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Executive Summary 

The Carnegie Mellon University Software Engineering Institute (SEI) was involved in an Archi-
tecture-Centric Virtual Integration Process (ACVIP) shadow project for the U.S. Army’s Re-
search, Development, and Engineering Command Aviation and Missile Research, Development, 
and Engineering Center Science & Technology Joint Multi-Role program on the Joint Common 
Architecture (JCA) Demonstration. The JCA Demo used the Modular Integrated Survivability 
(MIS) system, which provided a situational awareness service that was integrated with two in-
stances of a Data Correlation and Fusion Manager (DCFM) software component, which was con-
tracted to two suppliers. 

The purpose of the ACVIP shadow project was to demonstrate the value of using ACVIP technol-
ogy, in particular the architecture models expressed in the Society of Automotive Engineering 
(SAE) Architecture Analysis & Design Language (AADL) standard, for discovering potential sys-
tem integration problems early in the development process. To do this, the SEI team first captured 
information from existing requirements documents and other documentation as a requirements 
specification and architecture model expressed in AADL and a textual requirement specification 
subset of the draft Requirement Definition & Analysis Language Annex, referred to in this report 
as ReqSpec. We then analyzed this system model for potential system integration issues. 

This report summarizes the approach taken to capture in AADL the requirements and architecture 
specification of the DCFM and its integration with MIS and to analyze the results. In this report, 
we refer to the resultant system as the Aircraft Survivability Situation Awareness (ASSA) system. 
By using an architecture-led approach to specifying requirements, the SEI team quickly identified 
a number of issues that, if not addressed, could result in system integration problems between 
MIS and DCFM. We documented these issues in a separate report [Feiler 2015a]. The issues in-
clude understanding the stakeholder goals for the ASSA, identifying the system boundary be-
tween MIS and DCFM, clarifying mismatched assumptions in the interaction between MIS and 
DCFM, and understanding the implications of architectural decisions on the system’s ability to 
meet the requirements. Potential implications of architectural decisions include assumptions in the 
DCFM data model sequence diagrams that may hinder the system in meeting response time re-
quirements and in additional calibration requirements for DCFM that may create unexpected la-
tency and latency jitter that can introduce errors into the track data. 
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Abstract 

The Carnegie Mellon University Software Engineering Institute (SEI) was involved in an Archi-
tecture-Centric Virtual Integration Process (ACVIP) shadow project for the U.S. Army’s Re-
search, Development, and Engineering Command Joint Multi-Role program in the Joint Common 
Architecture (JCA) Demonstration. The JCA Demo used the Modular Integrated Survivability 
(MIS) system, which provides a situational awareness service that was integrated with two in-
stances of a Data Correlation and Fusion Manager (DCFM) software component, which was con-
tracted to two suppliers. The purpose of the ACVIP shadow project was to demonstrate the value 
of using ACVIP technology, in particular the architecture models expressed in the Society of Au-
tomotive Engineering Aerospace Standard 5506 standard for the Architecture Analysis & Design 
Language (AADL), for discovering potential system integration problems early in the develop-
ment process. To do this, the SEI first captured information from existing requirements docu-
ments in AADL and the draft Requirement Definition & Analysis Language Annex. Then, by 
using an architecture-led approach to capturing requirements and architecture specification, the 
SEI team quickly identified a number of issues that, if not addressed, could result in system inte-
gration problems between MIS and DCFM. The SEI’s findings allowed contractor teams to ad-
dress these issues early in system development. 
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1 Introduction 

The Carnegie Mellon University Software Engineering Institute (SEI) was involved in an Archi-
tecture-Centric Virtual Integration Process (ACVIP) shadow project for the U.S. Army’s Re-
search, Development, and Engineering Command Aviation and Missile Research, Development, 
and Engineering Center (AMRDEC) Science & Technology Joint Multi-Role (JMR) program in 
the Joint Common Architecture Demonstration. The JCA Demo used the Modular Integrated Sur-
vivability (MIS) system, which provides a situational awareness service that will be integrated 
with two separate versions of a Data Correlation and Fusion Manager (DCFM) software compo-
nent. The DCFM was acquired via a Broad Agency Announcement (BAA) from two suppliers. 

In the JCA Demo ACVIP shadow project, the SEI team captured requirements found in various 
MIS project documents using an architecture-led requirements and architecture specification pro-
cess and following the ACVIP approach. In that process, the SEI team identified shortcomings in 
the existing requirements documents that, if not addressed, would result in potential system inte-
gration problems between MIS and DCFM. 

This report summarizes the approach taken to capture the requirements and architecture specifica-
tion of the integrated DCFM and MIS, referred to in this report as the Aircraft Survivability Situa-
tion Awareness (ASSA) system, in the SAE Architecture Analysis & Design Language (AADL). 
We also describe the resultant model and analyses supported by the model. 

1.1 Background 

To perform the architecture-led requirements specification task, the SEI team was provided with a 
February 2014 version of the MIS Stakeholder Requirements document and MIS System/Subsys-
tem Specification (SSS) document, which contains system requirements. SEI used these docu-
ments to present a first set of issues, such as lack of indication of the number of tracks to be 
maintained by MIS, at the ACVIP Technical Interchange Meeting. The SEI team also received the 
JCA Demonstration BAA and the DCFM Data Model document at the Technical Interchange 
Meeting in early May 2014. 

On June 15 and 17, 2014, the SEI team received April 2014 versions of the MIS Stakeholder Re-
quirements document, the MIS SSS document, the Situational Awareness Data Service Software 
Design Description, the WeaponWatch Manager Software Design Description, the MIS Sys-
tem/Subsystem Design Description, the MIS SSS, and the DCFM BAA Supplement package. The 
SEI team also received July 3, 2014, versions of the MIS Stakeholder Requirements document, 
the MIS SSS, and a build plan, and July 17, 2014, versions of the MIS SSS and the MIS system 
model. On September 18 and 22, 2014, the SEI team received revisions of the MIS SSS and the 
DCFM data model. 

The SEI team used the ACVIP approach to capture stakeholder requirements, system require-
ments, and the architecture design of the ASSA with its MIS and DCFM components. The ACVIP 
approach uses AADL and its architecture fault modeling and requirements specification exten-
sions to represent relevant information in a single model with well-defined semantics. The tool 
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environment for AADL supports type checking, model consistency checking, and analysis capa-
bilities. The SEI team developed the AADL model over a three-month period, including two 2-
day working sessions with AMRDEC representatives. The SEI team presented its findings in a se-
ries of meetings, including the May 2014 JMR face-to-face working session and JMR meetings 
with the two contractor teams. In addition, the SEI team did a walk-through of the model as part 
of the Modeling System Architectures with AADL course, which was taught to the JMR team and 
JCA contractors on September 15–19, 2014. 

1.2 Challenges in Current Requirements Documentation Practice 

A 2009 industry study of current requirements engineering practice showed that text-based re-
quirements specification is prevalent and that Microsoft Word® and DOORS® are the primary 
tools [FAA 2008b]. The result is that 70% of all software system problems are introduced during 
requirements specification and architecture design, while 80% are discovered after unit testing 
[NIST 2002, Redman 2010]. Figure 1 shows the top 5 of 12 quality issue categories characteristic 
of such requirement specifications [Hayes 2003]. It indicates that the quality of requirements can 
easily be improved by better requirements coverage. 

 

Figure 1: Quality of Requirements [NIST 2002] 

Figure 2 shows a sample from the MIS Stakeholder Requirements document to illustrate the qual-
ity of the requirements. For example, the Mission Planning section indicates that MIS is expected 
to “enable” a set of capabilities. Note that a hardware processor could enable these capabilities. 
The Situational Awareness section suggests that MIS acts as integration mechanism for ASSA. 
However, a communication mechanism such as publish/subscribe can play that role. In other 
words, these requirements provide little insight as to what is specifically expected from MIS. 

 

Figure 2: Example of Stakeholder Requirements Documentation 
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Often a collection of requirement statements spans multiple layers of an architecture hierarchy. 
This is illustrated in Figure 3 on a simple medical device example. On the left-hand side, four re-
quirements statements for a patient monitoring system are shown. They are precise in that they 
provide details about volume and time. However, viewing the requirements statements in the con-
text of an architecture representation reveals that they represent requirements at four different lev-
els in the architecture hierarchy. In other words, the set of requirements makes assumptions about 
a (partial) system architecture. 

  

Figure 3: Requirements Specification Across Architecture Hierarchy (Courtesy of M. Whalen) 

In the case of JMR, we encountered similar assumptions about system architecture in require-
ments statements. Many of the MIS requirements primarily described desired capabilities of the 
resultant ASSA system rather than MIS. Furthermore, two MIS components reside in a support 
layer below DCFM, while a health-monitoring component resides in a layer above DCFM (see 
Section 3.5). 

In text-based requirement specifications, two rules are used to assess their quality: 

 traceability to stakeholders and stakeholder requirements: For this reason, DOORS is a popu-
lar tool for managing requirements. 

 the word “shall”: A statement or graphical presentation of a model in a requirements specifi-
cation document is not considered a requirement if it does not include the word “shall.” 

Figure 4 and Figure 5 illustrate these rules. They are taken from the MIS SSS. The documentation 
of the state machine describing the operational modes to be supported by MIS spans multiple 
pages. From this description, it is difficult to tell whether the specification of this state machine is 
complete. 

The state machine in Figure 5 is not considered to be a requirement specification because it does 
not contain the word “shall.” However, it provides a more concise specification of the desired be-
havior and, as a model, it allows the specification to be processed by analytical tools. Even visual 
inspection provides a quick understanding of desired behavior. For example, a reader can see that 
the system does not have a transition that supports a reset operation to reinitialize the system after 
a shutdown. The system can be reset only by restarting the computer that hosts the MIS. 
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Figure 4: Textual State Machine Specification 

 

Figure 5: A Graphical State Machine Specification: Not a Requirement 

These issues motivated us to develop an architecture-led approach to requirements specification, 
which we summarize in the next section. 



 

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  5 

Distribution Statement A: Approved for Public Release; Distribution is Unlimited 

2 An Architecture-Led Requirements Specification Process 

The objective of an architecture-led requirements specification (ALRS) approach is to specify re-
quirements in the context of an architecture specification. There are several benefits to this ap-
proach: 

 We can clearly relate requirement statements to specific elements in an architecture model. 

 We gain insight into assumptions being made about a (partial) architecture. 

 We can analytically verify an architecture design early in the process through virtual system 
integration. 

There are three use case scenarios for the ALRS process: 

 Existing stakeholder and system requirements documentation: In this case, we use the ALRS 
process to capture the information that has already been gathered in a text document. Captur-
ing it as an architecture model annotated with requirements specifications allows us to iden-
tify ambiguities and conflicts in the original documents. This is the scenario guiding our 
shadow project. We summarize many of these issues in a separate report [Feiler 2015a]. 

 Negotiation of system requirements: A system requirements specification becomes a contract 
that a system provider will have to meet. Requirements must be specified in such a way that 
they are verifiable and conflicts between them have been resolved. Typically, a notional ar-
chitecture design is used to assess whether the proposed system can satisfy the requirements. 
In other words, requirements affect architecture design decisions. We will demonstrate this 
interplay between requirements and architecture design when we examine the ASSA with the 
DCFM and MIS components in the context of a partitioned target platform that is based on 
the ARINC-653 specification, the avionics standard for partitioned time and space. 

 Requirements elicitation from stakeholder: Stakeholder requirements elicitation involves cre-
ating a common understanding of the primary mission drivers, of the operational use-case 
(concept of operation) for the system, and of the boundaries between the system of interest, 
entities in its operational context, and its parts. We show how a model representation can help 
disambiguate and clarify domain concepts. 

In addition, we utilize methods such as the SEI Mission Thread Workshop1 and SEI Quality At-
tribute Workshop (QAW)2 to guide the development of this common understanding and set priori-
ties for stakeholder requirements. 

2.1 Context of an Architecture-Led Requirements Specification 

The System Engineering Body of Knowledge (SEBoK) under Foundations of System Engineering 
discusses stakeholder requirements and system requirements [BKCASE 2015]. For classification 

 

1  For an overview of the Mission Thread Workshop, see http://www.sei.cmu.edu/architecture/tools/establish/mis-
sionthread.cfm. 

