
ABSTRACT
While it is widely agreed that architectural simplicity is a
key factor to the success of large software systems, it is not
obvious how to measure architectural complexity. Our
approach to measuring complexity is based on observation
that large systems with a regular substructure are simple to
create and maintain, whereas even relatively small systems
created in an ad hoc fashion quickly become unmaintain-
able. This paper describes a system, called IAPR, that aids in
architectural exploration and measurement by attempting to
match patterns to an architecture. To do this, IAPR imple-
ments a heuristic form of sub-graph isomorphism—an NP-
hard problem—using the Constraint Satisfaction paradigm to
limit the complexity of the problem space.

Keywords
Knowledge-based Software Engineering, Software Architec-
ture, Patterns

INTRODUCTION
It has been well established that large software systems with
a coherent, documented, and regular structure are easier to
create, maintain, communicate, and modify. Recent work in
structural modeling [1.], language design [10.], user inter-
face programming [3.], and design patterns ([2.], [4.]) as
well as more general work in design complexity [12.] shows
that being able to analyze and build a system with a regular
set of architectural building blocks provides substantial ben-
efits. These benefits have been shown to aid human compre-
hension of complex systems, and hence aid both
development and maintenance.

However, even though building systems by using patterns as
building blocks seems like an intuitively obvious idea, most
developers do not have the luxury of being able to redesign
existing systems so that they take advantage of this insight.

As a consequence, it is important to be able to identify exist-
ing patterns within a code base (as Shaw and Garlan do, for
example, in [11.]), so that these may be documented and, just
as important, not inadvertently changed. It is also useful to
identify areas in an architecture that are similar to known
patterns, as these structures will be obvious targets for re-
engineering efforts.

This paper introduces the IAPR (Interactive Architecture
Pattern Recognition) system. IAPR is a system for locating
user-specified at varying levels of abstraction patterns within
a software architecture. IAPR can be used in two related
ways: as a diagnostic tool or as an exploring tool. As an
exploring tool, IAPR will match user-specified patterns to an

architecture, and can locate areas of the architecture that are
“near” matches. As a diagnostic tool, IAPR provides a sig-
nificant new architectural complexity metric for designing
systems. A system can be measured according to its pattern
coverage: the proportion of an architecture that can be cov-
ered by patterns and the number of patterns it takes to cover
an architecture. These are complementary measures of the
system’s regularity, and hence its architectural complexity.

Currently there are few architectural metrics. The ones that
do exist measure some form of coupling and cohesion ([6.],
[8.]), or fan-in and fan-out [5.]. These measures do not reli-
ably correlate with architectural complexity for two reasons.
First, counter-examples abound: for instance typical utility
routines and controllers have high fan-in and fan-out respec-
tively, but may be otherwise unproblematic. Second, and
more important, is that measures such as coupling/cohesion
and fan-in/fan-out are not truly architectural metrics. These
measure the complexity of individual parts of an architec-
ture, but give no indication of the architecture’s overall com-
plexity. IAPR, on the other hand, measures architectural
regularity, which, we will argue, directly corresponds to
architectural complexity.

As a side note, it is important to make clear that when we
speak of patterns we are not restricting ourselves to object-
oriented design patterns. The patterns that we use can be in
any architectural view and may be any connected set of com-
ponents and connectors: processes, objects, filters, data-
bases, procedure calls, sockets, RPC, and so forth. In addi-
tion, IAPR patterns can be arbitrarily hierarchically nested,
so that, for example, the database of a system might be repre-
sented—and matched—as a single architectural element (if it
was not important for the specific analysis) whereas other
sub-systems might be described down to the level of pro-
cesses or even procedures.

OVERVIEW OF THE IAPR SYSTEM
IAPR analyzes a software architecture with respect to a set
of patterns. Both patterns and architectures are represented
in IAPR as annotated graphs. Thus the pattern matching
problem is a sub-graph isomorphism problem, which is
known to be NP-hard. To address the complexity of this
problem, heuristic methods are vital. We have thus cast
IAPR as a Constraint Satisfaction problem, following Woods
and Yang [12.]. In fact, the entire problem of matching archi-
tectural patterns to an architecture is nothing more than a
reverse engineering—or program understanding—problem
at a higher level of abstraction.

