 
terminology found in requirements specifications. 

2. Description: Immediately following the name, we give a textual description of the 
meaning of the template and the temporal logic structure (either in CTL or LTL) that 
corresponds to that meaning.  

3. Examples and known uses: Recommendations and guides for properly using the claim 
are provided.  These include: examples of the template in a specific context, general 
situations in which the template can be used, clarifications, and caveats.    

4. Related templates (optional): Relations with other templates are provided, either 
because of their similarity or because they are often used together. 

Given the relatively large number of templates in this report, sequentially parsing through the 
templates to find the appropriate one is not efficient. For this reason, we have classified the 
templates using behavioral groupings (occurrence, cause effect, and non progress).  In 
addition to the classification, we have also created a wizard-like diagram (Figure 3) that 
guides the engineer to a suggested set of claims through a series of questions. The suggested 
claims must be reviewed to determine which one corresponds best to the expected property. 

After selecting a claim template, we still have to instantiate it for the specific context under 
consideration. In the trivial case, the symbols must be substituted by specific propositions. 
This is very simple and we will not go into further detail. However, there is a much more 
interesting case: a symbol can be replaced by another claim template. For example, suppose 
that when an error condition emerges the pilot must be notified infinitely often (we are not 
modeling the warning disconnection mechanism). There is a claim for cause effect: AG 
(Predicate 1 -> AF (Predicate 2)) and another for infinitely often: AG( AF (Predicate 1 )). As 
the infinitely often notification is the effect and the error condition the cause, we have to 
replace Predicate 2 in the first template by the infinitely often template. As a result, we obtain 
the following instantiation   AG (error-condition -> AF ( AG( AF ( warning )))).  

We can apply compositions an arbitrary number of times (however, we do not recommend 
applying more than two or three compositions). In order to explicitly state this iterative 
composition and not lose track of the meaning of the claim, it is often useful to document the 
individual compositions as they are applied. In the previous example. 
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-- if an error condition emerges  
-- the pilot must be notified infinitely often 
-- apply cause effect template :  
--   AG (error-condition ->  
--   AF (pilot must be notified infinitely often)) 
-- apply infinitely often template:  
--   pilot must be notified infinitely often ==  
--   AG( AF ( warning )) 
AG (error-condition -> AF ( AG( AF ( warning )))) 
 

In some cases, we have considered that a template combination is sufficiently relevant and 
useful to become a listed template on its own. Remember that the only reason for listing or 
not listing a claim template is whether it is useful and corresponds to a common expected 
property.  

Figure 3: A Diagram for Template Selection  
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Another useful way to combine templates is through simple logical operators (&, |, ->). In 
general “&” is used to make a claim more stringent, “|” to make it weaker and “->” to 
indicate dependencies between claims. For example, suppose the condition “no weight on 
wheels” can only hold after the plane has taken off:  “flying” and “no weight on wheels” 
must hold  thereafter. (This simple model does not consider the plane landing.) In this 
situation, we can combine the P until Q template, the cause immediate effect template, and 
the permanent occurrence template into 

A ( weight-on-wheels U flying ) &  

 --until template 

 --weight is on the wheels until the plane is flying 

AG ( flying ->  !weight-on-wheels) &  

 --co-occurrence template 

 --when the plane is flying, weight is not on the wheels 

AG (!weight-on-wheels-> AG !weight-on-wings)  

 --permanent occurrence template 

 --there is no weight on the wheels thereafter 

Every MBV practitioner will eventually need to express an expected property not covered by 
this template list. In some cases, a similar template can be used as the foundation to develop 
that specific claim. In others cases, the claim would be completely unrelated to those in the 
template list. If the expected property formalized in the new claim is common in the domain 
under consideration, it may make sense to document that new common expected property as 
a template.   This would help to save future work and to ensure a consistent verification of 
that property in future projects. 
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The semantics of these templates presume finite state machines and infinite traces.  

(��� )��
����������
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States in the machine can be reached.  

CTL: EF ( machine_state = state1 ) & 

 EF ( machine_state = state2 ) & 

 ... --for each state 

This can be used to show that desired states are reachable and undesired ones are not. 

Examples and known uses:   

Use for non-trivial models.  

Related claims and templates: 

Initial state reachability, in contrast to global reachability, only claims that states are 
reachable from the initial state. 

(����� "����	�	����	���	�	�,�

Transitions in the machine can be fired.  