2  For an overview of the Quality Attributes Workshop, see http://www.sei.cmu.edu/architecture/tools/estab-
lish/qaw.cfm. 

http://www.sei.cmu.edu/architecture/tools/establish/mis-sionthread.cfm
http://www.sei.cmu.edu/architecture/tools/establish/mis-sionthread.cfm
http://www.sei.cmu.edu/architecture/tools/establish/mis-sionthread.cfm
http://www.sei.cmu.edu/architecture/tools/estab-lish/qaw.cfm
http://www.sei.cmu.edu/architecture/tools/estab-lish/qaw.cfm
http://www.sei.cmu.edu/architecture/tools/estab-lish/qaw.cfm
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of requirements, it utilizes ISO/IEC/IEEE 29148 [ISO 2011]. Examples of classification of stake-
holder requirements include service or functional, operational, interface, environmental, human 
factors, logistical, maintenance, design, production, verification, validation, deployment, training, 
certification, retirement, regulatory, environmental, reliability, availability, maintainability, de-
sign, usability, quality, safety, and security requirements. Stakeholders will also be faced with a 
number of constraints, including enterprise, business, project, design, realization, and process con-
straints. 

This classification is similar to elements of a general model of sociotechnical control to analyze 
system accidents, originally developed by Rasmussen and adapted by Dr. Nancy Leveson of MIT 
for the Systems-Theoretic Accident Model and Processes (STAMP) method of accident causality 
analysis [Rasmussen 2000, Leveson 2012]. 

The ALRS process discussed in this report focuses on the specification of requirements for the 
system in its operational context, leading to a set of verifiable system requirements for the system 
and its subsystems. Integral to this process is the consideration of exceptional conditions that re-
sult in safety hazards or security vulnerabilities. ALRS assumes that requirements for the develop-
ment process, as outlined in [BKCASE 2015], exist and are addressed. 

2.2 ALRS and the FAA Requirements Engineering Management 
Handbook 

The FAA Requirements Engineering Management [REM] Handbook, developed by the Rockwell 
Collins Formal Methods Group and published in 2009, illustrates 11 recommended practices that 
allow for verifying completeness and consistency of requirements analytically [FAA 2008a]. This 
handbook focuses on specifying system requirements systematically to make them verifiable. 
These 11 practices are shown in Figure 6. The handbook elaborates each practice in a number of 
substeps and illustrates their use with several examples. Dominque Blouin and colleagues have 
demonstrated how this 11-step process can be supported through a combination of the draft Re-
quirements Definition & Analysis Language (RDAL) standard as annotations on AADL models 
[Blouin 2011]. They combine RDAL with use-case maps notation, a sublanguage of the Interna-
tional Telecommunication Union User Requirements Notation standard, to facilitate capture and 
validation of stakeholder requirements and their translation into system requirements [ITU-T 
2008]. 

 

Figure 6: Eleven Practices of the FAA Requirements Engineering Process [Adapted from FAA 2008a] 
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In our case study, we focus on translating information found in existing documents into a model-
based representation. In that process, we identify inconsistencies, ambiguities, and missing re-
quirements information. In addition, we use the resultant model to virtually integrate MIS and 
DCFM and, in turn, analyze the resultant ASSA system to identify potential integration problems 
early in the development process. 

2.2.1 Modeling Notations in Use 

We use AADL, the Error Model Version 2 (EMV2) language, and a textual representation of the 
requirements specification subset of RDAL, referred to in this report as ReqSpec.3 ReqSpec fo-
cuses on stakeholder and system requirements specification, while the full RDAL notation also 
allows users to specify a set of verification actions as elements of an assurance plan. Verification 
actions include model consistency checks, virtual integration analysis, and tests. Users can then 
track the execution of assurance plans by the results of verification actions throughout the sys-
tem’s lifecycle. See Section 2.3.5 for an outline of this incremental approach to lifecycle assur-
ance. 

We use AADL to 

 specify the operational context of the system of interest (REM Practice 1). The MIS Stake-
holder Requirements document provides a good description of the operational context of the 
ASSA system. The MIS SSS document provides a good description of the ASSA system 
functionality. We use the AADL abstract, system, and data component concepts to represent 
the elements of the operational context and the architectural structure of ASSA. We also use 
abstract feature, ports, and feature groups with connections to represent the interactions be-
tween these parts. 

 identify the system boundary (REM Practice 2). We identify the DCFM as one of the func-
tional components of ASSA. We identify MIS as consisting of three services: an SA data-
conversion service and an SA data-storage service provided in a layer below the ASSA appli-
cation layer, and an ASSA health-monitoring service provided in a supervisory layer above 
the ASSA application layer. We represent these layers in AADL. 

 represent operational concepts (REM Practice 3). The use case scenarios fall into two catego-
ries: 

 developmental quality attributes such as portability through the use of the Future Air-
borne Capability Environment (FACE) and modifiability through the use of standard 
track representations 

 operational quality attributes such as situation assessment behavior, timely provision of 

assessment results (timing), and provision of valid assessment results (safety) 

 represent environmental assumptions (REM Practice 4). We capture these assumptions as part 
of the interface specification of a system within the AADL model. See Section 2.3.1 for de-
tails. 

 

3  Note: The draft RDAL document defines a metamodel of the RDAL concept but not a textual representation. 
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 develop the functional architecture (REM Practice 5). We do so for the ASSA system in an 
AADL model to fully understand the context of MIS and of DCFM. It helps us identify the 
desired functionality for DCFM and MIS. 

 reflect implementation constraints (REM Practice 6). We reflect information from system de-
sign documents. We also reflect architecture constraints and decisions regarding the use of 
ARINC 653 partitioning. We use the AADL concepts of the virtual bus to represent system 
interactions as abstract protocols and the virtual processor to represent partitions. We then as-
sess the impact of partitioning on end-to-end response time of critical flows. 

 identify system modes (REM Practice 7). We record system modes as AADL modes. 

 determine behavior and performance requirements (REM Practice 8). We use a prioritized 
utility tree to determine key operational requirements to be specified (see Section 2.3.2). We 
use flow specifications, data type representations, and various properties to capture the quality 
attributes of interest. 

 capture safety requirements (implicit in REM practices). We capture safety-related infor-
mation through the AADL EMV2 fault ontology and error propagation specifications. We 
provide the results of a full safety analysis in a separate report [Feiler 2015c]. 

 define software requirements (REM Practice 9). We map system functions into a task and 
communication architecture expressed by AADL threads, devices, and hardware platform 
specification. The threads represent executable software units. The specification includes 
properties addressing operational quality attributes. 

 allocate system requirements to subsystems (REM Practice 10). As we elaborate the system 
architecture, we decompose system requirements to requirements on each subsystem. They 
are reflected in the AADL as properties and in the ReqSpec notation as explicitly traceable 
decomposition of requirement specifications that are directly associated with elements in the 
system architecture model. 

 provide rationale. We record rationale as part of each ReqSpec-based requirement specifica-
tion. 

For the creation of AADL models, we utilize elements of the Virtual Upgrade Validation method 
[de Niz 2012]. The method helps users identify the type of system they are dealing with and the 
appropriate way of representing it in AADL. The method also provides guidance for focusing on 
common problem areas in software-reliant systems and ways to represent critical operational 
quality attributes. 

We use AADL EMV2 Annex to 

 systematically identify exceptional conditions that, when propagated to other systems and 
system components, represent hazards. We use the AADL EMV2 fault ontology as a check-
list of these potential hazards. We use AADL EMV2 error propagation declarations to specify 
outgoing propagations of faults expected to be propagated and faults to be contained by the 
system (guarantees), and incoming error propagations of faults whose propagation from other 
components is acceptable or expected not to occur. 

 specify failure modes, identify what component is responsible for detection of fault occur-
rences, and determine how the system responds to recovery actions. 
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We use ReqSpec to 

 distinguish between goals. System requirements specification acts as a contract between the 
customer and the system provider. However, stakeholder requirements may be ambiguously 
phrased, not verifiable, and in conflict with other goals and verifiable requirements. 

 provide traceability to requirements specification and descriptions in existing documents. 

 import a set of text-based requirement specifications into the ACVIP AADL model space. 
This allows us to access the documentation without external tools such as DOORS. It also al-
lows us to record additional relationships between requirements, such as refinement, architec-
tural decomposition, and evolution. 

 associate requirement specifications with an architecture model expressed in AADL. This al-
lows us to understand which system or subsystem is targeted by a requirement specification. 
It also allows us to identify gaps in coverage (see Section 2.3) and add requirements as appro-
priate. 

 maintain consistency between the textual representation of a requirement specification and a 
representation of the requirement in the AADL, such as in the form of a property on a compo-
nent or port. 

For a summary of the notational capabilities of ReqSpec, see Section 5.1. 

2.2.2 From State Variables to Information Flow 

The practices described in the FAA Requirements Engineering Management Handbook draw 
strongly on the Software Cost Reduction method and the four-variable model originally proposed 
by Parnas and Madey [Parnas 1995] for specifying the requirements of the U.S. Navy’s A-7E 
Corsair II aircraft [Schouwen 1990]. The four-variable model consists of monitored variables to 
represent observations in the physical system, controlled variables to represent control over the 
physical system, input variables as digital representation of monitored variables read by the soft-
ware, and output variables as digital representation of controlled variables. 

Later, the Software Productivity Consortium extended these ideas into the Consortium Require-
ments Engineering (CoRE) methodology [Faulk 1992, 1993], which was used to specify require-
ments for the C-130J aircraft. Many recommended practices on how to organize requirements are 
based on ideas originally developed with the CoRE method. The concepts of monitored and con-
trolled state variables are also common in other specification methods for control systems, such as 
the State Analysis methodology, which is part of the NASA Mission Data System technology.4 

Figure 7 illustrates how we map these variables into a flow-oriented architecture specification. 
Such a mapping is desirable as it reflects the actual information flow explicitly, rather than being 
hidden in the order in which different components perform read and write operations on the varia-
bles. A flow-oriented specification facilitates end-to-end flow analyses such as latency analysis. 
The mapping is simple and intuitive. 

 

4  For an overview of the NASA’s State Analysis methodology, see http://mds.jpl.nasa.gov/public/sa. 

http://mds.jpl.nasa.gov/public/sa


 

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  10 

Distribution Statement A: Approved for Public Release; Distribution is Unlimited 

 

Figure 7: Four-Variable Model Mapped into an Architecture Specification 

To reduce interaction complexity through global variables, it is a common modeling convention 
that these state variables are updated by one entity and can be read by multiple entities. Thus, the 
system updates the state variable that owns it and makes its value accessible to others through an 
outgoing port. Entities interested in the value of the variable receive that value through an incom-
ing port. Port connections explicitly represent the data flow to all users of the variable content. 

2.3 Improving Requirements Coverage 

The ALRS captures stakeholder requirements as stakeholder goals for a system (borrowing the 
concept of a goal from goal-oriented requirements engineering) and captures system requirements 
as verifiable system specifications that act as contracts to be satisfied by system implementations. 
For that purpose, we introduce an analyzable textual notation called ReqSpec for expressing goals 
and requirements in the context of an architecture specification in AADL. A metamodel for this 
notation has been proposed as the RDAL standard annex for the SAE AADL (AS5506B) standard 
suite. In Section 5, we introduce this notation and offer guidance on using it with AADL to cap-
ture verifiable requirements and architecture specifications. 

We improve the quality of requirements specification by providing a measurable way of assessing 
requirements coverage. Our method consists of three parts: 

1. Identify all interaction points with the operational environment in terms of input–processing–
output functionality and in terms of the resources and supervisory control necessary to pro-
vide this functionality. Each interaction point must be addressed by requirements. 

2. Identify and quantify design and operational quality attributes that are key to achieving the 
mission. Each key quality attribute must be addressed by a requirement specification. 
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3. Identify exceptional conditions that represent hazards to the safe and secure operation of the 
system. A fault ontology provides a checklist of failure conditions that are potentially propa-
gated between system components as well as to and from the operational environment. 

2.3.1 Elements of a System Specification 

In addition, we utilize a framework for specifying a system that originated with the French Sys-
tems Engineering Society (Association Française d’Ingénierie Système). It is known as CPRET, 
which stands for Constraints, Products, Resources, Elements as input, and Transformations.5 It is 
graphically illustrated in Figure 8. CPRET defines a system process to perform a set of transfor-
mations of input elements into products: respecting constraints, requiring resources, meeting a de-
fined mission, corresponding to a specific purpose, and adapting to a given environment. The 
transformation is the sequence of ASSA functions illustrated in Figure 17. 

 
Figure 8: Constraints, Products, Resources, Elements, and Transformation (CPRET) 

This framework helps us identify additional requirements and assumptions. In addition, it helps us 
identify resource requirements that ASSA has for the computing platform on which it executes 
and for other physical resources, such as the electrical power necessary to operate the sensors that 
are within ASSA. It also leads to a set of requirements for a command-and-control interface be-
tween the pilot and ASSA. As we elaborate the architecture of ASSA in the next section, it will 
help us recognize that the MIS health-monitoring service plays a supervisory role, while the MIS 
data-conversion and data-storage services play support roles by providing resources for accom-
plishing data interchange between components of ASSA. 