Woods and Yang’s PU-CSP (Program Understanding Con-

Assessing Architectural Complexity

Rick Kazman
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA 15213-3890

+1 412 268-1588
kazman@sei.cmu.edu

Marcus Burth
Department of Mathematics

and Computer Science
University of Mannheim

Mannheim, Germany
burth@pips01.informatik.uni-mannheim.de

To appear in Proceedings of 2nd Euromicro Working Conference on Software Maintenance And
Reengineering (CSMR 98), IEEE Computer Society Press, 1998.

straint Satisfaction Problem) algorithm is based on model-
ing program plans as templates and then matching these
templates to some repository of legacy source code.
Although this problem is NP-hard, PU-CSP has been shown
to be computationally tractable in large programs. This trac-
tability is achieved through dramatic reductions in the size
of the search space. These reductions are achieved by the
enforcement of structural and knowledge constraints. Struc-
tural constraints are things like scope, control, precedence,
and data-sharing relations found within the legacy code
base. Knowledge constraints come from the program plan
library itself, and refer to relationships among plans.

Similarly, IAPR, as will be shown, has successfully ana-
lyzed architectures of up to 1,000 elements (components
and connectors).1 It does this by restricting the size of the
search space through attribute and inter-element constraints,
as will be discussed in the next section.

The IAPR system offers a user-friendly method of matching
a set of architectural patterns against a software architec-
ture. Patterns and architectures both are created and repre-
sented through interaction with a GUI (graphical user
interface). Through the GUI users “draw” the architecture,
and specify the features of architectural elements. The GUI
also supports the grouping of elements into sub-systems.
These sub-systems can be shown fully expanded, or can be
collapsed into a single node in the graphical representation,
for ease of analysis and overall system comprehension.

The IAPR system was developed for two classes of use:

• As a Diagnostic Tool: Using the tool for analyzing an
existing software architecture presupposes that it has
been built with structural patterns in mind. This is often
true for large scale projects, where a well structured
design is necessary for successful development. The tool
matches the set of specified patterns against the architec-
ture and generates a measure of the architecture's com-
plexity. The complexity of an architecture is specified in
terms of the proportion of the architecture covered by
some patterns (i.e. the regularity of architectural sub-
structure) and the number of patterns used in the archi-
tecture (i.e. the pattern complexity of the architecture).

• As an Exploring Tool: Frequently, a programmer is
asked to modify an architecture that they did not design
and which they are unfamiliar with. Such an architecture
must first be understood before it can be modified. To
support this process, IAPR aids in user-driven explora-
tion of an architecture. The user can search for patterns
with a particular topology and with particular element
properties: connection properties such as fan-in and fan-
out, element names (as regular expressions), and other
element features such as whether they store data, trans-
form data, block, etc. IAPR helps the user to interac-
tively explore architectural patterns. In particular, this is
useful for detecting design problems such as “layer
bridging”, as will be shown.

Each of these uses of IAPR will be discussed in more detail

1.We have chosen the term “element” consciously, to be agnostic with
respect to whether we are dealing with a component or connector.

and demonstrated in the section on Case Studies.

System Description
The IAPR System has four functions, as shown in Figure 1:
software architecture modeling, pattern modeling, pattern
matching, and visualization of the results.

Architecture Modeler
This function, called SAAMtool [9.], enables the user to
model the software architecture in an intuitive graphical
representation—a components and connectors representa-
tion. The components and connectors may be atomic primi-
tives—the primitives that designers commonly work with,
such as object, procedure, shared memory, pipe, RPC, pro-
cedure call, etc.—or they may be composite: some collec-
tion of any of the primitive types grouped into a subsystem.
For example, in Figure 2, all list and hash table manipula-
tion routines are grouped together into a single composite
node called “Utility Functions”. This composite node
appears in blue at the bottom of Figure 2.

Representing a software architecture requires focusing on
multiple aspects of the system. Designers regularly use mul-
tiple views of a system—such as a source view, an object
(or procedural) view, a dynamic view, and a functional
view—to describe a system’s architecture [11.]. Since a
complete software system incorporates all of these aspects,
our underlying representation of a software architecture
combines the information requirements of these various

Architecture

Visualization
Pattern

Modeling

Pattern
Modeling

Matching

 Figure 1: IAPR Functional Architecture

 Figure 2: A Portion of a Sample Modeled Architecture

views.

We model an architecture as a hierarchically nested graph of
architectural elements which are described by a number of
attributes and inter-element relationships [7.]. Each element
is comprised of static and temporal features, which describe
the element’s capabilities and properties from a time-invari-
ant static perspective, and from an execution-time behavioral
perspective. These features can be recursively computed
(that is, the features of a sub-system can be computed by
looking at the collection of features of its constituent ele-
ments). For example, a sub-system that consists of a filter—
which transforms data—and some shared memory—which
stores data—would be represented as an element that both
stores and transforms data. Thus we can formally character-
ize any architectural element, whether it is atomic or com-
posite, using a single representation scheme. This is crucial
to our ability to be able to match patterns at any level of res-
olution.