CTL: EF ( machine_state=state_x & EX (machine_state=state_y))  

  -- there is a transition between state_x and state_y 

  EF ( machine_state=state_x & EX (machine_state=state_z))  

  -- there is a transition between state_x and state_z 

 ... -- for each transition 

This can be used to show that desired transitions are possible and undesired ones are not.  

Examples and known uses:   

Use for non-trivial state models. 

(���#� -������+���%��	�	�,���

A state in which Predicate 1 is true can be reached from any state in the state space.  

CTL: AG( 

 EF (Predicate 1) 

) 
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Examples and known uses:   

This claim can be used to check that some particular states are reachable in any moment, 
independent of the condition of the system, e.g., even in error conditions.  For example: 

The system can always reinitialize 

AG( EF ( state = reinitializing) ) 

 

Related claims and templates: 

Global reachability is stronger than initial state reachability as the state must be reachable 
from any other state. 

(���&� ��
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Predicate 1 will repeat infinitely often. 

CTL: AG( AF (Predicate 1)) 

LTL: G( F (Predicate 1)) 

“Infinitely often” does not connote any particular frequency or regularity; rather, we claim 
that it will happen again and again. We don’t claim whether it happens twice a second or once 
a year or sporadically.  

Examples and known uses:   

There are some periodic actions that the system must perform infinitely often. For example: 
The system must check the nuclear core temperature infinitely often. 

AG( AF ( temperature_sensor = on)) 

 

(���(� ��'��	��.�

Predicate 1 is true at least until the first occurrence of Predicate 2 and Predicate 2 will 
eventually become true (strong until). 

CTL: A [ Predicate 1 U Predicate 2 ] 

LTL: Predicate 1 U Predicate 2 

Note that Predicate 1 does not need to change to false when Predicate 2 occurs.  It may 
continue to be true. 

Examples and known uses:   

Sometimes a condition must hold from the initialization of the system until something 
happens. For example: 

A [ 

 Ejection = disabled U 

 Plane has taken off 

] 
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Note that this is the strong until form that requires the plane to take off.  If there is a path 
where the plane cannot take off (e.g., a take-off abort) then this will evaluate to false. The 
weak until form (Uw) does not require that the plane take off but rather that ejection is 
disabled throughout or at least until the plane takes off.  

(���/� ��$���
��������

Predicate 1 and Predicate 2 always occur simultaneously. 

CTL: AG (Predicate 1 -> Predicate 2) & 

   AG (Predicate 2 -> Predicate 1) 

LTL: G (Predicate 1 -> Predicate 2) & 

   G (Predicate 2 -> Predicate 1) 

This does not ensure that Predicate 1 or Predicate 2 will ever happen. 

Examples and known uses:   

Sometimes a condition must hold when another condition is true. For example:  In a dual 
redundant server system, when the primary reads the data then the backup unit must also read 
the data and vice versa. 

AG ( 

 Primary unit mode = read ->  

 Backup unit mode = read  

) & 

AG ( 

 Backup unit mode = read ->  

 Primary unit mode = read  

) 

This claim can be extended to show that there is a path where the primary unit can be in read 
mode.  

EF (Primary unit mode = read) 

& 

AG (Primary unit mode = read -> Backup unit mode = read) & 

AG (Backup unit mode = read -> Primary unit mode = read) 

 

 

Related claims and templates: 

Co-occurrence is related to the deferred or immediate precondition template in that Predicate 
2 may occur before Predicate 1.   But regardless of past history, the co-occurrence template 
requires that Predicate 2 be a true coincident with Predicate 1.   
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There is an error-free execution of the system. This is one way of expressing safety 
conditions. 

CTL: EG ( ! state = error ) 

Examples and known uses:   

Most systems should be able to have an execution with no error. Even if the system is 
intended to run forever regardless of errors, there should be a path with no errors.  

(���1� ����������)��
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If Predicate 1 ever becomes true, then it is true always thereafter. 

CTL: AG (Predicate 1 -> AG Predicate 1) 

LTL: G (Predicate 1 -> G Predicate 1) 

This does not ensure that Predicate 1 will happen but if it does become true, it will be true 
always.  This is true throughout all system behaviors. 

Examples and known uses:   

Sometimes a condition, once it occurs, must always hold.  For example, in some rocket 
launch systems, once the safety release lock is disengaged it must remain disengaged. 

