
Incremental
Modernization of
Legacy Systems
Santiago Comella-Dorda
Grace A. Lewis
Pat Place
Dan Plakosh
Robert C. Seacord

July 2001

COTS-Based Systems
Unlimited distribution subject to the copyright

Technical Note
CMU/SEI-2001-TN-006



The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2001 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).



CMU/SEI-2001-TN-006 i

Contents

Contents i

Abstract v

1 Background 1

2 Modernization Strategy 3
2.1 System Architecture 4
2.2 Migration Plan 6

3 Developing the Migration Strategy 7
3.1 The Initial Plan 8
3.2 The Revised Plan 11

4 Describing the Migration Strategy Using UML 13
4.1 Results 14

5 Conclusions 18

Bibliography 19



ii CMU/SEI-2001-TN-006



CMU/SEI-2001-TN-006 iii

List of Figures

Figure 1: Development Increments 1
Figure 2: Legacy System Modernization 1
Figure 3: Interoperation of the Modernized and the Legacy

Systems 2
Figure 4: Sample Code Migration Using Program Element

Sets 5
Figure 5: Call Graph 7
Figure 6: Initial Rational Rose Model 9
Figure 7: Root Element (NVG408) Diagram 10
Figure 8: Program Element Class 11
Figure 9: Process Overview 12
Figure 10: Database Element Set 13
Figure 11: Sample Iteration Output 14
Figure 12: Effort per Iteration 15
Figure 13: Adaptors vs. Modules 16
Figure 14: Business Object Completion per Iteration 16
Figure 15: SLOC per Business Object 17



iv CMU/SEI-2001-TN-006



CMU/SEI-2001-TN-006 v

Abstract

This report shows an objective technique for developing an incremental code-migration
strategy for large legacy Common Business-Oriented Language (COBOL) systems.
Specifically, it describes a case study that involves the modernization of a large Supply
System (SS). The system consists of approximately 2 million lines of COBOL code operating
in a mainframe environment.

The SEI developed the System Analysis and Migration (SAM) tool to generate a code
migration strategy based upon legacy system analysis data.  SAM considers a set of factors
that includes minimizing scaffolding code (code that is discarded before the completion of
the project), balancing iterations, and grouping related functionality.



vi CMU/SEI-2001-TN-006



CMU/SEI-2001-TN-006 1

1 Background

Modernization of legacy information systems are often large, multiyear projects that pose
significant risks. Information systems are critical to companies, and making a single
deployment of the modernized version is too risky to be admissible. Additionally, a
modernization effort of a large system requires a significant investment in terms of money
and time; projects of this magnitude are strongly pressured to demonstrate early benefits.
Figure 1 illustrates a typical example in which the modernized version of the system is
developed and deployed incrementally over a six-year period.

 

Increment 1 
Increment 2 
Increment 3 
Increment 4 
Increment 5 

00 01 02 03 04 05 06 07 

Figure 1: Development Increments

Incremental modernization of a legacy system is illustrated in Figure 2. Initially, the legacy
system consists completely of legacy code.  At the completion of each increment, the
percentage of legacy code decreases while the percentage of modernized code increases.
Eventually, the system is completely modernized.

 

Legacy Legacy 

Modernized 

Modernized 

Legacy 

...

Ongoing operations 

Figure 2: Legacy System Modernization



2 CMU/SEI-2001-TN-006

Since modernized components are being deployed prior to the completion of the entire
system, it is necessary to combine elements from the legacy system with the modernized
components to maintain the existing functionality during the development period. Adapters
and other wrapping techniques may be needed to provide a communication mechanism
between the legacy system and the modernized system, when dependencies exist.

Figure 3: Interoperation of the Modernized and the Legacy Systems

An incremental modernization effort strives to keep the system fully operational at all times
while reducing the amount of rework and technical risk during modernization. In order to
balance these conflicting requirements, a modernization effort needs to be carefully planned.
Planning a modernization effort does not only involve creating a budget and setting up a few
milestones. A modernization plan must also contain the order in which the functionality is
going to be modernized, along with information describing the scaffolding code that must be
created to keep the system operational at all times.