As static features we consider attributes such as data scope
(the largest scope across which data can be passed by the ele-
ment), control scope (the largest scope across which control
can be passed by the element), ports (places where this ele-
ment can bind with some other element), element binding
times, times of both data and control acceptance and relin-
quishment, and whether the element transforms data.

For temporal features we consider properties such as the
times at which data and control may be accepted, whether
the element “forks” (causes a new thread of control to be cre-
ated), whether it retains state, whether it blocks, and whether
it relinquishes control. These features are sufficient to
describe a space of architectural elements from the simplest
(procedures, files, shared memory, etc.) to the most complex
(processes, semaphores, threads, RPC, etc.).

The features may be attributive (those that have a set of enu-
merable values) or relational (those that only have a mean-
ing with respect to some other architectural element). For
example, the data scope feature is attributive. It can take on
the values: V (data can come from and go to only other ele-
ments in the same virtual address space), P (data can come
from and go to other elements in the same physical computer
space, but different virtual spaces), D (data can come from
and go to different physical machines, across a network), or
n/a (this element never receives or transmits data).

As we have already mentioned, users typically (and infor-
mally) categorize architectural elements as either compo-
nents and connectors. However, there is no principled
distinction between these two categories: connectors involve
computation (sometimes a considerable amount), and com-
ponents move information from one place to another. Both
need to have their ports bound to other elements to do mean-
ingful work. Therefore, we do not distinguish between com-
ponents and connectors in our model, since their meaning is
derived only intuitively by the user depending on the specific
context of the system under investigation. What is a connec-
tor to one developer or architect (say, the user of RPC) is a
component to another (say, the developer of an RPC ser-
vice). We model every element solely as a set of static and

temporal features, and those features are as relevant to so-
called components as they are to so-called connectors.

However, when modeling the architecture we want a user to
be able to transfer the intuitive notions of components and
connections into a graphic representation. This means that
putative component-like elements are represented as “boxes”
in our graphical user interface, and elements which are
understood to be connectors are shown as lines between the
boxes. Internally, however, there exists no criterion which
qualifies one as a component or a connection and so they are
processed indistinguishably. This uniform representation for
architectural elements means that we can compare any archi-
tectural element with any other in IAPR. Without this repre-
sentation, it is unclear what it would mean to compute “near”
architectural matches. For example, an object (and all its
methods) specified by a user in a pattern should be consid-
ered “near” to abstract data type (and all its procedures) in an
architecture. A CORBA-enabled object, servicing requests
on various machines across a network should be considered
a “near” match to a client-server pattern. And so forth. With-
out our abstract formal, feature-based representation of
architectural elements, the computation of such near matches
would not be possible in any rigorous way.

Relationships among elements, in this view, are expressed
solely through the relational features of the participating ele-
ments. For example, consider a trivial example with two pro-
cesses, A and B, where A sends data to B through a socket.
A user would typically express this system, through the GUI,
as two boxes representing Process A and Process B con-
nected by a line, representing the socket connection. Inter-
nally, however, we would represent the graph of this
architecture as three connected data structures:

where the boxes are data structures for independent architec-
tural elements and the lines are relational features linking the
elements’ representations. The philosophy behind this repre-
sentation is to simultaneously support the user’s intuitive
understanding of the software architecture while providing
an internal format that we can analyze and reason about.

Pattern Modeler
The Pattern Modeler allows a user to create, save, view, and
modify architectural patterns through a GUI that is almost
identical to that of the architectural modeler (these two func-
tions are simply different operating modes of SAAMtool).
An architectural pattern describes a constellation of ele-
ments. This constellation is intended to represent a typical
and/or critical substructure of the software architecture under
investigation. Our goal, as described in more detail below, is
to match user specified patterns against an architecture, to
filter meaningful information out of the architecture.

Patterns use the same formal representation techniques dis-
cussed for the Architecture Modeler. We use all the static and
temporal features with their attributive or relational charac-
teristics to describe pattern elements. However, in addition to
the architecture modeling functionality, SAAMtool provides

Process A Process BSocket

a comprehensive set of pattern-specific specification mecha-
nisms, to create sophisticated patterns that allow us to inves-
tigate a software architecture effectively and efficiently.