AG ( 

 Safety-lock = disengaged ->  

 AG (Safety-lock = disengaged) 

) 

Related claims and templates: 

• EG (Predicate 1) claims that it is possible for Predicate 1 to be permanent forever, 
beginning at the initial state.  If this claim is true, it is possible for Predicate 1 to occur 
elsewhere and not be permanent. 

• AFEG (Predicate 1) claims that it is inevitable that a state will be reached where it is 
possible for Predicate 1 to be permanent forever, from the initial state or some state in the 
future. It is possible for Predicate 1 to occur elsewhere and not be permanent. 

• EFEG (Predicate 1) claims that it is possible to reach a state where it is possible for 
Predicate 1 to be permanent forever.  It is possible for Predicate 1 to occur elsewhere and 
not be permanent. 

 

(���2� 3
�
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Predicate 1 and Predicate 2 do not happen simultaneously (safety condition).  

CTL: ! EF ( Predicate 1  & Predicate 2 ) 
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Examples and known uses:   

There are multiple situations that should not happen simultaneously in a system. For 
example, two processes cannot access the same resource if the resource has exclusive access 
properties. 

! EF (  

 Subsystem_1_mode = writing in memory  &  

 Subsystem_2_mode = writing in memory  ) 

(��� ��
���$��

�������
��

NOTE: We loosely use the term “cause.” The following temporal logic claims only imply a 
temporal relation and not a causal one. However, temporal relations are necessary conditions 
for causal relations, which imply that a counterexample in one of these claims also negates 
any possible cause-effect relation. The opposite is not true; a positive result does not 
necessary mean that the causal relation holds.    

(����� ��
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Predicate 1 has Predicate 2 as a future effect such that if Predicate 1 happens (becomes true in 
a state) then eventually Predicate 2 will happen.  This does not guarantee that Predicate 1 will 
happen. 

CTL: AG ( 

 Predicate 1 -> AF (Predicate 2)) 

LTL: G ( 

 Predicate 1 -> F (Predicate 2)) 

This does not mean that the effect will immediately follow the event. 

Examples and known uses:   

If the pilot presses the ejection button, the seat will be ejected. 

AG ( 

 Ejection_button = pressed  -> AF (Seat = ejected) 

) 

Note that the seat may be ejected any number of cycles after the ejection button being 
pressed. 

Related claims and templates: 

For an immediate effect (in the next state), AX can be used instead of AF.  

For a possible but not guaranteed effect, use EF instead of AF. 
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In this claim Predicate 1 must become permanently true in order to cause Predicate 2.  This 
claim does not guarantee that Predicate 1 will become true permanently. 

CTL: AG (  

 AG (Predicate 1) -> AF (Predicate 2)) 

LTL: G (  

 G (Predicate 1) -> F (Predicate 2)) 

 

Examples and known uses:   

In some asynchronous systems, an instantaneous event can go unnoticed, but a continuous 
condition should not. For example: 

System 1 checks system 2 twice a second. We cannot claim that an error in system 2 fires a 
reaction in system 1 (the error condition may last only a small fraction of a second). We can, 
however, claim that a permanent error in system 2 will fire a reaction in system 1.   

AG ( 

 AG (system2 = error)  ->  

 AF (system1 = reacting_to_error_in_system_2) 

)  

 

Related claims and templates: 

For an immediate effect (in the next state), AX can be used instead of AF.  

For a possible, but not guaranteed, effect use EF instead of AF. 

(���#� ��
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Predicate 1 has Predicate 2 and Predicate 3 as effects, such that Predicate 2 will follow 
Predicate 1 and Predicate 2 will hold until Predicate 3 comes true.  If Predicate 1 is ever true 
Predicate 2 and Predicate 3 must happen.  This claim does not guarantee that Predicate 1 will 
become true. 

CTL: AG ( 

 Predicate 1  -> A (Predicate 2 U Predicate 3)   

) 

LTL: G ( 

 Predicate 1  -> (Predicate 2 U Predicate 3)   

) 

 

Examples and known uses:   

Use to test that the system does some task fired by an event or condition, and keeps doing the 
task until the task is concluded.  It does not guarantee that the request for service occurs. 
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AG ( 

 request for service -> A[request queued U request complete]   

) 

(���&� ��
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Predicate 1 eventually causes the sequence Predicate 2 followed immediately by Predicate 3.  