Each interaction point must be addressed by requirements. The specification of each interaction 
point must indicate the type of interaction, the type of data or control being exchanged with oth-
ers, the rate at which it is exchanged, and any exceptional conditions that the interaction must pro-
cess. For input, supervisory control, and resource usage interaction points, these specifications 
represent assumptions about the operational environment. For output and supervisory control 
feedback, these specifications represent guarantees made by the system to others. 

2.3.2 Coverage of Relevant Design and Operational Quality Attributes 

Next, we utilize the concepts of quality attributes and utility trees from the SEI QAW and Archi-
tecture Tradeoff Analysis Method® (ATAM®). These quality attributes represent two categories of 
requirements: 

 

5  For an overview of CPRET, see http://en.wikipedia.org/wiki/Process_(engineering). 

http://en.wikipedia.org/wiki/Process_
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1. developmental requirements, such as modifiability, portability, or assurability 

2. operational requirements, which include the subcategories of mission-, safety- and security-
critical requirements. Mission-critical requirements include function, behavior, and perfor-
mance to complete a mission. Safety-critical requirements include function, behavior, and 
performance to mitigate loss leading to death, destruction, or damage. Security-critical re-
quirements include function, behavior, and performance to mitigate compromise of classified 
or confidential information and loss of capability, resources, or security in any combination. 

Figure 9 illustrates a partial set of quality attributes, three operational and one developmental. It 
also shows a refinement of the quality attributes into utility functions and their quantification into 
requirements whose satisfaction can be assessed measurably. The annotations of low, medium, 
and high (L, M, and H) pairs indicate levels of criticality and difficulty to help focus architectural 
design, evaluation, and verification. This utility tree becomes a checklist for assuring that require-
ment specifications address the relevant quality attributes of the system. 

 

Figure 9: Operational Quality Attributes and Utility Trees 

When specifying requirements for ASSA, MIS, and DCFM, we illustrate both developmental re-
quirements and operational requirements. For example, developmental requirements might in-
clude portability, achieved by conforming to the FACE Standard; modifiability; and 
configurability, as a result of using standardized representation for observation tracks. Operational 
requirements include performance in terms of data volume and processing rates, response time in 
terms of end-to-end latency, and avoidance of unsafe conditions in terms of false positives and 
false negatives in situation awareness and timing discrepancies of time-sensitive information 
along multiple processing paths. 
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2.3.3 Exceptional Conditions and Their Impact 

Finally, we utilize a fault ontology that has been defined as part of the EMV2 language standard 
from the SAE AADL standard suite. The purpose of this extension to AADL is to support archi-
tecture fault modeling of various forms of system safety analysis. 

Figure 10 illustrates the fault ontology on the left. This ontology focuses on error types that repre-
sent failure modes of systems being propagated to and from other systems. The most commonly 
used error type is omission, or the failure to provide a service or output. An example is failure to 
provide power. We distinguish between failure to provide a single item and failure of the source 
to provide any item. Commission occurs when a service or an output is provided at a time when it 
is not expected. Other error types represent value errors on individual items and sequences (se-
quence error), timing errors on individual items and sequences (rate error), replication errors for 
inconsistencies in replicated information or components, and concurrency errors for exceptional 
conditions when accessing shared resources. The terms used for the error types can be adapted to 
the domain. For example, omission may represent no power, and an above-range value error may 
represent a power spike. 

The right-hand side of Figure 10 illustrates the systematic application of the error types to a sys-
tem specification. It shows the interaction between a control system and a system under control. 
We can annotate this specification with error types to indicate whether certain types of excep-
tional conditions are expected to occur or not occur. Annotation of the interaction points repre-
sents assumptions and guarantees made by a system. Annotation of a connection indicates that the 
interaction itself is the source of an exceptional condition. 

 

Figure 10: Fault Ontology and Its Application to a System Specification 

The STAMP method has a similar model to classify hazards in control flows [Leveson 2012]. 
Some faults are characterized somewhat ambiguously (e.g., inadequate or inappropriate). These 
descriptions can be refined into more precise descriptions using the utility tree approach of the 
ATAM, leading to classifications that tend to align with the EMV2 fault ontology. 

We apply the fault ontology at all levels of the system specification to ensure that the impact of 
exceptional conditions anywhere in the architecture design of the ASSA system are understood 
and addressed. This practice helps us minimize the potential for incidents due to occurrences of 
even “minor” faults. 
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2.3.4 Integrating Requirements Specification and Safety Analysis 

Including exceptional conditions in the requirements specification process facilitates the integra-
tion of safety analysis with requirements specification. We discuss the safety analysis of the 
ASSA, DCFM, and MIS systems in a separate report [Feiler 2015c]. Here we provide a summary 
of the three major steps involved in addressing safety hazards: 

1. Identify unsafe system states that must be addressed as safety requirements (Figure 11). 
These states can be the result of failure modes of individual system components or unex-
pected interactions between components that in themselves are not failing. 

2. Identify contributors to reaching unsafe system states; these exceptional system conditions 
lead to hazards and must be managed (Figure 12). Typically, they take the form of control 
actions that lead to unsafe system states or lack of control actions to recover from unsafe sys-
tem states. 

3. Identify capabilities for a safety system (derived safety requirements) in order to manage the 
exceptional conditions (Figure 13). These capabilities typically take the form of sensors to 
observe systems that are involved in unsafe system states and to detect these unsafe system 
states. Other derived requirements include restrictive conditions on control actions and addi-
tional control actions to provide reporting and recovery from unsafe system states. 

Figure 11 through Figure 13 illustrate these steps in a simple train example. 

 

Figure 11: Identification of Unsafe System Conditions 

 

Figure 12: Identification of Contributors to Unsafe System Conditions 
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Figure 13: Identification of Safety System Functionality to Address Unsafe System Conditions 

2.3.5 Toward Incremental Lifecycle Assurance 

An objective of ALRS is to support an incremental lifecycle approach to safety-critical system as-
surance. The ALRS process addresses the gap that currently exists in many software-reliant sys-
tem developments between system requirements and software requirements [Boehm 2006]. The 
ALRS process is driven by the close interaction between requirements specification and architec-
ture design, as we described in Section 2.3.4 on safety analysis and derivation of safety system re-
quirements. Similarly, we will refine the specification of ASSA into an ASSA system architecture 
that will become the context for identifying the system boundaries of DCFM and MIS and for de-
termining the requirements placed on these subsystems by the ASSA as operational context. 

Figure 14 illustrates generically how requirements associated with a system specification are de-
composed into requirements of the subsystems once the first layer of the system architecture has 
been designed. In this context, we can assure that all system-level requirements are appropriately 
mapped into requirements for the subsystems. We also assure that additional requirements on 
each subsystem are addressed, such as a subsystem’s use of the system’s internal resources or ex-
ceptional conditions introduced by a subsystem that may or may not have been specified at the 
system level. 

The right-hand side of Figure 14 illustrates a second step in this process: the association of verifi-
cation activities with requirements as part of an assurance plan and their incremental execution 
throughout the lifecycle. In that context, we assess whether satisfying the subsystem requirements 
is sufficient evidence for meeting a system-level requirement or whether an explicit verification 
activity is necessary. 

 

Figure 14: Requirement Decomposition and Verification 

Figure 15 shows this process applied recursively. Because the hierarchy reflects the architecture 
abstraction, we may be able to perform compositional verification. A verification activity may op-
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erate on the assumption that the subsystem requirements have been met, allowing for composi-
tional verification, or it may provide results of a different level of fidelity, depending on the level 
of expansion in the architecture hierarchy. 

 

Figure 15: Requirement Decomposition and Verification One Layer at a Time 

This process of incrementally refining a system architecture and analyzing the virtually integrated 
system early in the lifecycle leads to early discovery of system-level problems that are currently 
not discovered until after unit testing. The same process also leads us to assure the system incre-
mentally throughout the lifecycle by evolving the assurance plan and incrementally executing ver-
ification activities against it. This is graphically illustrated in Figure 16. 

 

Figure 16: Incremental Assurance Through Virtual System Integration 

Early Discovery Reduces Rework
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3 Modeling ASSA as Operational Context for MIS and DCFM 

Together, the MIS Stakeholder Requirements document, the MIS SSS document, and the BAA 
Supplement document provide descriptions of the operational context for MIS and DCFM. In this 
section, we explain how we capture this operational context in AADL models to help us identify 
the system boundaries of MIS and of DCFM. 

To do this, we created three projects in the Open Source AADL Tool Environment (OSATE). The 
first project, SituationalAwarenessCommon, contains AADL models of concepts and services 
used in the other two projects. The second project, SituationalAwarenessSystem, contains the 
AADL model and requirement specifications as a record of the information found in the docu-
mentation provided to us. The third project, SituationalAwarenessRefArch, contains an AADL 
model of the ASSA reference architecture and its configuration for a specific aircraft platform. 

3.1 Points of Interaction with the Operational Environment 

In our case study, the first step is to translate the information from the MIS Stakeholder Require-
ments document into an AADL model and annotate it with appropriate specifications of stake-
holder goals. This document tells us that we are dealing with a situational awareness system for 
aircraft survivability. 

One objective of the stakeholder requirements elicitation process is to establish a common under-
standing of the application domain, domain-specific concepts, and desired capabilities. The ASSA 
system collects observational data about the operational environment, in particular about threats, 
obstacles, terrain, and weather. All these factors potentially affect the survivability of the aircraft. 
The ASSA system performs data correlation, data fusion, and situation assessment and reports the 
results to the pilot and an automated rerouting system. Both of these entities can take corrective 
actions to avoid or recover from situations that negatively affect aircraft survivability. In other 
words, ASSA together with the pilot or automated rerouting system acts as a control system to 
manage the flight path of the aircraft. For more information about sensor correlation and fusion 
processes, the Air University New World Vistas volume on sensors provides a nice framework 
[AU 1996]. 

We specify the entities of the operational environment as abstractly as possible, but still with a 
precise characterization relevant to performing situational awareness functions. For example, dif-
ferent threats may be characterized as stationary or moving, while obstacles may always be char-
acterized as stationary. 

Figure 17 illustrates the ASSA system in its operational context. The key entities that the system 
will observe are shown on the left as solid-line rounded rectangles, while additional entities are 
shown as dashed-line rounded rectangles. The figure also shows specific types of threats to be ob-
served. 
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Figure 17: Operational Context of the Situational Awareness System 

3.2 Observed Entities and ASSA Context 

Another early step is to identify entities in the operational context that ASSA must track. We use 
data modeling techniques to capture those entities. With AADL, we can use the abstract compo-
nent type construct to represent these entities. We place all the abstract component types in a 
package called SAObservations. For data modeling, we could also use other notations such as 
Unified Modeling Language (UML) class diagrams. In that case, we would map relevant aspects 
of the resulting UML data model into AADL using the Data Modeling Annex guidance. 

The MIS Stakeholder Requirements document identifies three types of entities: threats, obstacles, 
and terrain. We use the AVCIP::aliases property to keep track of different terms that are used in 
various documents and seem to describe the same concept or entity. By recording this infor-
mation, we can later confirm whether this is actually the case or whether each term represents a 
different concept or entity. 

Threats are entities that can inflict damage to the aircraft with weapons. The stakeholder require-
ments and other documents identify different types of threat. We capture them as abstract compo-
nent types in a type hierarchy, as shown in Figure 18. This is done by declaring a type as an 
extension of the type Threat, as shown in textual AADL in Figure 19. The type Threat indicates 
that all subtypes of threat must be considered. In some documents, only subsets of the threat types 
are identified; for example, the DCFM data model has an enumeration type that identifies only 
three of the threat types. The type hierarchy helps us recognize and resolve such ambiguities. 

 

Figure 18: Observables in the Operational Environment 
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abstract Threat 

end Threat; 

abstract BallisticWeaponsFire extends Threat 

properties 

 ACVIP::aliases => ("HostileFire (in DCFM Data Model)", 

 "HostileFireDetectionSystem"); 

end BallisticWeaponsFire; 

Figure 19: Textual Threat Specification 

Obstacles are entities that may be in the flight path and can cause a collision. Examples of obsta-
cles are towers and electrical power lines. We find two more specific terms for obstacles: flight 
path obstacles and wire obstacles. By relating them in a component type hierarchy and providing 
appropriate descriptions, we can clarify the intended meaning and relationship of each term. For 
example, is WireObstacle a subclass of FlightPathObstacle, or are they two orthogonal catego-
ries? 

One of the documents indicates that aircraft are lost more often due to collision with obstacles 
than due to threats. This provides a rationale in the stakeholder requirements for tracking obsta-
cles. We initially record this information as part of the Obstacle abstract type using the 
ACVIP::Rationale property and include it as rationale for a stakeholder goal regarding obstacles. 

The third type of entity is terrain. In low-altitude flight, it is critical for an aircraft and the pilot to 
be aware of the terrain. 