The pattern-specific facilities are as follows:

• Specifying Ranges: to leave some features undecided or
to prescribe them to be within a certain range rather than
giving them a precise value. For instance, the permitted
number of input ports of an element could be restricted to
be greater than zero and less than ten.

• Element names specified as regular expressions: for
example, in one of our case studies, we take advantage of
the fact that all Xlib functions begin with the letter “X”,
while all X toolkit functions begin with “Xt”.

• Cardinality of relationships between elements: the user
can model compositions of one-to-one, one-to-many, or
many-to-many relationships. For example,
matches the pattern where one element is related to M
(one or more) elements, where the M elements are of the
same type (a server-client relationship, for example).

• Excluding Features: just as a user can specify the pres-
ence of element features or inter-relationships, it is also
possible to explicitly exclude the existence of some fea-
tures or feature values.

• Hard/Soft Features: Often pattern elements must satisfy a
minimum set of properties to meet the basic characteriza-
tion of the pattern. This set we call the hard features of
the pattern, since without their satisfaction there is no
match. On the other hand there exist features that typi-
cally belong to the pattern, but are not absolutely neces-
sary to characterize its fundamental structure and
behavior. These pattern features—attributive as well as
relational ones— can be “softened” by explicitly specify-
ing them as soft features. The use of soft features enables
us to detect “near” pattern matches.

For example, it is a common practise in legacy software,
when modifying a sub-system to take a complete copy of the
sub-system and modify it, because the maintainer is afraid of
the unknown consequences of changing the existing sub-sys-
tem. This results, over time, in software “bloat”, where the
system grows increasingly larger, but where a substantial
part of this bulk is near-identical copies of the same soft-
ware. Such a system is an ideal candidate for re-engineering.
But first the nearly identical sub-systems must be identified.
This is a clear case where near pattern matching is crucial.

Thus near matches could be the starting point for the analyst
who wants to propose modifications on the architecture to
gain better uniformity (and hence easier maintenance). By
re-engineering the architecture, its complexity can be
reduced—a higher proportion of the architecture’s elements
will be matched by a single pattern. The modified architec-
ture possesses more regular substructure according to the
matched pattern and promises to be more manageable,
understandable, and maintainable [1.].

Pattern Matching
The Pattern Matcher function performs the core computation
in the IAPR system. It performs pattern matching based on
the Constraint Satisfaction Paradigm (CSP). This section

will show first how the CSP is applied to the IAPR domain
and second why the CSP is appropriate.

The input for the Pattern Matcher is the representation of the
architecture created by SAAMtool’s Architecture Modeler
and a set of patterns created by the Pattern Modeler function.
The Pattern Matcher outputs the complete set of full and near
pattern matches in the architecture, and provides these to the
Visualization component for user interaction.

Constraint Satisfaction problems consist of three compo-
nents: a set of variables, a set of values, and a set of con-
straints. The goal is to find all legal assignments of the
values to the variables such that all constraints are satisfied.
For our domain, the pattern elements represent the variables
and the architecture elements denote the values. The con-
straints are stated in the pattern and are directly derived from
the specification of features in the Pattern Modeler. We are
interested in finding all possible instances of a pattern in the
architecture. A pattern is detected when all pattern element
variables can be assigned architecture element values, such
that all feature constraints can be satisfied.

We categorize constraints as hard and soft, which correspond
to the meanings of hard and soft features in the pattern spec-
ification. As before we group these subdivisions into attribu-
tive and relational constraints. So, we must process four
types of constraints: hard attributive constraints and hard
relational constraints, which represent the “must-have” fea-
tures, and the soft attributive and relational constraints,
which denote relaxed matching requirements.

The algorithm we are employing, based on [12.], applies a
backtracking search strategy coupled with mechanisms that
attempt to propagate consistency throughout the problem
space before and during search. For instance, we make use of
arc-consistency and other “look-ahead” strategies to limit the
search space before and during search as far as possible. In
addition we employ domain-dependent heuristics such as
reordering of variables through which we attempt to rule out
dead search paths at the earliest possible time. IAPR’s exe-
cution phases are described next.

In the pre-search phase the variable domains are determined
by checking the consistency of variables (pattern elements)
and values (architectural elements) based on the hard attribu-
tive constraints. These constraints can be checked without
knowing future inter-element relationships. Only consistent
values according to the hard attributive features are consid-
ered for matching to the variables. These sets of legal values
for each variable we call the variable domains. The variable
domains determine the upper bound of the search space, so
that reducing the domains at this stage has enormous effects
on the overall problem complexity.