CTL: AG( 

 Predicate 1 ->  AF ( Predicate 2 & AX (Predicate 3) ) 

) 

LTL: G( 

 Predicate 1 ->  F ( Predicate 2 & X (Predicate 3) ) 

) 

Note that Predicate 2 and/or Predicate 3 could have occurred independently, earlier than 
when the expression (Predicate 2 & AX ( Predicate 3 )) became true. 

Examples and known uses:   

In some situations, a happening must fire not one but two sequential consecutive effects in 
the system.  

AG( 

 Change of state requested -> AF ( previous state exited & 

AX (new state entered) ) 

) 

Beware of using the expression next (X). It is very difficult to build models that ensure 
immediate precedence; most of the time, the uncoupled “sequence effects” claim is safer to 
use. 

Related claims and templates: 

If the effects are simultaneous, the expression CTL: AG(p1 -> AF(p2 & p3) ) can be 
used. 

If the effects are not consecutive, the expression CTL: AG(p1->AF( p2 & AX(p3))) 
can be used. 
 

(���(� �����	�����������	�	����

Predicate 2 must be true immediately before Predicate 1 becomes true. 

CTL: AG ( 

 EX (Predicate 1)  -> Predicate 2) 

LTL: G ( 

 X (Predicate 1)  -> Predicate 2) 
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Sometimes a function has a precondition that must be valid immediately before something 
else happens in the system.   

Examples and known uses:   

Use it when there is a precondition with temporal precedence. For example: 

The lock must be open before the rocket is launched.  

AG ( 

 EX (rocket = launch) -> 

 lock = open 

) 

Note that this does not guarantee that the lock is open during the rocket launch; it only 
guarantees that it will be open before. 

(���/� �%�	������
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The sequence Predicate 1 | Predicate 2 causes Predicate 3 as a future effect. 

LTL: G( 

 (Predicate 1 & X (Predicate 2)) -> F (Predicate 3) 

) 

This claim cannot be built using CTL.  

Examples and known uses:   

In some situations, two events have no separate effect but they fire some reaction when the 
happen in immediate precedence. This claim is also useful to eliminate spurious, i.e. 
conditions that only hold for only one state. For example 

G( 

 (alarm = fired & X (alarm = fired)) ->  

 F (evacuation = activated)) 

(�#� !��$���������4��5�����	6�����7��
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There is a state in which Predicate 1 becomes permanently true with no option to change. 

CTL: EF( AG ( Predicate 1) ) 

 

Examples and known uses:   

We typically use negative forms of this claim to detect deadlocks in which the state machine 
is locked in one state. For example 
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The system should be able to recover from all non-critical errors. 

!EF( AG ( state = non_critical_error)) 

In this case, the system is locked in a state ( non_critical_error ) in which it shouldn’t be 
locked. 

(�#��� ��6���	���	���*���6��	���

There is a state in which and from which Predicate 1 may hold true forever. 

CTL: EF( EG (Predicate 1)) 

There is a slight but important difference between this expression and the expression EF (AG 
(Predicate1)).  In the case of EF (EG (Predicate1)), it is simply possible for Predicate 1 to be 
permanently true. It need not be. 

Examples and known uses:   

The negative form of this claim can be used to detect starvation situations (e.g., possible self 
loops in a state machine model). Consider the following expected property statement:   

!EF( EG ( sensor_of_interest = radar)) 

NOTE: This claim will often be false even when there are no defects in the system. We are 
claiming that there is not a single trace that keeps the radar as sensor of interest forever. Most 
of the time there will be such a trace; for example, because the other sensors are unavailable 
or because you have abstracted the replacement algorithm making it non-deterministic. Use 
this claim cautiously. 
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Claim building is one of the most difficult activities of model-based verification. We have 
presented a technique that can simplify this activity and make it available to the novice 
practitioner. The technique uses templates to cover most common expected properties found 
in requirements specifications. These templates can be instantiated with little effort into 
specific ready-to-use claims.  

The main limitation of this template-based technique is that it only covers a set of common 
expected properties. Specific properties may not be directly instantiable from the templates 
listed in this report. Using the templates over time, however, can provide the practitioner with 
the expertise to customize the templates and even to create completely new claims.   

The template list is intended to be a dynamic artifact. We plan to expand it to cover new 
claims that are found to be useful in day-to-day MBV practice. 
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