The technical aspects of the modernization plan are what we call the modernization strategy.
In this report we describe a case study that involves the creation of such strategy for the
modernization of a large Supply System (SS).  The SS consists of approximately two million
lines of COBOL code running on a mainframe. The overall architecture of the system has
remained largely unchanged over 30 years, resulting in a system that is extremely brittle and
difficult to maintain.  (A relevant description of an information system life cycle is provided
by Comella-Dorda, et. al.[Comella 00]).

This report is structured as follows: Section 2 describes the factors and tradeoffs that must be
considered in the migration strategy. Section 3 presents the detailed processes that were
followed to generate the code migration strategy. Section 4 describes the Unified Modeling
Language (UML) notation that was used to document the migration strategy. In the final
section, conclusions are presented.

   

Legacy   Modernized  

Java to COBOL (reverse adapters)

COBOL to Java (adapters)

Dependencies   



CMU/SEI-2001-TN-006 3

2 Modernization Strategy

As we implied previously, the single most import factor in developing the code migration
strategy is to keep the system fully functional at all times. Since some subset of functionality
is completed at the end of each development and deployment increment, it is necessary to
maintain the use of the legacy system to provide functionality not already modernized.  In
addition to meeting this requirement, certain goals and objectives are inherent in defining a
componentization strategy.  These include

•  Minimize development and deployment costs.  Fielding modernized components
alongside legacy code requires the development of adapters, bridges, and other
scaffolding code that will be discarded after the final increment.  While necessary,
scaffolding code represents an added expense, as this code must be designed, developed,
tested, and maintained during the development period.  Minimizing the development of
scaffolding code is one way to minimize overall development costs.

•  Support an aggressive yet predictable schedule.  The componentization strategy should
seek to minimize the time required to develop and deploy the modernized system.
Additionally, the approach should allow the system to be developed on a predictable
schedule.

•  Maintain quality of interim and final products.  There are two issues regarding quality.
One is the quality of the final, end-state system, once the modernization effort has been
completed.  The final system should be easy to maintain and implemented around
technologies that are not already obsolete.  The second issue is the interim quality of the
system after each increment is deployed.  Given the length of time required to modernize
a system, there are many opportunities for the development effort to lose funding, be
redirected, or take on a new focus. It is important that each fielded increment improve the
overall quality of the system; there is always the possibility that each increment will be
the last due to the normal uncertainties caused by changing business practices and
requirements

•  Minimize risk. Risks occur in many different forms, and some risk is acceptable if it is
managed and mitigated properly.  Due to the overall size and investment required to
complete a system migration, it is important that overall risk be kept low.  To this end, the
componentization strategy should apply tried-and-proven techniques when possible, and
lower-risk approaches when some risk is necessary to achieve overall system goals.

•  Meet system performance expectations. The modernized system will replace an existing
system, so users have expectations concerning performance.  While modernization often
includes hardware as well as software components, it is easy to diminish hardware
performance gains with poorly designed software.  The componentization strategy must
ensure that user performance expectations are met or exceeded.

•  Maintain complexity at a manageable level. The chaotic structure and size of most legacy
information systems is a major complexity factor by itself.  As a result, it is critical that
the componentization strategy seek to minimize overall system and development
complexity, so that the latter is kept at a manageable level.  Managing the complexity of



4 CMU/SEI-2001-TN-006

the development approach may be the single largest factor that dictates the viability of
the overall modernization effort.

2.1 System Architecture
In the modernization of any legacy system there are groups of stakeholders with varying
opinions on how to proceed.  It is important to develop consensus among these stakeholders
before moving forward.  As part of the case study we conducted a componentization
workshop, in which the stakeholders agreed on the general approach to modernize the
system. The group consensus included a decision to migrate the existing legacy code based
on the existing structure of the legacy elements. The structure and dependencies of the legacy
system are analyzed to determine the simplest way to extract functionality from the legacy
system to be modernized. This approach reduced the overall complexity and risk in ensuring
that the incrementally deployed systems retained the overall functionality of the legacy
system.