The second phase is the backtracking search process travers-
ing the problem space by extending the variable set under
consideration step by step. For each variable assignment the
hard relational constraints are tested. As soon as all applica-
ble hard relational constraints are satisfied, the next variable
and its domain are taken in account. A solution to the prob-
lem—a pattern match—is found, if all variables are instanti-
ated such that no hard constraints are violated. The earlier a

1 M→

violation is found the earlier a dead path is pruned which
greatly saves computational resources.

Because hard constraints can cause a dramatic reduction in
the size of the search space, we want to check those con-
straints first. Consequently, the ordering of variables and
constraints is crucial to limit the search space. Our strategy is
to put interrelated pattern elements (variables) close together
in the variable set. So, we attempt to ensure that when instan-
tiating the re-ordered variable set hard relational constraints
are tested first. This re-ordering alone caused a reduction of
the search time by a factor of 500 in our experiments. By the
end of the second phase, all matches that satisfy the hard
constraints are determined.

During the third phase, all the pattern matches are inspected
for violated soft constraints and are ranked according to the
number of violated constraints. Full matches satisfy all the
soft constraints, whereas “near” matches contain some fea-
tures that could not agree with the corresponding architec-
ture element specification. The Visualizer will present these
“near” matches to the user, prioritizing those patterns with
the fewest violated soft constraints first.

Visualization of Results
The main purpose of this module is visualizing the results
(the computed pattern matches) interactively to the user and
providing metrics of an architecture’s pattern coverage as
indicators of its complexity.

The pattern matches can be presented to the user all at once
or, more typically, one by one, so that the user is able to
examine each pattern's validity in the specific architectural
context. The order of presentation to the user is determined
by the quality of a match, which means full matches (all hard
and soft constraints satisfied) are shown first, followed by
near matches, which contain one ore more violated soft con-
straints. The matches are shown graphically overlaid on the
original architecture. The user is led through these matches
by the system. This interaction is performed to arrive at a
complexity measure that only refers to true, semantically and
syntactically valid matches. As a result, the user receives two
complementary indicators of an architecture’s complexity:

First, the percentage of architecture elements that could be
covered by the pattern set. This number indicates the degree
of regular structure is the architecture. If the percentage of
matches is low, the user might reconsider the overall design
of the architecture, might make increasing the structural reg-
ularity a goal of a re-engineering process, or at least keep in
mind that potential problems regarding modifiability and
maintainability that might arise in future work with the soft-
ware under investigation. This indicator can be split up into
per pattern contributions, to get a measure of the effective-
ness of individual patterns. All other things being equal (and
they seldom are), we would favor a pattern which covers a
large part of the architecture over patterns which are only
able to cover a tiny part of the architecture.

The second indicator is the number of distinct patterns
needed to cover the architecture. An architecture matched by
only one pattern completely is less complex than an architec-
ture that contains a multitude of different patterns (in the

pathological case, there might be as many patterns as ele-
ments). In such a situation the designer or maintainer would
have to reason about a large variety of heterogeneous sub-
structures during the developing and maintenance phase. In
the case where the architecture is matched by a few patterns,
we could focus our attention on a small number of structural
primitives. For example, the PAC paradigm for user inter-
face construction advocates creating entire interactive sys-
tems from a single structural pattern [3.]. The structural
modeling paradigm for flight simulators uses only seven dif-
ferent patterns.

CASE STUDIES
We will now look at two case studies that illustrate the func-
tionality, performance, and limits of IAPR.

tree_builder
This case study analyzes an interactive program for creating,
annotating, and laying out two-dimensional hierarchies,
called tree_builder. This system makes extensive use of Xlib
and the X toolkit for its user interface. The tree_builder case
study illustrates how the IAPR tool can aid in analyzing and
understanding a system that was built in an ad hoc fashion,
with no attention given to the overall system architecture.
The tool guides the analyst through the architecture by locat-
ing and displaying user-specified patterns.

The representation of the tree_builder shows 42 component-
like elements and 61 connection-like elements. There are
only two architectural primitives used: procedures (repre-
sented as boxes in Figure 2) and procedure calls—both stan-
dard calls and callbacks—represented as connectors.

The patterns
In this case study we concentrate on patterns that might illu-
minate critical design aspects (and potential design flaws) in
the tree_builder system. In the following we introduce five
example patterns for this purpose.

1. Mutual Recursion
This pattern addresses the case when two procedures call
each other. This form of recursion typically involves com-
plex dependencies making subsequent modifications diffi-
cult. Thus, an analyst might want to put extra effort into
documenting and testing this part of the architecture. Other-
wise, downstream maintenance may require more resources
than expected. This pattern is represented as follows:

It took the Pattern Matcher 12 seconds of CPU time on a
Sparc-20 to search the entire tree_builder architecture for
this pattern; only one occurrence was found.