Various documents also refer to other aircraft and adjacent aircraft, the weather, and a Common 
Operational Picture (COP) as entities that the system must be aware of. Again, by relating these 
entities we can reduce ambiguity in the interpretation of these concepts. It helps answer questions 
such as “Is weather part of the COP?” “Are other aircraft and adjacent aircraft the same?” and 
“Are enemy aircraft and coalition aircraft being distinguished?” 

Finally, we specify the ASSA system as an AADL system type with two outputs, as shown in Fig-
ure 20. It is defined in the package ASSASystem. The two outputs are presenting situation aware-
ness results to the aircrew and passing the results to an automatic control system, such as a flight 
path rerouter. We use the property JMRMIS::ObservedObjects to indicate the entities that ASSA 
will observe. The values refer to the abstract types we defined in SAObservations. This leaves 
open the decision as to whether ASSA sensors are part of the ASSA system or outside the ASSA 
system. The property JMRMIS::ObservationRadius is used to indicate the expected radius within 
which awareness is raised to the aircrew (according to the Stakeholder Requirements document). 

As we identify information that is expected to be supplied to the ASSA system by other aircraft 
systems, we specify corresponding incoming features in the ASSASystem system type, such as 
OwnAircraftPosition. We use feature group declarations in cases where multiple pieces of infor-
mation will be communicated, such as the information presented to the aircrew. Where appropri-
ate we may identify a specific data type, as illustrated for OwnAircraftPosition. 

system ASSASystem 

features 
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  IncomingCOP: in data port; 

  FENNLocations: in data port; 

  GeospatialData: in data port; 

  EnvironmentalInformation: in data port; 

  Weather: in data port; 

  OwnAircraftPosition: in data port MissionSystemDataTypes::Position; 

  AMPSInterface: in out event data port; 

  ThreatAlerts: out feature; 

  ASSAAirCrewPresentation: out feature group ASSAInterfaces::AirCrewSAInformation; 

  ASSAAutoControl: out feature group; 

properties 

  JMRMIS::ObservedObjects => ( 

    classifier (SAObservations::Threat), 

    classifier (SAObservations::Obstacle), 

    classifier (SAObservations::Terrain) ); 

  JMRMIS::ObservationRadius => 5 NM applies to SA_AirCrewPresentation; 

end ASSASystem; 

Figure 20: ASSA Context as Model 

Figure 21 illustrates how we use a feature group type declaration to specify the type of infor-
mation expected to be presented to the aircrew. It is defined in the AADL package ASSAInter-
faces. Where appropriate, we use properties to characterize the presented information, such as an 
indication of the observation radius covered by each data item. 

feature group AirCrewSAInformation 

features 

  AircrewSphericalTerrainInformation : out feature { 

    JMRMIS::ObservationRadius => 5 NM;}; 

  AircrewTerrainLocationAwareness : out feature { 

    JMRMIS::ObservationRadius => 2 NM;}; 

  AircrewTerrainHeightAwareness : out feature { 

    JMRMIS::ObservationRadius => 2 NM;}; 

  AircrewTerrainHazards : out feature; 

  AircrewSphericalObstacleInformation : out feature { 

   JMRMIS::ObservationRadius => 5 NM;}; 

  AircrewRelativeFlightPathObstaclePositionAwareness : out feature { 

    JMRMIS::ObservationRadius => 5 NM;}; 

  AircrewFlightPathObstacleHeightAwareness : out feature { 

    JMRMIS::ObservationRadius => 5 NM;}; 

  AircrewFlightPathObstacleSeparationAwareness : out feature { 

    JMRMIS::ObservationRadius => 5 NM;}; 

  AircrewRelativeWireObstaclePositionAwareness : out feature { 

    JMRMIS::ObservationRadius => 5 NM;}; 

  AircrewFlightPathObstacleHorizontalSeparationAlert : out feature { 
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    JMRMIS::ObservationRadius => 5 NM;}; 

  AircrewFlightPathObstacleVerticalSeparationAlert : out feature { 

    JMRMIS::ObservationRadius => 5 NM;}; 

  AircrewSphericalAdjacentAircraftInformation : out feature { 

    JMRMIS::ObservationRadius => 5 NM;}; 

  AircrewRelativeAdjacentAircraftPositionAwareness : out feature; 

  AircrewOtherAircraftPositionAwareness : out feature; 

  AircrewOtherAircraftAltitudeAwareness : out feature; 

end AirCrewSAInformation; 

Figure 21: Information Presented to Aircrew 

3.3 Representing the ASSA Functional Architecture 

The MIS SSS document provides details about the ASSA functional architecture and system ar-
chitecture in terms of ASSA sensors. These are illustrated in Figure 22, which shows several types 
of sensors representing the data collection functionality, several instances of data correlation and 
fusions functionality, one instance of situation awareness functionality, and presentation function-
ality. In a later section, we present a reference architecture for ASSA with each of these functional 
areas that then get instantiated for particular aircraft platform and sensor configurations. 

Figure 22 shows which sensors are responsible for observing which threats, obstacles, and terrain. 
It also shows that the source of the own aircraft position is an embedded global positioning sys-
tem (GPS)/inertial navigation system (EGI) external to ASSA. We see that a data correlation and 
fusion service combines tracks from two sensor sources, while a data correlation service deals 
with only one sensor source. Correlation in this context relates the position of observed entities to 
the own aircraft position. The resultant tracks are then assessed for situational awareness against 
proximity conditions for raising awareness and alerts. 

 

Figure 22: ASSA System Functional Architecture 
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3.3.1 Functional Elements of the ASSA System 

We use the ASSASensor package to specify the different ASSA sensor types, shown graphically in 
Figure 23. The top row shows the four types of aircraft survivability threat sensors identified in 
the Stakeholder Requirements document. This document also distinguishes between active and 
passive sensors. The concrete sensors are represented by the AADL device component, while the 
concepts of Sensor and ASSASensor are represented as abstract components. 

 

Figure 23: Situational Awareness Sensors 

Each sensor type is characterized with a set of properties. They include project-specific properties 
and predeclared properties for devices: 

 JMRMIS::ObservationRadius: the maximum radius within which the sensor observes entities 

 JMRMIS::ObservedObjects: the set of entities that the sensor is designed to observe 

 JMRMIS::SensorKind: an indicator as to whether the sensor is active or passive 

 Period: the rate at which a sensor operates to collect sensor information 

We use the DCFM package to specify the data correlation and fusion functions. It includes a data 
correlation-only function, a data correlation and fusion function, and a radar track correlation 
function (the threat type that is not included in the standard track representation, according to the 
DCFM data model). Figure 24 shows the specification for the data correlation function, including 
the data types expected for the incoming and outgoing ports, the data flow from source tracks to 
the correlated track (used in analysis of latency in the end-to-end flow), and a set of project-spe-
cific and standard properties. The data correlation and fusion function has a similar specification. 
We also included contractor-specific specifications of the DCFM function, highlighting differ-
ences from the specification based on the DCFM data model. 

system DataCorrelation 

features 

  SourceTracks: in data port TrackTypes::DCFMSourceTrackSet; 

  OwnAircraftPosition: in data port MissionSystemDataTypes::Position; 

  CorrelatedTracks: out data port TrackTypes::CorrelatedThreatTrackSet; 

flows 

  ThreatCorrelation: flow path SourceTracks -> CorrelatedTracks; 
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properties 

  JMRMIS::MaxTimeStampVariation => 100 ms; 

  JMRMIS::FrameOfReference => WGS84 applies to SourceTracks; 

  JMRMIS::FrameOfReference => OwnAircraft applies to CorrelatedTracks; 

  Transmission_Type => Pull applies to SourceTracks; 

  Transmission_Type => Push applies to CorrelatedTracks; 

  JMRMIS::ObservationRadius => 25 km applies to CorrelatedTracks; 

  ACVIP::InputInterval => 100 ms applies to SourceTracks; 

  ACVIP::OutputInterval => 1 sec applies to CorrelatedTracks; 

  Latency => 1 sec .. 1 sec applies to ThreatCorrelation; 

end DataCorrelation; 

Figure 24: Data Correlation Specification 

The ASSAAssessment package contains a specification of the situation assessment function, and 
the SAAwarenessAnnunciation package contains a specification of the situation awareness display 
and the situation awareness annunciation device for the aircrew. The display specification lists 
different data items sent to the display as separate ports. For use in the reference architecture spec-
ification, we separately defined a configurable specification of the ASSAMFDDisplay in the AS-
SADisplayAnnunciation package. 

3.3.2 The Concept of Tracks as Observation Representation 

The package TrackTypes contains the specification for the concept of Track. The requirements 
documents and the DCFM data model identify source tracks and correlated tracks. We introduced 
the additional track-related concepts of track set, track sequence, and track history, which are val-
uable to the specification in an AADL model. 

We defined a data type Track with a track ID. This type indicates an instance of the track repre-
senting the position of an observed entity at a given point in time. 

We added the concepts of TrackSet and TrackSetDiff. A TrackSet represents a collection of tracks 
at a given point in time, such as the set of observations made available by an ASSA sensor or the 
set of tracks processed by DCFM. TrackSetDiff represents the difference between two track sets. 
According to the DCFM data model, DCFM produces as output a set of changes relative to the 
previous track set in terms of removing, adding, and modifying tracks in the track set. This con-
cept allows us to specify that the track set or set difference must be communicated and processed 
as a single consistent abstraction. 

Figure 25 illustrates the definition of Track and TrackSet in AADL. The track ID is identified as a 
32-bit integer, and the size of the track set is bounded by a maximum value defined as property 
constant JMRMISConstants::MaxTracksInSet. 

data Track 

properties 

  ACVIP::Description => "Track represents an observed entity at a given point in 
time"; 

end Track; 
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data implementation Track.basic 

subcomponents 

  trackID: data Base_Types::Integer_32; 

end Track.basic; 

  

data TrackSet 

properties 

  ACVIP::Description => "Set of tracks represents a collection of tracked entity at a 
given point in time"; 

end TrackSet; 

  

data implementation TrackSet.basic 

subcomponents 

  elements: data Track [JMRMISConstants::MaxTracksInSet]; 

end TrackSet.basic; 

Figure 25: Track Type Definitions in AADL 

TrackSequence represents a track of the same observed entity over time. All elements in the se-
quence are assumed to have the same track ID. We can document this assumption as a predicate 
in an associated requirement. 

TrackHistory represents a bounded track sequence, which may be used for extrapolation or for 
showing a trace of a track over recent time. 

We have separate data types for SourceTrack and CorrelatedTrack to reflect the DCFM data 
model. Our specification of SourceTrack includes Position, Velocity, and SamplingTime—the lat-
ter two are not present in the DCFM data model. We elaborated Position with a representation 
specification that includes the dimensions of a position as well as the frame of reference. The 
package MissionSystemDataTypes also contains definitions for velocity, SphericalTerrainSA, and 
other data types for data being exchanged. For CorrelatedTrack, we specify two variants to repre-
sent two variations of the relation to source tracks used in the correlation: a list of source track 
IDs and a list of actual source track (copies) as part of the correlated track. The former representa-
tion assumes that the source tracks at a given point in time remain available. The latter replicates 
the source track, increasing the memory footprint of ASSA. 

Track sets, track sequences, and correlated tracks include a specification of the maximum size of 
the set, sequence, or source track references. 

We added the data type AssessedTrack to represent a track that includes the situation assessment 
results with respect to awareness and alert thresholds. 

We introduced the JMRMIS::FrameOfReference property to specify the frame of reference used 
in the specification of a location. The frame of reference may be the World Geodetic System 1984 
(WGS84) global reference system or the own aircraft position. This allows us to extend the con-
nection-consistency check to include a consistent frame of reference across connections. 
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We introduced the JMRMIS::MaxTimeStampVariation property to specify the maximum accepta-
ble variation in time stamp values within a track set. This allows us to specify conditions under 
which variation in time results in an unsafe condition. 

The MIS System Requirements Specification document distinguishes between sensor-specific 
track representations and a standardized track representation. The latter is specified in the DCFM 
data model. The TrackTypes package includes data types for both of these categories. 

3.3.3 The Functional ASSA Architecture with Data Representations 

We use the various track data types to annotate incoming and outgoing port specifications for 
each functional element of the ASSA system. The package ASSASystem::Functional defines the 
functional architecture of the ASSA system. The interactions shown in Figure 26 are defined by 
port connections. 

 

Figure 26: Scope of Standard Track Representation 

The AADL compiler will check for various forms of type inconsistencies. Type inconsistencies 
can occur between the data types of outgoing and incoming ports on both ends of a connection. 
An elaborated form of consistency check includes comparison of base types, measurement units, 
and range of acceptable values. In our case, the checker identifies a mismatch between sensor-spe-
cific and standardized track representations (see Figure 27). They are identified at the boundary of 
the standardized track representation scope and are resolved by applying the ASSA data-conver-
sion service. Such type checking also identifies potential inconsistencies in hardware connections, 
such as whether a system is connected to the correct type and variant of a network. 