A potential problem adopting this tactic is that the architecture of the modernized system may
be constrained by the structure of the legacy system. In fact, as logical functionality chunks
of the legacy system are extracted, the developer tends to replicate the same chunks in the
modernized system. If this problem were not considered, we would end up with the same
system running on a different platform.

In order to avoid this problem we need two things. First, a well-defined target architecture
that has been developed taking into account, but not being constrained by, the structure of the
legacy system. And second, a mechanism to decouple the functional partition of the legacy
and modernized systems even if those systems share mutual dependencies. This mechanism
has to make it possible to split program elements across components in the modern
architecture. These components can be deployed while still incomplete—as long as the
overall functionality of the system remains intact.

The target architecture in the case study is based on the OAGIS specification [OAG 99],
which prescribes a loosely coupled architecture1.  This architecture consists of business
objects, which are software components that encapsulate the business logic of a single entity
and data particular to that entity.  Examples of OAGIS business objects include order
management, accounts receivable, and general ledger.

The mechanism used to decouple the structure of both systems is based on adapters. Figure 4
illustrates code migration by program element sets and the use of adapters. A legacy program
element (121) is scheduled for modernization.  The functionality performed by this program
element is re-implemented as part of the modernized architecture as shown on the right.
However, program element 121 is still invoked by program element 345, and invokes

                                                
1 Lewis, Grace & Comella-Dorda, Santiago. Data Architecture Guide for the ILS-S System, to be

published in September 2001 by the Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA.



CMU/SEI-2001-TN-006 5

program element 129, neither of which has been modernized in this example.  In this case, it
is necessary to develop a shell and adapter for the program element.  The shell ensures that
the external interfaces of program element are maintained.  The adapter accepts requests from
the 121 shell and invokes methods in the modernized components to implement this
functionality.  Results can then be returned to the 121 shell, which will use this data to satisfy
its external requirements.

345

Adapter121 Shell

129 

208

206 121B

BO 1

224
121A

BO 2

123A

129 = Legacy
program
element

= Business
object

121B = Migrated
functionality

208 = Future
migration

121 = Legacy
shell

Legend

345

Adapter121 Shell

129 

208

206 121B

BO 1

224
121A

BO 2

123A

129 = Legacy
program
element

= Business
object

121B = Migrated
functionality

208 = Future
migration

121 = Legacy
shell

Legend

Figure 4: Sample Code Migration Using Program Element Sets

The development of the shell and adapter code is not trivial, however, and in a large system
(with over 900 program elements in the case study) will result in the development of a
significant amount of scaffolding code that will eventually be discarded.  Reducing the
amount of scaffolding code required should reduce overall development costs. In fact,
reducing the number of adapters has been one of the main drivers when calculating the order
in which to migrate program elements.



6 CMU/SEI-2001-TN-006

2.2 Migration Plan
One of the most important questions that must be answered in an incremental development
and deployment process is “Which program elements will be modernized in each
increment?” Unless some objective criteria are developed to answer this question, the
migration plan is prone to be driven by forces external to the development process. Based on
the overall modernization strategy goals described earlier in this report, the criteria selected
for the case study were2

•  Minimize the number of adapters.

•  Migrate modules with related functionality at the same time.

•  Map increments’ size to the funding profile.

The first goal is to reduce the number of adapters. Reducing the number of adapters
eliminates the need to develop scaffolding code that will eventually be discarded.  Reducing
the need for adapters should reduce the overall development costs for the system.

The second goal is to eliminate the need for developers to understand the entire system
during the development of each increment. Unfortunately, optimizing the entire system to
reduce the number of adapters may not be the best overall approach, as it does not take the
commonality of program elements into account.  If program elements for modernization are
selected solely based on a global optimization to reduce adapters, program elements from
widely varying functional areas of the system are likely to be grouped into a single iteration.
This would cause developers to work in widely varying functional areas, making it difficult
for them to comprehend and implement the system requirements.