2. Layer Bridging
The tree_builder system utilizes a variety of the X toolkit
functions for creating interaction widgets. The Xt intrinsics
is, in turn, built on top of Xlib (the X library), which pro-
vides a portable abstraction of a workstation’s graphical
capabilities. It is not only interesting for an analyst to know
where these Xlib and Xt calls are located in the architecture
(because these functions would need to be ported if the

Procedure A Procedure B

application was moved to, say, a Windows-based platform).
Even more important, however, is to know where Xt and
Xlib functions called by the same component. Since the X
toolkit is layered on top of Xlib, this situation is a form of
layer bridging. Layer bridging presents a substantial impedi-
ment to the future modifiability and portability of a system.
The graphical representation of the Layer Bridging pattern
used in this case study is as follows:

where name is specified as a regular expression. The remain-
ing features of the elements are set to the architectural primi-
tives of procedure and procedure call. Running IAPR on this
pattern resulted in 37 matches in the tree_builder architec-
ture in 7 seconds of CPU time.

3. Crosstalk
The Crosstalk pattern, shown below, involves a controller
and its subordinates, where the subordinates communicate
with each other (and not solely with the controller). This
construction violates the hierarchical composition of the sys-
tem, and results in added complexity.

The Crosstalk pattern was matched 3 times, taking 350 CPU
seconds. The CPU time was higher for this pattern because it
contained no attribute constraints and so the Pattern Matcher
could only use structural constraints in matching this pattern
to the architecture. As a consequence of the absence of
attribute constraints the search space was at its upper bound:
O(Dp

3 * Dc
3), where Dp is the number of components (in

this case 42 procedures) and Dc is the number of connections
(in this case 61 procedure calls). This results in an upper
bound of approximately 17 billion possibilities to check for
in the relatively modest tree_builder architecture.

The next two patterns are less domain dependent and so
could be applied to almost any architecture.

4. Controller
The Controller pattern describes modules that have many
outgoing connections to other elements of the same type. A
controller thus has high fan-out. This pattern highlights areas
of potential performance bottlenecks in the system. The
Controller pattern is specified as follows:

The results of matching the controller pattern to tree_builder

are: 15 matches with fan-outs up to 19 connections. These
matches can be investigated separately, so that the analyst
gets a better understanding of the main control modules of
the system. For example, the routine “main” has the highest
fan-out with 19 connections as it would be expected for a
main control module. Beside “main” there are two other
modules with fan-outs of 8. The analyst should be aware of
those subsystems and might scrutinize them more closely.

5. Utility
As counterpart to Controller, Utility is a pattern where one
component is controlled by many others (and so this compo-
nent has high fan-in) as follows:

A high fan-in of an architectural element can be desirable
since it identifies reusable components (utilities) or at least
opportunities for reuse. Utilities are typically highly cohe-
sive and are minimally coupled with the rest of the architec-
ture. The Pattern Matcher identified elements in tree_builder
with a fan-in of up to 5 in-coming connections. These ele-
ments should be closely scrutinized since, being highly used,
they should be efficient and robust.

To conclude this case study, we note that we have illustrated
some useful patterns as starting points for understanding the
tree_builder system. Some of these patterns were domain
dependent, such as the “layer bridging” pattern, and others
seem to be applicable to a broad range of architectures (e.g.
Controller pattern). Filing and cataloguing the latter group of
patterns is a further step towards an efficient approach to
unfamiliar architectures. The Pattern Modeler provides a
tool for creating and managing a library of patterns.

This case study described patterns used to explore the archi-
tecture, looking for areas of high risk, high potential com-
plexity, or opportunities for reuse. The next case study
concentrates on the scalability of the IAPR approach.

Synthetic System
As already mentioned, the subgraph isomorphism problem is
NP-hard and requires heuristic approaches to limit the size of
the problem space for it to be tractable. Our goal is to have
the IAPR system provide reasonable results within accept-
able time bounds for problems of industrial size. The limit-
ing factor of the IAPR system in this respect is the algorithm
implemented in the Pattern Matcher.