 

Figure 27: Interaction Inconsistencies in the ASSA Functional Architecture 
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3.4 Identifying the System Boundary 

The final step of this phase is the identification of the system boundary for DCFM and MIS. For 
DCFM, we determined the functions that must be packaged into the DCFM and which types of 
observations it will handle. The purple line in Figure 28 indicates the potential scope of DCFM, 
that is, whether it performs correlation and fusion of threats only or also terrain, obstacles, and 
even data from non-situational awareness sensors such as aircraft position. It also shows that 
DCFM receives aircraft position, which suggests that DCFM changes the frame of reference for 
track data from global to aircraft relative. Finally, it indicates that DCFM may perform situation 
assessment to determine whether a critical proximity threshold has been crossed. 

 

Figure 28: System Boundary of DCFM 

Note that the MIS Stakeholder Requirements document discusses threats, obstacles, and terrain, 
while the MIS SSS and the DCFM data model mention only threats. 

3.5 System Boundary and Roles of MIS 

MIS provides three services for the ASSA system: 

1. a data-conversion service as part of an infrastructure layer below ASSA 

2. a data-storage service as part of an infrastructure layer below ASSA 

3. a supervisory monitoring and control service (safety system) that oversees the nominal 
ASSA system operation in a supervisory layer above ASSA 

The relationship between the ASSA application functionality and the MIS services is illustrated in 
Figure 29 in terms of a layered architecture. The SA data-conversion and data-storage services 
can effectively be viewed as protocols to support the flow of track information through the ASSA 
system. The SA data-conversion service is employed where there is a mismatch in track data rep-
resentation, as identified in Section 3.3.3 and shown in Figure 29 by arrows to the appropriate 
connections from the SA data-conversion service. The SA data-storage service accepts output 
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from various ASSA subsystems and then makes it available to the same and other ASSA subsys-
tems. In Figure 29, arrows from the SA data-storage service identify potential candidates of data 
to be handled by this service. 

 

Figure 29: Identification of MIS Services as Layered Architecture 

The provided documents contained ambiguous information as to the complete set of data to be 
handled. For example, it is unclear whether the SA data-storage service will provide own aircraft 
position only to DCFM or also to situation assessment and to the Multi-Function Display (MFD) 
for the pilot or whether the latter should come directly from the EGI source. Similarly, it is un-
clear whether the SA data-storage service should manage assessment results as well as other situa-
tion assessment data, such as adjacent aircraft, weather, and friendly, enemy, neutral and 
noncombatant (FENN) entities. 

In addition, it is unclear whether the SA data-storage service is to store or even generate alerts. 
According to the MIS SSS, “the MIS System shall determine whether a new threat alert should be 
created,” and “the MIS System shall periodically evaluate alerts according to a periodic schedule 
defined by system configuration data to determine whether they should be deactivated.” 

Capturing requirements information in an AADL model helps identify such ambiguities quickly. 
Figure 30 shows the AADL model equivalent to the graphical depiction in Figure 29. We defined 
an ASSASystem implementation that represents a basic configuration that gets extended with addi-
tional sensors and DCFM services as appropriate. We defined instances of the SA data-conversion 
and data-storage services as abstract components. We recorded the association of these services 
with different connections in the model by the property ACVIP::Service_Binding. For some con-
nections, we identified the need for both data conversion and data storage, while for others we 
identified data-storage only. 

system implementation ASSASystem.Common 

subcomponents 

  APR39D : device ASSASensors::APR39D; 

  WW : device ASSASensors::WeaponsWatch; 
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  RadarDCM : system DCFM::RadarTrackCorrelation; 

  SAAssessment : system ASSAAssessment::SituationAssessment; 

  AirCrewDisplay : device SAAwarenessAnnunciation::SituationAwarenessDisplay; 

  AircrewAnnunciation : device SAAwarenessAnnunciation::SAAnnunciationDevice; 

  ASSAHealthMonitor : abstract; 

  ASSADataService : abstract ASSADataService; 

  ASSADataConversion : abstract ASSADataConversion; 

connections 

  WeatherInfo : port Weather -> AirCrewDisplay.WeatherInformation; 

  RadarTracks : port APR39D.SourceTracks -> RadarDCM.SourceTracks; 

  CorrelatedRadars : port RadarDCM.CorrelatedTracks -> SAAssessment.RadarTracks; 

  CorrelatedRadarTracks : port RadarDCM.CorrelatedTracks -> AirCrewDisplay.RadarInfor-
mation; 

  AssessedTracks : port SAAssessment.AssessedTracks -> AirCrewDisplay.AssessedInfor-
mation; 

  SAAlerts : port SAAssessment.Alerts -> AircrewAnnunciation.Alerts; 

  AircrewVisuals : feature group AirCrewDisplay.AircrewSAInformation -> ASSAAirCrew-
Presentation; 

  MyPositionAssessment : port OwnAircraftPosition -> SAAssessment.OwnAircraftPosition; 

  MyPositionDisplay : port OwnAircraftPosition -> AirCrewDisplay.OwnAircraftPosition; 

flows 

  RadarAlert : end to end flow APR39D.RadarObserved -> RadarTracks -> 

    RadarDCM.RadarCorrelation -> CorrelatedRadars -> 

    SAAssessment.RadarAlerts -> SAAlerts -> AircrewAnnunciation.SoundAlerts; 

  RadarObservation : end to end flow APR39D.RadarObserved -> RadarTracks -> 

    RadarDCM.RadarCorrelation -> CorrelatedRadars -> 

    SAAssessment.RadarAssessment -> AssessedTracks -> 

    AirCrewDisplay.AssessedThreatInfo; 

properties 

  Latency => 1650 ms .. 1650 ms applies to RadarObservation, RadarAlert; 

  ACVIP::Supervise => (reference (APR39D), reference (WW)) 

 applies to ASSAHealthMonitor; 

  ACVIP::Service_Binding => (reference (ASSADataService)) 

 applies to CorrelatedRadarTracks, CorrelatedRadars, SAAlerts, 

         MyPositionAssessment,MyPositionDisplay, WeatherInfo; 

  ACVIP::Service_Binding => (reference (ASSADataService), 

          reference (ASSADataConversion)) 

 applies to RadarTracks; 

end ASSASystem.Common; 

Figure 30: ASSA System Information Flows and the Data-Conversion and Data-Storage Services 

The data types on the ports involved in various connections identify whether they expect individ-
ual tracks, the most recent track set, or a track history. This lets us determine the types of data re-
quests that the SA data-storage service is expected to handle. 
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The SA health monitor is responsible for determining whether all elements of the ASSA system 
are operational. In other words, it acts as the safety system for ASSA to ensure that the aircrew 
can safely operate the aircraft from an aircraft survivability perspective. Potential issues with its 
specification will be discussed in the context of the ASSA system safety analysis [Feiler 2015c]. 

3.6 ASSA Functional Architecture Performance 

At this stage, we can consider two types of performance-related quality attributes: 

1. response time of the ASSA system for informing the aircrew about a threat, obstacle, or ter-
rain 

2. expected maximum data volume to be processed 

3.6.1 ASSA System Response Time Analysis 

As we investigated response time requirements for the ASSA system, we defined the end-to-end 
flow from the time that a sensor detects a threat to the time that the pilot sees the threat on the dis-
play. We annotated this definition with the appropriate Latency property value. This response time 
is of interest to stakeholders in the ASSA system, such as the pilot. 

MIS documentation mentions an expected latency of 1,600 milliseconds (ms) for threats. The re-
quirement statement does not distinguish between different types of threats. Also, there are no re-
quirement statements about latency for obstacles or terrain. In the AADL model, we can add 
flows with the appropriate latency values as necessary. 

We annotated each of the functional subsystems with various types of performance-related prop-
erties. Where appropriate we defined the Period at which a functional unit is intended to operate. 
The requirement documents indicate that ASSA and MIS services may operate at rates between 
100 ms and 1 s. For the purpose of response time analysis, we assume a best case of 100 ms. 

We also defined flow specifications for each component, including flow sources when data starts 
within a component, flow paths from a component input to its output, and flow sinks when data 
flow ends within a component. For each of those flows, we specified an expected latency value. In 
addition, we specified latency contributions by the SA data-conversion and data-storage services. 

For the SA data-storage service, documentation indicates that clients request data from it. This 
“pull” protocol adds one frame of communication delay, in the best case of 100 ms, if the SA 
data-storage service and the client reside in different partitions. 

Within the ASSASystem implementation declaration, we included end-to-end flow specifications 
for radar and for hostile fire threats. For each we defined an end-to-end flow from the sensor to 
present the correlated track on the display without going through situation assessment (Radar-
Observation and HostileFireObservation), an end-to-end flow from the sensor to provide a warn-
ing as result of situation assessment (RadarAssessment and HostileFireAssessment), and an end-
to-end flow from the sensor to the annunciation device to provide an alert as result of situation as-
sessment (RadarAlert and HostileFireAlert). 

After we created an instance model for the ASSA system and ran the end-to-end latency analysis, 
we got a first set of results that accounted for latency contributions by all the functional units as 
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well as the SA data-conversion and SA data-storage services. The AADL Wiki provides details on 
how the latency analysis works and how to interpret the results [SEI 2015]. 

Figure 31 shows the analysis results for RadarObservation. The maximum latency is less than the 
expected maximum latency, and the same is true for the minimum latency. In addition, the analy-
sis compares the expected latency jitter against the calculated latency jitter, that is, the difference 
between the minimum and maximum latency. In this case, the calculated jitter is less than the ex-
pected jitter. 

 

Figure 31: Response Time for Observed Enemy Radar Track 

Figure 32 shows the analysis results for RadarAssessment when the processing path includes situ-
ation assessment processing. In this case, the numbers are slightly higher. Both the maximum and 
minimum calculated latency are less than the expected values. However, the calculated latency 
jitter is larger than the expected latency jitter; thus, it produces an error message. 

 

Figure 32: Response Time for Assessed Enemy Radar Track 

In Section 4.2, we revisit the latency analysis on the ASSA system as elaborated into a design ar-
chitecture. 

3.6.2 Track Data Volume 

The volume of track data to be processed is essential for determining the memory footprint of the 
SA data-storage service as well as that of functional units. In addition, the volume affects trans-
mission time between functional units and processing time by the units. 

We introduced two properties—ACVIP::OutputInterval and ACVIP::InputInterval—that allow 
the modeler to specify the rate at which input is expected and output is intended to be sent. As we 
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do this for each functional unit, a consistency checker can ensure that the outgoing rate is con-
sistent with the incoming rate for each connection. The data volume is also affected by the size of 
each track set being communicated. To account for this variability, we specified maximum track 
set sizes using the Data_Model::Dimension property. For the property value, we used a property 
constant. The property constants themselves are defined in the property set JMRMISConstants. 
The constants allow us to change the sizes of various types of track sets in a single place without 
searching through the model for each occurrence. 
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4 ASSA System Design Architecture 

In this section, we summarize the ASSA system design architecture, in which the SA data-conver-
sion and SA data-storage services are explicitly included. We also provide a specification of inter-
action protocols used in communicating SA data between subsystems. We do so by defining the 
protocol as a virtual bus with the appropriate latency contribution specified as the Latency prop-
erty. We also model each protocol implementation as an AADL model and analyze it to verify 
that the latency value used in the protocol specification is correct. 

4.1 ASSA Design Architecture 

The ASSA system design architecture is specified in the package ASSASystem::Design. We cre-
ated two variants of the design architecture: 

1. ASSASystem.MISDataConversionArchitecture: In this architecture, the SA data-conversion 
service is inserted into the interactions between ASSA components, while the SA data stor-
age is represented as a service in a layer below. In this case, the information flow is still ap-
parent in the model. 

2. ASSASystem.MISDataServiceArchitecture: In this architecture, the SA data-storage service is 
also inserted into the interactions between ASSA components. In this case, all interactions 
between ASSA components become interactions with the SA data-storage service. The result 
is a model in which the information flow between ASSA components becomes implicit in 
the storage and retrieval order of data to and from the SA data-storage service (see Figure 
33).
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Figure 33: ASSA System Design Architecture with SA Data-Conversion and Data-Storage Services
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4.2 Performance Analysis of the ASSA System Design Architecture 

In this section, we revisit response time requirements and perform appropriate analysis on this 
more detailed architecture. We also represent the interactions between the ASSA application com-
ponents as protocols and model the implementation of each protocol in AADL in the context of an 
ARINC 653–compliant partitioned architecture to determine the latency contribution of each in-
teraction. 