The third goal maps the migration plan to available funding.  In some situations funding may
vary from year to year, and it may even be outside the control of the development team.  As a
result, increments must be mapped to available funding.  Sometimes if this is impossible or
technically undesirable, an increment can be adjusted to fit within the funding constraints by
adjusting other cost drivers such as new functionality.

                                                
2 The presentation order of these goals does not imply degree of importance.



CMU/SEI-2001-TN-006 7

3 Developing the Migration Strategy

Our starting point in analyzing the structure of the legacy system was to develop a call graph.
Examining the calling structure of the legacy system helped us to identify program elements
with minimal dependencies that could be migrated easily.

121

312

342

331

221

418

123

712

651

412

435

121

312

342

331

221

418

123

712

651

412

435

Figure 5: Call Graph

Figure 5 illustrates what we were hoping to achieve in this process.  The circles in this figure
represent program elements, while the arrows show call relationships.  Evident in this figure
are four different kinds of program elements:

1. Root program elements call other program elements, but are not called by any (e.g.,
program element 418).

2. Leaf program elements are called by program elements, but do not call any (e.g.,
program element 412).

3. Node program elements both call, and are called by, other program elements (e.g.,
program element 123).

4. Isolated program elements neither call nor are called by other program elements (e.g.,
program element 435).

Root program elements are typically programs that are invoked directly by the user or some
external process (otherwise there would be no way to execute these programs).  By
themselves, these program elements may not be good candidates for modernization since they
call other program elements.  This means that the modernized Java components would have
to call back to the COBOL system—something we were trying to avoid, as we didn’t want
the execution control going back and forth between the modernized and the legacy system.



8 CMU/SEI-2001-TN-006

Node program elements are even more difficult to migrate than root program elements.  They
share the difficulty of root program elements, but also require that adapters be created in the
legacy code so that the remainder of the legacy system can continue to function in the same
manner.

Independent of other issues, isolated program elements can be migrated easily.  These
elements could be used as “filler” in any given increment, since migrating them does not
increase or decrease the number of adapters that need to be developed.

Leaf program elements are the best candidates for migration.  They do not call back to the
COBOL code, and although they require the development of adapters, it is possible to
minimize the number of these adapters by migrating entire subtrees in a single iteration.  The
shaded area in Figure 5 shows where three program elements can be migrated requiring only
a single adapter.

Initially, we assumed that we could use a commercial off-the-shelf COBOL analysis tool to
generate a call graph for the legacy system.  Our clients had already acquired a well-known
analysis tool, which boasted significant functionality, the least of which was the ability to
generate a call graph.  Unfortunately, the system under consideration used a call mechanism
apparently not supported by the tool. In particular, calls are made consistently by moving the
name of the program to call into a variable, and then calling the value of the variable as
shown below:

MOVE ‘NGV129’ PROGRAM-TO-CALL

CALL PROGRAM-TO-CALL

We did not find any commercial tool able to detect these calls using static analysis; they
could be detected only through the dynamic, run-time analysis of the code or manual
techniques.  As no commercial tools were available to perform this level of dynamic analysis,
we decided to apply a more manual approach using the analysis already available for the
system. These analyses were basically text based call indexes, record references, and
miscellaneous data about particular program elements.

3.1 The Initial Plan
To generate call graphs from the available input, we decided to develop a tool that used the
Rational Rose Extensibility Interface (REI) to create UML diagrams.  We named this
program “SAM” for System Analysis and Migration tool.  SAM converts program elements
listed in the Calls Index to classes, and calls to associations.  Each association was then
labeled with the call type (i.e., Perform, Call, Copy). There were a total of 900 distinct
program element names and 10,629 calls. The resulting UML diagram is shown in Figure 6.