This case study presents empirical evidence of IAPR’s effi-
ciency on architectures of varying sizes, and patterns of
varying complexity. For this purpose, we generated large
scale synthetic architectures of sizes 100, 200, 500 and 1000
elements, where “components” and “connectors” are distrib-
uted with a ratio of 2:3. Each element feature takes one of
three possible values which are uniformly distributed
through the architecture. This means that when specifying a
hard feature of a pattern element, we reduce its variable

name=’Xt.+’ name=’X[^t].+’

Sub 1

Controller

Sub 2

Elem 1

Controller

. . . .Elem 2 Elem N

Elem 1

Utility

. . . .Elem 2 Elem N

domain to 1/3 of its original size. When specifying a second
feature for the same element we reduce the domain to 1/9 of
the original domain size, and so forth.

We designed three patterns with 3, 6 and 11 elements. The
first one represents a directed connection between two ele-
ments (such as two procedures connected by a procedure call
or two filters connected by a pipe); the second one contains a
cycle of connections within three components (i.e. three
components that are in a mutual recursion relationship); and
the third one specifies a version of the Controller pattern, as
described above, where one component controls 5 other
components that do not have to be identically specified.

Table 1 shows the response time results, in CPU seconds.
Execution was halted at 7200 seconds (2 hours), indicated by
“>”. For each pattern, the size and number of specified fea-
tures is shown. These results show that the response times
for all patterns are in an acceptable range for the architecture
with 100 elements, when specifying no features. This is
already a relatively large high-level architecture, as indus-
trial experience has shown.

However, this case is improbable: the user will always have
some knowledge about the elements and will be able to
determine a few features. The effects of specifying even a
small number of features are dramatic: we get reasonable
response times for architectures up to 500 elements for all
patterns, and acceptable response times for the 1000 element
architecture for the patterns containing up to 6 elements and
some features specified. Note also that this system was writ-
ten in Lisp. A reimplementation in C or C++ would give us
at least an order of magnitude performance improveent.

Synthetic Pattern-based System
Our final case study illustrates how IAPR can be used to
assess the overall architectural complexity of a system,
based upon pattern coverage. . For this purpose we generated
a synthetic system composed of 130 elements and built with
2 structural patterns in mind. The first pattern consists of a

controller element that controls a group of objects that all
access shared memory. This pattern further has the restric-
tion that the objects must not be connected to any elements
other than the controlling module and the shared memory.
For example, they may not call each other directly.

This pattern exhibits the use of IAPR features such as 1-M
relationships, and the explicit exclusion of additional con-
nections by restricting the objects to have only two incoming
connections and one outgoing. The fan-in/fan-out restriction
is specified as a soft feature since its satisfaction is desirable
rather than a strict necessity. The elements used for creating
this pattern are Objects, Shared memory, Procedure Calls,
shared memory accesses (both reading and writing), and a
controller.

The second pattern is a simple filter-pipe-filter connection as
shown below. Each of the filters runs as a distinct process
and the pipe, provides a pure data (i.e. no control) connec-
tion between them.

Our synthetic system is built both from these two patterns,
and from some additional, non-pattern related elements as
“glue”. Applying the IAPR system to this problem domain
yields following results:

In Table 2, each pattern is listed separately and shows the
individual contributions to the total number of matches and
coverage of architecture elements. The user interface show-
ing some of the matched elements in given in Figure 3. The
quality of each match is ranked in terms of the number of
violated soft constraints. Table 2 shows that 70% of the
architecture can be covered by using only two patterns.
However, more interesting in this case is the distribution of
the coverage proportion to the two patterns. Pattern 2 (shown
in pink in Figure 3) in fact covers only 2% of the architecture
through a single match, whereas pattern 1 matches 54% of
the architecture in six full matches (shown in yellow) and
13% in two near matches (shown in orange) and so covers a
total of 68% of the architecture’s elements. Thus, an analyst

Pattern Architecture Size

Type # features 100 200 500 1000

Si
m

pl
e

C
on

ne
ct

io
n 0 4 92 > >

3 1 4 279 6977

6 1 1 2 19

C
yc

le

0 45 1400 > >

3 1 21 1648 >

6 1 2 97 2503

12 1 1 3 20

C
on

tr
ol

le
r 0 178 > > >

6 1 10 1096 >

11 1 8 451 >

Table 1: Pattern Matching Response Times

Pattern Violations Matches Coverage

1
0 6 54%

2 2 13%

2 0 1 2%

Total 9 70%

Table 2: Pattern Matches on the Synthetic Architecture

Controller Obj 2

Obj 1

Obj N

.

..
Shared

Memory

Filter 1 Filter 2

would be well advised to concentrate on the first pattern and
might question the second one as being “representative” of
the architecture.