4.2.1 Response Time Requirement Revisited 

The MIS SSS document states that “The MIS System shall publish Correlated Tracks to Client 
Systems in less than 1,600 ms measured from the pop-up threat arrival time from one or more 
AST Systems.” When we interpret this statement in the context of the ASSA design architecture, 
we realize that the response time is the flow from the time that track data arrives from one of the 
ASSA sensors to the time that data is sent to the display (see Figure 28). This is different from the 
end-to-end flow specification in the previous section, which reflected the notion of response time 
useful to stakeholders. This distinction allows us to clarify that the 1,600-ms response time was 
not intended to reflect the response time from threat appearance to observation by the aircrew but 
instead that the response time will actually be larger and thus present a greater risk. 

4.2.2 Interaction Protocols 

From the requirements documents, we gathered that the communication from the SA sensors to 
the SA data service is a “push” architecture; that is, the data is transferred at the rate the sensors 
produce it. The DCFM and the aircrew display request data to be sent at the rate of the receiver, 
which is a “pull” architecture. AADL has a Transmission_Type property that allows modelers to 
indicate which connections assume a push or a pull.6 

We also know that different ASSA system functions reside in different partitions: data conver-
sion, DCFM, SA data storage, and display. At this stage of modeling, we can reflect cross-parti-
tion communication and the resulting latency contribution in a protocol abstraction modeling the 
details of a particular partition configuration. Later, we can elaborate the architecture, map each 
functional unit into the appropriate partitions, and revisit the latency analysis to ensure that the ab-
stractions we introduced here are consistent. 

The package MISProtocols contains several virtual bus specifications, each reflecting a different 
protocol. Different connections of the ASSA system design architecture include a specification of 
the type of protocol that we expect to be used, which is expressed by the Required_Virtual_Bus_
Class property. The end-to-end latency analysis will take this property into account in order to in-
clude latency contributions by the respective protocol. The protocols are: 

 SensorPushProtocol: communication from the SA sensor to the SA data-conversion function 
(also referred to as “sensor manager” in some documents). Its latency contribution can vary 
between zero and a maximum of a major partition frame, depending on the alignment of the 

 

6  Push/pull is different from publish/subscribe. Publish/subscribe allows a system to dynamically establish con-
nections without knowing the other party. In push/pull, the sender or receiver determines the transmission rate 
over an established connection. 
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recipient partition windows with the sensor dispatch schedule. Note that transfer latency by a 
physical bus will be represented separately by an AADL bus component. 

 PullProtocol: a single request/reply cycle across a partition boundary. Its latency is specified 
as a minimum and maximum of 100 ms—the smallest partition rate. 

 PullDCFMInputDataSetProtocol: an abstraction of the DCFM interaction protocol specified 
as a sequence diagram in the original documentation. The diagram specifies that DCFM inter-
acts with SA data storage through three sequential request/reply actions. We specify its la-
tency as a minimum and maximum of 300 ms. 

 SADataServiceProtocol: an abstraction of the SA data service as a communication protocol. 
We use it in the MISDataConversionArchitecture variant of the ASSA system design archi-
tecture and verify it in the MISDataServiceArchitecture variant. 

The package also contains models of the implementation of these protocols running on a parti-
tioned processor system. We use these implementation models to determine the latency contribu-
tion by the protocol, that is, to verify the latency value used in the virtual bus specification of the 
protocol. The implementation model has a sending thread and a receiving thread. Each thread has 
a set of ports that represent the request/reply interactions. The sender/receiver interaction is repre-
sented by an end-to-end flow, which is shown graphically in Figure 34. 

 

Figure 34: Three-Step Pull Protocol 

We modeled the protocol implementation in two ways: 

1. Immediate and delayed connections: In this case, we use the semantics of the AADL imme-
diate connection (communication within the same frame) and delayed connection (communi-
cation to the next frame) to reflect the cross-partition delay in one of the two directions 
through the connection semantics. Depending on whether the sender or the receiver has the 
earlier partition window, the frame boundary is crossed on reply or on request (delayed con-
nection). 

2. Explicit partition binding: In this case, we introduce a processor with two partitions and bind 
the sender and the receiver to one partition each. Then we validate that one direction is 
frame-delayed based on actual partition schedules. We can switch the binding of the sender 
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and receiver to demonstrate that the result is independent of the partition order in the sched-
ule. We can also explore whether placing partitions on different processors creates additional 
latency overhead. 

In the AADL model, we defined the protocol once and then configured it as the two implementa-
tion variants, as shown in Figure 35. Each configuration is instantiated and analyzed for end-to-
end latency. The next section discusses the results of this analysis. 

abstract implementation PullInputDataset.CrossPartitionTasks 

    extends PullInputDataset.Common 

properties 

 Timing => immediate applies to STRequest, CTRequest, APRequest; 

 Timing => delayed applies to STReply, CTReply, APReply; 

end PullInputDataset.CrossPartitionTasks; 

  

abstract implementation PullInputDataset.PT extends PullInputDataset.Common 

subcomponents   

  pform : processor ASSAHardware::GPU.TwoPartition; 

properties 

  Actual_Processor_Binding => (reference(pform.part1)) applies to requestor; 

  Actual_Processor_Binding => (reference(pform.part2)) applies to sender; 

end PullInputDataset.CrossPartitionTasks; 

Figure 35: Two Implementation Configurations of the Three-Step Protocol 

4.2.3 Response Time Analysis 

In this example, we demonstrate compositional response time analysis in two steps. First, we per-
form end-to-end latency analysis for each protocol implementation to verify that the computed la-
tency of the implementation corresponds to the specified latency values in the virtual bus 
abstraction. Second, we verify the end-to-end latency for the ASSA system based on the required 
binding specifications to the virtual buses representing the protocol abstraction. 

In the case of the PullDCFMInputDataSetProtocol, we get a latency of 600 ms. This is due to the 
default preference setting for latency analysis. By default, cross-partition data transfer is assumed 
to occur at the end of a major frame. There is a delay of 100 ms for each of the three requests and 
replies. If we change the setting in the OSATE Preferences for latency analysis to Partition End 
output policy so that output is flushed at partition end rather than frame end, we get 100 ms for 
each request/reply pair of the protocol. We reflect these results in the latency specification of the 
virtual bus that represents the respective protocol. 

When we instantiate the design architecture of ASSA and perform latency analysis, we include 
the latency contributions of these protocols. The result is shown in Figure 36. It indicates that for 
the synchronous system case, the response time exceeds the required 1,600 ms. 
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Figure 36: Response Time Analysis Results with Latency Contributions for the Cross-Partition Pull 
Protocol 
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5 Maintaining Requirement Specifications in ALRS 

The AADL specification of a system such as ASSA or DCFM—expressed as an annotated system 
type, abstract type, or device type—acts as a requirements specification in two ways: 

1. The customer or acquirer has developed a specification. The supplier response, also ex-
pressed as an AADL specification, is compared against the original for compliance to deter-
mine whether it meets the customer’s interest. 

2. A specification represents a contract that a system implementation must meet. In this case, 
AADL models of the system architecture design, detailed design models in other notations, 
and code must be verified against this specification. 

In this section, we introduce the ReqSpec notation, which allows us to explicitly identify different 
parts of this system specification as a set of traceable requirements whose verification and satis-
faction can be demonstrated by a set of verification actions. A more complete description of 
ReqSpec will appear in a forthcoming report.7 

5.1 The ReqSpec Notation 

In this case study, we use ReqSpec, the requirements specification subset of the RDAL draft 
standard metamodel in textual form. The notation has its roots in goal-oriented requirements engi-
neering, which distinguishes between stakeholder requirements, referred to as goals, and system 
requirements, referred to as requirements. Goals express stakeholder intent and may conflict with 
each other, while system requirements represent a contract that the system implementation must 
meet. 

The notation accommodates several capabilities: 

 Import of existing stakeholder and system requirements documents, such as from DOORS, 
allows users to examine and reference them without the respective external tool. 

 Definition of placeholders for other external documents, such as the MIS BAA Supplement, 
allow for references into these documents by other RDAL elements. 

 Goals and requirements can be associated with an architecture model expressed in AADL. 
These goals and requirements may have been imported from existing documents, or they may 
have been specified separately in the context of an architecture model. In the latter case, 
ReqSpec maintains traceability to existing requirements documents. 

 ReqSpec facilitates an explicit record of goal and requirement refinement, decomposition, and 
evolution. This record may identify conflicts between goals. 

 Association of verification actions with requirements can specify how they are to be verified 
and satisfied. 

 

7  Feiler, P. and Delange, J. A Requirement Specification Language for AADL. CMU/SEI-2015-SR-034. Software 
Engineering Institute, Carnegie Mellon University. Forthcoming. 
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5.2 Goal and Requirement Specifications 

RDAL goal and requirement specifications are associated with AADL component types, compo-
nent implementations, and elements within them. A goal or requirement specification has the fol-
lowing elements. All but the name are optional. 

 name: unique identifier with respect to other goals (or requirements) for the same component 

 title: a short descriptor of the goal or requirement 

 for: reference to a model element within a component, such as a port or end-to-end flow 

 category: indicator of a goal or requirement category (e.g., assumption, guarantee, safety, per-
formance). Categories are user definable. 

 description: a long descriptor of the goal or requirement 

 a set of variables: used to parameterize goal and requirement specifications. Many of the 
changes to a goal or requirement are in a value used in the goal or requirement specification. 
Variables allow users to define a requirement value once and reference it in the description, 
predicates, and verification activities of verification plans expressed in a Verify notation8. 

 rationale: rationale for the goal or requirement 

 refines: reference to another goal (requirement) of the same component that this goal (re-
quirement) refines. This represents the refinement of goals (requirements) for a specific sys-
tem into more detailed requirement specifications for the same component. 

 conflicts with (goal only): list of other goals that this goal may conflict with 

 evolves: reference to a goal (requirement) of the same component that another goal (require-
ment) evolves to. This provides a record of a goal (requirement) evolving into another specifi-
cation over time. Dropped is used to indicate that the original requirement of the evolved 
requirement is not relevant any more. 

 stakeholder (goal only): list of stakeholder references for a given goal 

 see: reference to a model element or property in the model that represents the requirement in 
the model 

 see document requirement: reference to a stakeholder requirement in an existing document 

 see document: reference to an external document and element within expressed as a Uniform 
Reference Identifier (URI). It records the fact that a stakeholder requirement is found in a 
document other than an imported requirement document. 

 issues: list of text strings expressing issues with respect to the goal or requirement 

In the ReqSpec syntax, the elements within the square brackets can be declared in any order. The 
syntax of a goal declaration is as follows: 

Goal ::= 

goal Name ( : Title )? 

  ( for TargetElement )? 

 

8  The Verify notation is part of a set of notations developed under the Incremental Lifecycle Assurance project 
and will be published in early 2016. 
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[ 

  ( category ( <ReqCategory> )+ )? 

  ( description )? 

  ( ConstantVariable )* 

  ( rationale String )? 

  ( refines ( <Goal> )+ )? 

  ( conflicts with ( <Goal> 
)+)? 

  ( evolves ( <Goal> )+)? 

  ( dropped )? 

  ( stakeholder ( <Stakeholder> )+ )? 

  ( see document requirement ( <Requirement> )+)? 

  ( see document ( DocReference )+ )? 

  ( issues (String)+ )? 

  ( ChangeUncertainty )? 

] 

 

Title ::= String 

TargetClassifier ::= <AADL Component Classifier> 

TargetElement ::= <ModelElement> 

DocReference ::= URI to an element in an external document 

The following elements are for requirement specifications only: 

 predicate: a formalized specification of the condition that must be met to indicate that the re-
quirement is satisfied. The predicate may refer to variables defined as part of this requirement 
or the enclosing requirement specification container. 

 mitigates: reference to one or more hazards that the requirement addresses. A hazard is repre-
sented by an error propagation in an error model EMV2 subclause for a component. 

 decomposes: reference to a goal (requirement) of an enclosing component. This represents the 
decomposition of system goals (requirements) into goals (requirements) of subsystems. 

 development stakeholder: reference to a stakeholder from the development team, such as a 
security engineer or a tester. During architecture design, design choices may lead to new re-
quirements, whose stakeholder is the developer making the choice. 

 see goal: reference to a (stakeholder) goal that the (system) requirement is related to 

The syntax of a requirement specification declaration is as follows: 

Requirement ::= 

requirement Name ( : Title )? 

  ( for TargetElement )? 

[ 

  ( category ( <ReqCategory> )+ )? 

  ( description )? 

  ( Variable )* 
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  ( Predicate )? 

  ( rationale String )? 

  ( mitigates ( <Hazard> )+ )? 

  ( refines ( <Requirement> )+)? 

  ( decomposes ( <Requirement> )+)? 

  ( evolves ( <Requirement> 
)+)? 

  ( dropped )? 

  (development stakeholder ( <Stakeholder> )+ )? 

  ( see goal ( <Goal> )+)? 

  ( see document goal ( <Goal> )+)? 

  ( see document requirement ( <Requirement> )+)? 

  ( see document ( DocReference )+ )? 