CMU/SEI-2001-TN-006 9

Figure 6: Initial Rational Rose Model

The initial Rational Rose model shown in Figure 6 is obviously too complex to be useful.
Consequently, our process for generating this UML diagram required some refinement.  We
decided on several steps to simplify the model.  First and foremost, we decided to create a
separate diagram for each root element.  Second, we eliminated self-referential elements.
Third, we decided to reduce utility functions that typically fetch, delete, or update a database
record to comments in caller program elements.

The result of this process was a little more comprehensible.  A series of charts was generated
and then analyzed.  Our two primary findings from this portion of the study were in isolated
program elements and root program elements.

There were a total of 96 root element diagrams in the system under consideration.  Their
complexity varies from 2 to over 100 elements; however most are in the range of 2-20
elements. Figure 7 shows an example of a relatively complex root element diagram. Our
initial idea was to consider each of those diagrams as a modernization unit. All the program
elements in a particular diagram will be modernized and deployed into the new system as a
single unit.



10 CMU/SEI-2001-TN-006

NGV501

NGV952

NGV 443
NGV712

NGV462

NGV463 NGV574

NGV63 0

+PGM-TO -CALL

NGV532

NGV 533

+PGM-TO-CALL

+PGM-TO -CALL

+PGM -TO -CALL

+ PGM-TO-CALL

+ PGM-TO-CALL

+PGM-TO-CALL

+PGM -TO -CALL

NGV534

+ PGM-TO-CALL

+PGM-TO-CALL
NGV535

+ PGM-TO-CALL

NGV215

+ PGM-TO-CALL
+PGM-TO-CALL

+ PGM-TO-CALL+PGM-TO-CALL

+PGM-TO-CALL

+PGM -TO-CALL
+PGM-TO-CALL

+PGM-TO-CALL
+PGM-TO-CALL

+PGM-TO-CALL

+PGM-TO -CALL
+PGM-TO-CALL

NGV205A

+PGM-TO-CALL+PGM-TO-CALL
+PGM -TO-CALL

+ PGM-TO-CALL
+PGM-TO-CALL+PGM-TO -CALL

+PGM-TO-CALL

+PGM -TO -CALL

+PGM-TO-CALL

+ PGM -TO -CALL+ PGM-TO-CALL
NGV 250

+PGM-TO-CALL
+PGM -TO -CALL+PGM -TO -CALL

+PGM-TO-CALL
+PGM-TO-CALL

+PGM-TO-CALL

+PGM-TO-CALL

+PGM-TO-CALL

+PGM -TO-CALL

NGV405

+PGM-TO-CALL

+PGM-TO -CALL

+ PGM-TO -CALL

NGV408

+PGM-TO -CALL

+PGM-TO-CALL

+PGM -TO-CAL L

+PGM-TO-CALL

+PGM-TO-CALL

+PGM-TO-CALL

+ PGM-TO-CALL

+PGM-TO-CALL

Figure 7: Root Element (NVG408) Diagram

The algorithm that we developed to generate the root element diagrams has some interesting
features.  To simplify the diagrams, subtrees for nodes within the diagram are expanded only
once in the model.  This missing complexity is captured in two ways:  it is recorded in the
documentation for the program element class and is displayed in the diagram using a shade of
blue.  Darkening shades of blue indicate increasing numbers of reachable elements, even of
all those elements are not explicitly represented.  Reachable elements are program elements
that can be called, either directly or indirectly, by the program element.

The documentation for each program element class contains the number of diagrams in which
the class is included (root elements are only included in one diagram), the number of times
that the program element is called, and the number of program elements that are called.  The
number of modules in the tree is the same as the number of reachable elements.  As stated
earlier, calls to utility functions are reduced to comments and also included in the
documentation for each program element class.  Figure 8 shows a sample of the
documentation provided for each program element class.