The near matches of pattern 1 did not match exactly because
they contain connections that were not specified in the pat-
tern. For example, there are connections between objects
Ox_7_1, Ox_7_2, and Ox_7_3. The pattern specifies that
objects should only be connected with the controller and the
shared memory, and not with each other. Upon seeing near
matches, the user has three possibilities: change the architec-
ture to conform with the patterns; create a new sub-pattern
that covers this case; or accept the violation as is. In each
case, the user’s understanding of the regularity and complex-
ity of the architecture is made explicit.

If the user chooses to re-engineer the architecture to conform
to the patterns, fewer distinct primitive structures are
required. This increases the regularity of the architecture,
promotes the reusability of these structures (i.e. developers
will be more willing to make generic versions of these struc-
tures that are robust, efficient, and flexible), and causes a
reduction in the idiosyncratic code and structural complexity
of the system, thus reducing the complexity of the system.

CONCLUSIONS
In this paper we have introduced a system for discovering
patterns within software architectures. We have shown that
this task, although NP-hard, can be made tractable for prob-
lems of real-world size by employing the Constraint Satis-
faction Paradigm. However, one might ask why we are doing
this at all. After all, humans are, by nature, excellent pattern
recognizers and matchers. So, why are we trying to automate
pattern matching in architectures? There are several reasons:

• architectural matching employs abstract features: far too
many of them to visualize simultaneously. However, an
automated algorithm can check any number of features.
In fact, the large number of features is to the algorithm’s
advantage, as these constrain the search space;

• the visualization space is large: even moderately com-
plex architectures, such as that shown in Figure 1, are
large enough, and have such complex (often non-local)
interconnections, that all parts of a pattern will not
always be in the user’s current view;

• an architecture may be visualized at differing resolu-
tions: for example, one sub-system may be displayed as a
single node whereas another one might be completely
expanded. So, once again, the user may not be able to
view all relevant information at once;

• there are exponentially many possibilities to check: a
human will get bored or tired before checking them all.

The IAPR system can help to alleviate these problems, and
introduces a new design criterion of architectural simplicity.
In addition, the IAPR system can aid in the architectural
design and maintenance process by helping an analyst under-
stand an architecture. As an exploring tool, IAPR can help a
new maintainer in orienteering through the architecture, and
can identify potential problem areas. As a diagnostic tool,
IAPR graphically demonstrates the pattern complexity and
pattern coverage of a software architecture. Furthermore, in
either case, the locating of near matches highlights poten-
tially ripe areas for re-engineering.

REFERENCES
1. G. Abowd, L. Bass, L. Howard, L. Northrop, “Structural

Modeling: an Application Framework and Development
Process for Flight Simulators”, SEI Technical Report,
CMU-SEI-93-14, 1993.

2. K. Beck, et al, “Industrial Experience with Design Pat-
terns”, Proceedings of ICSE 18, 1996, 103-114.

3. J. Coutaz, “PAC, An Implementation Model for Dialog
Design”, Proceedings of Interact ‘87, 1987, 431-436.

4. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns—Miroarchitectures for Reusable Object-Ori-
ented Software, Addison-Wesley, 1994.

5. S. Henry, D. Kafura, “Software Structure Metrics Based
on Information Flow”, IEEE Transactions on Software
Engineering, SE-7(5), 1981.

6. G. Heyliger, “Coupling”, Encyclopedia of Software Engi-
neering, J. Marciniak (ed.), 220-228.

7. R. Kazman, P. Clements, L. Bass, G. Abowd, “Classify-
ing Architectural Elements as a Foundation for Mecha-
nism Matching”, Proceedings of COMPSAC 1997, 1997,
14-17.

8. R. Kazman, G. Abowd, L. Bass, P. Clements, “Scenario-
Based Analysis of Software Architecture”, IEEE Soft-
ware, November, 1996, 47-55.

9. R. Kazman, “Tool Support for Architecture Analysis and
Design”, Joint Proceedings of the SIGSOFT ‘96 Work-
shops (ISAW-2), 1996, 94-97.

10. G. Krasner, S. Pope, “A Cookbook for Using Model-
View-Controller User Interface Paradigm in Smalltalk-
80”. JOOP, August/September 1988, 26-49.

11. M. Shaw, D. Garlan, Software Architecture: Perspectives
on an Emerging Discipline, Prentice-Hall, 1996.

12. H. Simon, The Sciences of the Artificial, MIT Press,
1981.

13. S. Woods, Q. Yang, “The Program Understanding Prob-
lem: Analysis and a Heuristic Approach”, Proceedings of
ICSE 18, 1996, 6-15.

 Figure 3: Matched patterns visualized on the architecture