  ( issues (String)+ )? 

  ( ChangeUncertainty )? 

] 

5.3 ReqSpec Files 

ReqSpec declarations are not embedded in the AADL through annex clauses. Instead they are 
placed in separate files with the extension goals for a set of stakeholder goals, reqspec for a set of 
system requirements, goaldoc for stakeholder goal documents, and reqdoc for system requirement 
documents in document section format to mirror existing text documents. 

The StakeholderGoals construct is a container for Goal declarations that are associated with a 
specific system. The system is identified by its AADL component classifier declaration using the 
for clause. The NestedName can be an identifier or a sequence of identifiers separated by a <dot>, 
for example, aircraft.system. This is similar to AADL package names where :: is used as separa-
tor. 

The ConstantVariable is available to all goal declarations in this StakeholderGoals container. 

StakeholderGoals ::= 

stakeholder goals NestedName ( : Title )? 

 for TargetClassifier 

[ 

  (description )? 

  (see document ( DocReference )+ )? 

  ( ConstantVariable )* 

  ( Goal )+ 

  ( issues (String)+ )? 

] 

The SystemRequirements construct is a container for Requirement declarations. It is typically used 
to group together system requirements for a particular system; for components of a specified cate-
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gory, such as a requirement for all processors to be schedulable; or for components of all catego-
ries. The system is identified by its AADL component classifier declaration using the for clause. 
Separately defined constants (use constants) and locally defined variables are available to all re-
quirements within the SystemRequirements container. 

SystemRequirements ::= 

system requirements NestedName ( : Title )? 

 for ( TargetClassifier | ComponentCategory | all ) 

 ( use constants <GlobalConstants>* )? 

[ 

  ( description String )? 

  (see document ( DocReference )+ )? 

  ( Variable )* 

  ( Requirement )* 

  ( issues (String)+ )? 

] 

Goals and requirements can be referenced by qualified name—that is, by the SystemRequirements 
name and the Requirement name—separated by a <dot>. For an example, see Figure 39, which 
shows a reference from a requirement to a goal. In some cases, qualification is not necessary, such 
as when a requirement refines another requirement and both are declared in the same SystemRe-
quirements container. 

The Document construct represents existing stakeholder goals or system requirements documents 
that are imported into a ReqSpec representation. In these documents, goals and requirements are 
organized into sections. Once an existing stakeholder requirements or system requirements docu-
ment has been imported into ReqSpec, users can associate its goals with an AADL model and per-
form traceability and consistency checks on stakeholder goals and system requirements. 

A Document contains a set of document sections, stakeholder goals, or system requirements. A 
DocumentSection can recursively contain document sections, stakeholder goals, or system re-
quirements. A Document represents a name scope for the goal and requirement declarations con-
tained in it; a goal or requirement is referenced by the Document name and the goal or 
requirement name, separated by a <dot>. Document sections do not contribute to qualifying a 
name. This means that goal and requirement declarations must be unique within the Document. 

Document ::= 

document Name ( : Title )? 

[ 

  (description String )? 

  ( Goal | Requirement | DocumentSection )+ 

  (issues (String)+ )? 

] 

 

DocumentSection ::= 

section Name ( : Title )? 
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[ 

  (description String )? 

  ( Goal | Requirement | DocumentSection )+ 

  (issues (String)+ )? 

] 

The organization notation allows users to define organizations and stakeholders that belong to or-
ganizations. Stakeholder names must be unique within an organization. Stakeholders are refer-
enced by qualifying them with the organization name. Each organization is declared in a separate 
file with the extension org. 

Organization::= 

organization Name 

  ( Stakeholder )+ 

 

Stakeholder ::= 

stakeholder Name 

[ 

  ( full name String )? 

  ( title String )? 

  ( description String )? 

  ( role String )? 

  ( email String )? 

  ( phone String )? 

] 

The following is an example set of stakeholder declarations. 

organization mrj 

stakeholder cs 

[ 

 full name "Claude Shannon" 

 title "Lead Engineer" 

 description "Mission system user" 

 role "JMR representative" 

] 

 

stakeholder hl 

[ 

 full name "Heddy Lamarr" 

 title "Principal Researcher" 

 description "System architect" 

 email "heddylamarr@screensiren.com" 

 phone "555-555-5555" 

 role "Responsible for ASSA System Design" 

mailto:heddylamarr@screensiren.com
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] 

Requirement categories are user-definable in files with the extension cat. The following is a sam-
ple. 

requirement categories 

[ 

 safety 

 security 

 performance 

] 

5.4 ASSA System Goal and Requirements Specification 

We used ReqSpec declarations in two ways for the ASSA system. First, we imported the content 
of the MIS Stakeholder Requirements document and the MIS System Requirements Specification 
document into the OSATE environment (MISStakeholderRequirements.goaldoc and MIS-
SSS.reqdoc). Figure 37 illustrates the result of importing a stakeholder document. Users can then 
develop an AADL model to represent concepts, entities in the operational environment, and sys-
tem components and identify them in goals with a for clause. Then a ReqSpec tool can identify 
whether requirements in a document section address a single system or refer to multiple subsys-
tems at different architecture levels (as illustrated notionally in Figure 3). 

document MISStakeholderRequirements [ 

  section ActualRequirements [ 

    goal SR_57 : "MIS shall operate during all aircraft operations missions and flight 
profiles" [ 

      stakeholder mrj.hl 

    ] 

    goal SR_56 : "MIS shall operate during visual meteorological conditions" [ 

      stakeholder mrj.hl 

    ] 

Figure 37: Sample of Imported Stakeholder Requirements 

Second, we created a set of ReqSpec stakeholder goal and system requirement declarations that 
are associated with a system represented in an AADL model. In this case, the requirements are or-
ganized around elements in the system architecture. Figure 38 shows an example of a set of goals 
specified for ASSASensor. The name of the stakeholder goal set mirrors the qualified name of the 
system classifier, but does not have to do so. Each goal specification has a unique name within the 
goal set. In our example, it includes a title, description, stakeholder reference, and list of refer-
ences to the MIS Stakeholder Requirements document. 

stakeholder goals ASSASensors.ASSASensor for ASSASensors::ASSASensor [ 

  goal goal1 : "Passive ASE (ASSA sensor type}" 

  [ description "MIS shall support passive SA sensors (ASE)" 

    stakeholder mrj.cs 

    see document requirement MISStakeholderRequirements.SR_13 

      MISStakeholderRequirements.SR_69 MISStakeholderRequirements.SR_15 
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  ] 

] 

Figure 38: Goal Set for ASSA Sensors 

Figure 39 illustrates a set of system requirements for a particular component. The component type 
is identified by the for statement. The first requirement is associated with the component. It uti-
lizes a constant variable (val) to specify a requirement value that may change. The variable is ref-
erenced in the description text. The requirement also includes a cross-reference to a goal in the 
imported stakeholder goals document. 

The second requirement is defined for an element of the component type; a particular port is iden-
tified by the for clause. The requirement declaration includes a constant variable for the desired 
observation radius. This variable is referenced in the description text as well as in the value predi-
cate specification. A second variable (compute) is defined as a placeholder for values computed 
by verification methods used to verify this requirement. The value predicate specifies how the 
system will compare the desired (required) value and the value resulting from an analysis, simula-
tion, or test run. 

system requirements PassiveSensorReqs for ASSASensors::PassiveTerrainSensor 

[ 

  requirement Req4 : "Passive sensor" 

 [ 

  val EnergyLevel = 0 

  description "Passive sensor radiates " EnergyLevel " energy" 

  see document goal MISStakeholderRequirements.SR_27 

 ] 

 requirement Req1 : "Spherical terrain awareness for aircrew" 

 for  TerrainSphere 

 [ 

  description "Spherical SA of terrain within " DesiredObservationRadius " radius for 
aircrew" 

  val DesiredObservationRadius = 5 nm 

  compute  MeasuredDistance 

  value predicate  MeasuredDistance >= DesiredObservationRadius 

  see document goal MISStakeholderRequirements.SR_27 

 ] 

] 

Figure 39: Example of Requirement Specification Aligned with an AADL Model 

We also defined stakeholders and requirement categories. Figure 40 shows all the files in the 
AADL Navigator View in OSATE. 
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Figure 40: Project with AADL Model Packages and ReqSpec Files 
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6 Configurable Reference Architecture for Situation 
Assessment 

This section describes how we defined a configurable reference architecture for situation assess-
ment in AADL. We followed an approach that has been demonstrated for the JPL Mission Data 
System reference architecture [Feiler 2010].9 The AADL model of this reference architecture can 
be found in the project SituationalAwarenessRefArch. This project uses some AADL packages in 
the project SituationalAwarenessCommon. 

6.1 Configurable Services and Interface Specifications 

We specify the ASSA system as a set of services for SA data conversion, data correlation and fu-
sion, data storage, situation assessment, and information preparation for display on an MFD. They 
are specified as AADL processes to indicate each is intended to reside in a separate, protected ad-
dress space. They are defined in the ASSAServices package. 

The interface with other services is expressed as a feature group with an empty feature group type. 
The feature group types are specified without features in the ASSAInterfaces package (found in 
the SituationalAwarenessCommon project). We will refine this feature group type into one spe-
cific to a particular aircraft configuration. 

Figure 41 shows ASSASensors as a system type because its implementation will contain device 
instances to represent the particular sensors. For software-only services, we use a process type to 
indicate that the service will reside in its own address space, as shown in Figure 42. The ASSA-
Sensors system type has two feature groups as interfaces. SensorSetOutput represents the logical 
interface, which when configured will contain data ports of each different sensor reading. Sensor-
SetComm represents the physical interface to the platform hardware; once configured it will indi-
cate the necessary access requirements to networks (AADL bus access). 

system ASSASensors 

prototypes 

  SensorSetOutput: feature group ASSAInterfaces::SensorTrackSets; 

  SensorNetworkConnections: feature group ASSAInterfaces::SensorNetworkConnections; 

features 

  SensorSetReadings: feature group SensorSetOutput; 

  SensorSetComm: feature group SensorNetworkConnections; 

flows 

  SensorReadings: flow source SensorSetReadings; 

end ASSASensors; 

Figure 41: Configurable ASSA Service 

 

9  For an overview of the NASA Mission Data System, see http://mds.jpl.nasa.gov/public. 

http://mds.jpl.nasa.gov/public
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The interfaces of these services get configured for a particular aircraft platform in one of two 
ways (also see Section 6.4): 

 The feature group type without features is specified as a prototype, identifying that any exten-
sion of the specified feature group type is acceptable as a configuration parameter. The proto-
types are referred to in the feature group declaration (see Figure 41). We will supply an 
aircraft-specific feature group type, which is an extension of the feature group type referenced 
by the prototype, as a prototype actual when we declare the subcomponents of the service 
specification. 

 The feature group type without features is referenced in the feature group declaration (see 
Figure 42). In this case, we will refine the feature group declaration of interest into one refer-
encing the aircraft-specific feature group type in a process type extension. 

process SAInformationPreparation 

features 

  WeatherInformation: in data port; 

  AssessedInformation: in feature group inverse of ASSAInterfaces::AssessedTrackSets; 

  ObstacleInformation: in data port; 

  TerrainInformation: in data port; 

  OwnAircraftPosition: in data port MissionSystemDataTypes::Position; 

  MFDSAInformation: out feature group ASSAInterfaces::MFDSAInformation; 

flows 

  AssessedThreatInfo: flow path AssessedInformation -> MFDSAInformation; 

  OwnAircraftInfo: flow path OwnAircraftPosition -> MFDSAInformation; 

properties 

  Period => 100 ms; 

  Latency => 1 ms .. 1 ms applies to AssessedThreatInfo,OwnAircraftInfo; 

end SAInformationPreparation; 

Figure 42: Partial Service Specification 

6.2 Reference Architecture Specification 

We defined the reference architecture of ASSA in the package ASSASystem::Common. The speci-
fication of ASSASystem as a system type can be found in the package ASSASystem in the Situa-
tionalAwarenessCommon project. This specification defines the external interface of ASSA. It is 
an elaboration of the ASSASystem specification, as discussed in Section 3.3, that includes every 
external interface mentioned in the various MIS documents. 