NUMBER OF DIAGRAMS: 1

TIMES CALLED: 0

TIMES CALLER: 4



CMU/SEI-2001-TN-006 11

NUMBER OF MODULES IN TREE: 14

NOTES:

accesses: GVPRGETPCT

…

accesses: GVPRCALLER

accesses: GVPRCNF

added to diagram: NGV227

expanded in diagram: NGV227

Figure 8: Program Element Class

Of the 900 overall program elements in the system, 248 are isolated program elements. These
program elements can be ported easily with little impact (i.e., they do not require adapters).
However, many of these program elements are probably reports, which are a special case, as
they do not use component interfaces and are highly dependent on the database structure.  As
a result, it may make sense to identify program elements that are reports and defer their
implementation to the final data-migration phase.  Because these reports operate against the
legacy database, they can remain unchanged up until that time.

While this analysis of root program elements clearly teaches us something about the structure
of the legacy system, it is not clear that root elements form the best candidates for
componentization.  Our analysis revealed that root elements map directly to user-level
transactions. Business objects, on the other hand, are often built as augmented encapsulations
of data entities. Consequently, components in the modernized system are more likely going to
correspond to the original data entities than to transactions. If we follow the root approach,
every diagram represented in the UML models would map to a number of business objects in
the modernized system. This would create an unwanted complexity, as multiple business
objects in the modernized system would be open for changes at the same time.

3.2 The Revised Plan
As we had concerns with building a code-migration plan around root program elements, we
conceived a new approach of building the plan around database records.  This approach
consisted of the following steps:

1. Arrange data records into as many sets as the number of increments (five in the case
study).  Logically related groups of records are grouped together in an attempt to
achieve our goal of modernizing related functionality in each increment.

2. For each data record set

a. Group together the program elements that reference or depend upon the database
records on the set.

b. Identify program elements outside the group that invoke programs inside the group
(these potentially require adapters).



12 CMU/SEI-2001-TN-006

3. For the system, determine the modernization order for the groups created in Step 2 that
minimizes the number of adapters that must be built and balances the size of iterations.

We further reduced the complexity of the system and improved the quality of the migration
plan by eliminating database records and program elements that were likely to be eliminated
in the modernized system. For example, we identified database records that were used to
maintain global constants or information about the system (that is, the number of user
terminals), since this information would be managed differently in the modernized system.

Once the database records have been grouped, they are run through the tool and the results
are analyzed.  If these results are acceptable, the plan can then be manually tweaked and
executed.  If the results are not acceptable, the database records can be reorganized and run
through the tool again. Figure 9 shows an overall process diagram for this revised process.

 
Create groups of logically  
related database records 

Run through analysis tool 

Record scenario profile  
(ordering of increments,  
# adapters and  
components in each  
release) 

Evaluate against 
funding profile and  
other factors  

Happy? 
Manually  
tweak and  
execute plan 

Create groups of logically  
related database records 

Run through analysis tool 

Record scenario profile  
(ordering of increments,  
# adapters and  
components in each  
release) 

funding profile and  
other factors  

Happy? 
Manually  
tweak and  

� �

Figure 9: Process Overview



CMU/SEI-2001-TN-006 13

4 Describing the Migration Strategy Using UML

The results of the analysis described in the previous section are captured in a collection of
Rational Rose UML models.  A separate model is generated for each iteration. Each iteration
contains a class diagram for each database record in the set.3 Figure 10 shows a diagram for
the 53 database record. The database record is displayed using a special icon.  Program
elements shown in white must be migrated as part of this increment.  Program elements in
green have already been migrated, either in a previous increment or earlier in this increment.

Figure 10: Database Element Set

Program elements in gray are elements that will be deleted.  They are being included in the
diagrams until they are actually removed.  Their LOC is not being counted in any
calculations, and their call graphs are not expanded.  For example, if program element 1 calls
program element 2 (which is deleted) and program element 2 calls program element 3, only
program element 1 and program element 2 are represented, and program element 2 is
represented in gray.  Deleted program elements do not require adapters. If program element 1
is called by program element 2 that has not yet been ported but is marked as “deleted,”
program element 1 does not require an adapter.

                                                
3 Database records without associated program elements are not included.



14 CMU/SEI-2001-TN-006

Program elements scheduled to be migrated that require the use of an adapter are shown in
red. Adapters are required where program elements, not already ported, need to invoke a
program element that is being migrated in the current increment.

Figure 11 shows a sample of the information captured for each iteration in the documentation
for the Iteration package created in Rational Rose.  This data includes the number of modules
ported in the increment; the number of adapters required; the number of lines of code ported
in this increment, both as an absolute value and as a percentage of the overall system; and the
number of lines of executable code ported in this increment, both as an absolute value and as
a percentage of the overall system.  Following this header information is a description of the
percentage of each business object4 completed at the end of the iteration.  There is one line
for each business object.  The number of lines of ported code associated with each business
object is given, again as an absolute and as a percentage of the total lines of code in that
business object.  These calculations are performed using both the total lines of code (LOC)
and executable LOC counts.

NUMBER OF MODULES PORTED: 37 NUMBER OF ADAPTORS REQUIRED: 8

LOCs PORTED : 92308 (total= 1209996 percentage= 7)

EXECUTABLE LOCs PORTED: 77941 (total= 1016515

percentage= 7)

BO COMPLETION (this iteration)

Orders LOCs: 7897 (total= 110611 percentage= 7)

EXECUTABLE LOCs: 6074 (total= 88170 percentage= 6)

Inventory LOCs: 3435 (total= 165278 percentage= 2)

EXECUTABLE LOCs: 2937 (total= 138815 percentage= 2)

WIP_Confirm LOCs: 1146 (total= 53331 percentage= 2)

EXECUTABLE LOCs: 952 (total= 44859 percentage= 2)

Requisition LOCs: 1193 (total= 80729 percentage= 1)

EXECUTABLE LOCs: 991 (total= 65271 percentage= 1)

…

Other LOCs: 0 (total= 1309 percentage= 0)

EXECUTABLE LOCs: 0 (total= 1289 percentage= 0)

Figure 11: Sample Iteration Output

4.1 Results
We used these analysis techniques to generate a series of alternative code-migration
strategies. Each strategy is contained in a number of UML models: one for each increment
and a “final increment” containing the flexible allocation (isolated program elements). The
strategies can be characterized related to some parameters, including the Lines Of Code

                                                
4 The specific business objects are defined in the system architecture based on the OAGIS standard.



CMU/SEI-2001-TN-006 15

(LOC) allocated to each iteration, the number of necessary adapters, and the completion rate
for business objects. It is useful to generate a profile summarizing these parameters for each
potential strategy. The customer can then select the profile that better fits its resource
allocation, or request additional profiles if no one is suitable. As an example, this section
contains one of those profiles.

Figure 12 shows the LOC allocation for each increment. Iteration 1 is intentionally small, as
the main concern of the first increment should be to explore the technical risks associated
with the project.  It should be possible to routinely apply lessons learned in the first iteration
to later iterations.  There is, of course, some management risk in this approach, as there will
be a disproportionate number of dollars to lines of code ported after the first increment.  This
is a condition that will have to be supported by management fortitude.

0

50000

100000

150000

200000

250000

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Flexible allocation

Figure 12: Effort per Iteration

Isolated program elements become part of the flexible allocation and can be assigned to any
increment.  This is convenient, as these isolated program elements can be used to increase the
size of increments to more closely map to the funding profile.  Ideally, the fixed allocation is
below the projected effort for each increment.  Program elements from the flexible allocation
can then be added to each increment to bring them up to the projected effort for each
increment.

Figure 13 shows the number of adapters (calls from the legacy code to the modernized code),
inverse adapters (calls from the modernized code to the legacy code), and modules being
ported and developed in each increment.  The height of each bar shows the combined number
of adapters and modules.  Of course, no adapters are included in the flexible allocation.



16 CMU/SEI-2001-TN-006

0

20

40

60

80

100

120

140

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Flexible
allocation

Inv Adapt
Adapters
Modules

Figure 13: Adaptors vs. Modules

0%

20%

40%

60%

80%

100%

Orde
rs

Inv
en

tor
y

WIP C
on

firm

Req
uis

itio
n

Hist
ory

/Aud
it

Cata
log

Dem
an

d P
lan

nin
g

Ass
et 

Man
ag

em
en

t

Fun
ds

 C
on

tro
l

Sys
tem

 M
an

ag
em

en
t

Othe
r

Flexible allocation
Iteration 5
Iteration 4
Iteration 3
Iteration 2
Iteration 1

Figure 14: Business Object Completion per Iteration

Figure 14 shows the percentage of each business object completed after each iteration.  Every
iteration completes at least one business object. Completing business objects quickly is
important in order to demonstrate early benefits and to finalize parts of the modernized
system.



CMU/SEI-2001-TN-006 17

Figure 15 also shows the allocation of source lines of code (SLOC) to the business objects.
This chart is useful in detecting business objects that have too much functionality (and should
be decomposed) or that do not have enough (and should be merged). For example, it is not
apparent that Match Doc should not even qualify as a business object.  Other problems, like
the large number of source lines allocated to system management must be considered.

Figure 15: SLOC per Business Object



18 CMU/SEI-2001-TN-006

5 Conclusions

We have shown a technique for developing an incremental code migration strategy for large
information systems. This technique provides a systematic and fact-based method that avoids
the arbitrary, intuitive decision making too often found in software projects. The
systematization of the technique has enabled us to partially automate the process through the
creation of a tool that analyzes the legacy system and generates a code migration plan.

However, the strengths of this technique are also its weaknesses as the analysis tool
necessarily lacks the insight and expertise only found in humans. The code migration plan
created by the tool is generated automatically from a rigid set of predefined parameters, and
the results should be treated accordingly.  The plan must be tweaked by developers to
accommodate particular concerns during the migration process. Nevertheless, the plan
provides valuable information about the migration process.

We want to apply this analysis in other modernization efforts in order to fine-tune the
techniques and the analysis tool. In particular, we are planning to improve the tool to take
into account additional variables, including feedback from developers.



CMU/SEI-2001-TN-006 19

Bibliography

[Bobrowski 97] Bobrowski, Steve & Smith, Gordon. Oracle8 Replication. Oracle
Corporation, 1997.

[Comella 00] Comella-Dorda, Santiago; Wallnau, Kurt; Seacord, Robert C.; & Robert,
John. Survey of Legacy System Modernization Approaches, A. (CMU/SEI-
2000-TN-003).  Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2000. Available WWW: URL<
http://www.sei.cmu.edu/publications/documents/00.reports/00tn003.html>

[OAG 99] Open Applications Group. Plug and Play Business Software Integration:
The Compelling Value of the Open Applications Group. Atlanta, GA: Open
Applications Group, 1999.



20 CMU/SEI-2001-TN-006



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

July 2001
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Incremental Modernization of Legacy Systems
5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

Santiago Comella-Dorda, Grace A. Lewis, Pat Place, Dan Plakosh, Robert C. Seacord
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2001-TN-006

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report shows an objective technique for developing an incremental code-migration strategy for large legacy
Common Business-Oriented Language (COBOL) systems. Specifically, it describes a case study that involves the
modernization of a large Supply System (SS). The system consists of approximately 2 million lines of COBOL code
operating in a mainframe environment.

The SEI developed the System Analysis and Migration (SAM) tool to generate a code migration strategy based upon
legacy system analysis data.  SAM considers a set of factors that includes minimizing scaffolding code (code that is
discarded before the completion of the project), balancing iterations, and grouping related functionality.

14. SUBJECT TERMS

code migration, legacy, System Analysis and Migration, SAM, Retail Supply System
modernization, RSS modernization

15. NUMBER OF PAGES

30

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102


	Incremental Modernization of Legacy Systems
	Contents
	List of Figures
	Abstract
	Background
	Modernization Strategy
	System Architecture
	Migration Plan

	Developing the Migration Strategy
	The Initial Plan
	The Revised Plan

	Describing the Migration Strategy Using UML
	Results

	Conclusions
	Bibliography