Figure 43 shows the reference architecture of ASSA as a system implementation. Each subcom-
ponent represents a functional unit that is a configurable placeholder. The reference architecture 
includes connection declarations to represent the interaction topology within ASSA. Finally, the 
declaration includes a set of flow declarations that will be used in end-to-end flow analysis. 

system implementation ASSASystem.Common 

subcomponents 

  Sensors: system ASSAServices::ASSASensors; 

  Conversion: process ASSAServices::SADataConversion; 



 

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  49 

Distribution Statement A: Approved for Public Release; Distribution is Unlimited 

  Fusion: process ASSAServices::DCFM; 

  Assessment: process ASSAServices::SituationAssessment; 

  ASSAFormatting: process ASSAServices::SAInformationPreparation; 

  AirCrewDisplay: device ASSADisplayAnnunication::ASSAMFDDisplay; 

  AircrewAnnunciation: device ASSADisplayAnnunication::ASSAMFDDisplay; 

connections 

  srctracks: feature group Sensors.SensorSetReadings -> Conversion.SensorSetReadings; 

  stdtracks: feature group Conversion.StdSourceTracks -> Fusion.IncomingData; 

  fusedtracks: feature group Fusion.OutgoingCorrelatedTracks -> Assessment.Assess-
mentInput; 

  assessedtracks: feature group Assessment.AssessmentResults -> ASSAFormatting.As-
sessedInformation; 

  formattedtracks: feature group ASSAFormatting.MFDSAInformation -> AirCrewDis-
play.MFDSAInformation; 

  showtopilot: feature group AirCrewDisplay.AircrewSAInformation -> ASSAAirCrewPresen-
tation; 

  ownaircraftposfusion: port OwnAircraftPosition -> Fusion.ownAircraftPosition; 

  ownaircraftposdisplay: port OwnAircraftPosition -> ASSAFormatting.OwnAircraftPosi-
tion; 

flows 

  assessedASSAAircraftpos: flow path OwnAircraftPosition -> 

 ownaircraftposfusion -> Fusion.AircraftPositionFusion -> 

 fusedtracks -> Assessment.Assessment -> 

 assessedtracks -> ASSAFormatting.AssessedThreatInfo -> 

 formattedtracks -> AirCrewDisplay.ASSAInfoToPilot -> 

 showtopilot -> ASSAAirCrewPresentation; 

  directAircraftpos: flow path OwnAircraftPosition -> 

 ownaircraftposdisplay -> ASSAFormatting.OwnAircraftInfo -> 

 formattedtracks -> AirCrewDisplay.ASSAInfoToPilot -> 

 showtopilot -> ASSAAirCrewPresentation; 

  ASSASensorObservations: flow source Sensors.sensorReadings -> 

 srctracks -> Conversion.TrackConversion -> 

 stdtracks -> Fusion.TrackFusion -> 

 fusedtracks -> Assessment.Assessment -> 

 assessedtracks -> ASSAFormatting.AssessedThreatInfo -> 

 formattedtracks -> AirCrewDisplay.ASSAInfoToPilot -> 

 showtopilot ->ASSAAirCrewPresentation; 

end ASSASystem.Common; 

Figure 43: ASSA Reference Architecture 

The context of the ASSA system is specified in a package called AircraftSystem. The system Air-
craftSystem has an implementation that consists of the ASSA system, an EGI to supply aircraft 
position, and the aircrew. We provided three variants of this system implementation. The first re-
fers to the ASSASystem system type; it does not include the generic subsystems of the ASSA ref-
erence architecture specification. It is used in a system-level safety analysis. The second variant 
refines the original one to configure in the ASSASystem implementation with the subsystems. The 
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third variant refines the second variant to configure in a generic instance of the hardware platform 
for ASSA. 

6.3 Reference Architecture Analysis 

We defined end-to-end flows at the aircraft-system level to investigate potential time skew in dis-
playing the own aircraft position by direct data flow from the EGI input to the display compared 
to the longer processing path and greater latency for display of threats or obstacles relative to own 
aircraft position. In addition, we can perform the response time analysis within the ASSA system 
by taking into account decisions about ARINC 653-compliant partition architecture, as we did in 
Sections 3.6.1 and 4.2.3. The specification of different services as AADL process provides a clear 
indication in the model that the service must be executed in a separate, runtime-enforced, pro-
tected address space. 

We also use the reference architecture to perform a functional hazard assessment and fault impact 
analysis. Section 7 summarizes our approach, which we discuss in detail in a separate report titled 
Architecture-Led Safety Analysis of the Joint Multi-Role (JMR) Joint Common Architecture (JCA) 
Demonstration System [Feiler 2015c]. 

6.4 Configuration for an Aircraft Platform 

In this section, we describe how the reference architecture can be configured into an architecture 
for a specific aircraft platform. The example is illustrative only. We keep the aircraft-specific con-
figuration specification in a separate set of packages in a folder called ASSAConfigurations. Con-
figuration of the reference architecture involves several steps. 

The first step is to elaborate the interfaces to a specific aircraft by defining extensions of various 
feature group types. The package ASSAConfiguredInterfaces contains these extensions. For the 
sensor interface, we introduce a data port for each sensor with a data type representing the sensor-
specific data representation (see Figure 44). Similarly we configure the other interface specifica-
tions via the respective feature group type. 

feature group SensorSourceTrackSets extends ASSAInterfaces::SensorTrackSets 

features 

  WWSensorTracks: out data port TrackTypes::WWTrackSet; 

  ATWSensorTracks: out data port TrackTypes::ATWTrackSet; 

end SensorSourceTrackSets; 

Figure 44: Aircraft-Specific Interface Configuration 

The second step is to elaborate the ASSASensors system into an aircraft-specific configuration by 
adding the appropriate types of sensors as instances (subcomponents), as shown in Figure 45. We 
define the system type of the configuration as an extension of the ASSASensors system in the ref-
erence architecture. As part of this specification, we supply the feature group types that are spe-
cific to the aircraft, also shown in Figure 45. In addition, we define the system implementation of 
ASSASensorConfiguration, which contains instances of the specific sensors for the target aircraft, 
connections to the SensorSetReadings feature group (the logical interface), and network access to 
the SensorSetComm feature group (physical interface). The package ASSASensorConfigurations 
contains these extensions. 
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system ASSASensorConfiguration extends ASSAServices::ASSASensors 

  (SensorSetOutput => feature group 

     ASSAInterfaceConfigurations::CH47F::SensorSourceTrackSets, 

   SensorNetworkConnections => feature group 

     ASSAInterfaceConfigurations::CH47F::SensorNetworkConnections 

  ) 

end ASSASensorConfiguration; 

 

system implementation ASSASensorConfiguration.CH47F 

subcomponents 

  WW: device ASSASensors::WeaponsWatch; 

  ATW: device ASSASensors::ATW; 

connections 

  WWconn : port WW.SourceTracks -> SensorSetReadings.WWSensorTracks; 

  ATWconn : port ATW.SourceTracks -> SensorSetReadings.ATWSensorTracks; 

  wwto1553 : bus access ww.to1553 -> SensorSetComm.To1553; 

  atwto1553 : bus access atw.to1553 -> SensorSetComm.To1553; 

end ASSASensorConfiguration.CH47F ; 

Figure 45: Aircraft Sensor Configuration 

The third step is to perform the same elaboration for the different ASSA services. The configura-
tion for the SA data-conversion service can be found in the package ASSAMISConfigurations and 
is shown in Figure 46. The process type is extended to bind the appropriate feature group type 
configuration as prototype actual. The process implementation specifies a thread for each data-
conversion function and connects it to the appropriate feature group port. 

process ASSADataConversion extends ASSAServices::SADataConversion 

( SensorTrackSets => 

   feature group ASSAConfiguredInterfaces::CH47FSensorSourceTrackSets, 

  StdSourceTrackSets => 

   feature group ASSAConfiguredInterfaces::CH47FStdSourceTrackSets) 

end ASSADataConversion; 

  

process implementation ASSADataConversion.CH47F 

subcomponents 

  WWConversion: thread ASSADataConverters::WWTrackConverter; 

  ATWConversion: thread ASSADataConverters::ATWTrackConverter; 

 connections 

  WWin: port SensorSetReadings.WWSensorTracks -> WWConversion.SourceTracks; 

  WWout: port  WWConversion.StdSourceTracks -> StdSourceTracks.WWStdTracks; 

  ATWin: port SensorSetReadings.ATWSensorTracks -> ATWConversion.SourceTracks; 

  ATWout: port  WWConversion.StdSourceTracks -> StdSourceTracks.WWStdTracks; 

end ASSADataConversion.CH47F ; 

Figure 46: ASSA Data-Conversion Service Configuration 
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The final step is to configure the top-level system specification of the reference architecture into 
one for a specific aircraft. This configuration can be found in the package CH47FConfiguration. 
Figure 47 shows the configuration of the ASSA system by refining the specification of several 
subcomponents to the aircraft-specific specifications. In addition, we configured in an instance of 
a hardware platform and connected it to the ASSA system through a MIL-STD-1553 bus provided 
by the platform. We also configured the top-level specification for the aircraft system to utilize 
the aircraft-specific ASSA system configuration. 

system implementation AircraftSystem.CH47F 

    extends AircraftSystems::AircraftSystem.ASSASystem 

subcomponents 

  assa: refined to system ASSASystem.CH47F; 

end AircraftSystem.CH47F; 

 

system implementation ASSASystem.CH47F extends ASSASystem::ASSASystem.common 

subcomponents 

  Sensors: refined to system 

    ASSASensorConfigurations::CH47F::ASSASensorConfiguration.CH47F; 

  Conversion: refined to process 

    ASSAServicesConfigurations::CH47F::ASSADataConversion.CH47F; 

  Assessment: refined to process 

    ASSAServicesConfigurations::CH47F::SituationAssessment.CH47F; 

  Fusion: refined to process 

    ASSAServicesConfigurations::CH47F::CorrelationFusion.CH47F; 

  ASSAFormatting: refined to process 

    ASSAServicesConfigurations::CH47F::SAInformationPreparation.CH47F; 

  AirCrewDisplay: refined to device ASSAMFDDisplay; 

 

  myplatform: system platform.ch47f; 

connections 

  sensorsto1553: feature group    Sensors.SensorSetComm -> 

    myplatform.SensorNetworkAccess; 

end ASSASystem.CH47F; 

Figure 47: Aircraft Configuration 

Once we completed the aircraft specific configuration, we could instantiate the aircraft system and 
revisit various analyses—in our case, the end-to-end latency analysis—to determine response time 
for a particular platform. We could also refine this architecture with different hardware platform 
configurations, partition configurations, and partition deployment configurations of the ASSA ser-
vices to understand the impact of such deployment changes. 
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7 ASSA System Safety Analysis Approach 

From an aircraft-airworthiness perspective, the ASSA system is categorized as Design Assurance 
Level D, which means that the criticality level is minor. At the same time, enhancements to the 
ASSA system in the form of obstacle awareness have been justified by the fact that aircraft are 
lost more often due to collision with wires than due to enemy fire. 

We examined the ASSA system from a safety perspective, including the following hazards. We 
will also do so on the ASSA reference architecture to demonstrate its feasibility. 

 Impact of lost ASSA service: Analyzing risks to the pilot, aircraft, and mission by all the 
contributors to such losses gave us insight into the probability of their occurrence. 

 Incorrect SA data reporting (false positives and false negatives): Incorrectly reporting the 
absence of tracked objects to the pilot would give the pilot a false sense of safety. For exam-
ple, there is a risk that the absence of obstacles is really a failure of an ASSA function and 
that the pilot will not be aware of such a failure. This situation could result from mode confu-
sion between the system and the pilot due to problems in the safety system, health monitor, or 
both. 

 Timeliness of SA presentation to pilot: We consider whether latency contributors due to 
software are reflected in the error margins calculated and reported by DCFM. 

 Availability of ASSA services: Unnecessary unavailability of ASSA can occur due to (1) 
overzealous mapping of exceptional conditions into fatal faults without attempt at recovery or 
repair and (2) the inability of the pilot to restart the ASSA service without completely reboot-
ing the computing platform hosting ASSA and other services. 

Given these hazards, we then identified potential hazard contributors. These are all failures of 
ASSA components and mismatched assumptions in the interactions between the components. 
Some of the hazard contributors are due to design decisions whose impact was not well under-
stood. Those are avoidable hazards that can possibly be eliminated through changes in the design. 
Other hazard contributors are inherent, such as failure or malfunction of the physical SA sensor or 
the ASSA host computer. In these cases, we derived requirements for the SA health-monitoring 
system. 

We annotated the model from the requirements specification task with fault information by using 
EMV2. The fault ontology, in terms of commonly occurring fault effect types, helped us consider 
various types of exceptional conditions that a subsystem failure can impose on interacting subsys-
tems. In the process, we identified requirements for the SA health monitor in terms of what excep-
tional conditions it needs to detect or be informed of by subsystems, and what resulting systems 
states it needs to report to the pilot or automated system processing SA information. We summa-
rize the annotated models and the results of this safety analysis in the Architecture-Led Safety 
Analysis report [Feiler 2015c]. 
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8 Summary and Conclusion 

The purpose of the ACVIP shadow project was to demonstrate the value of using ACVIP technol-
ogy, in particular the value of using architecture models expressed in the SAE AADL standard, to 
discover potential system integration problems early in the development process. The SEI team 
captured information from existing requirements documents and other documentation as a re-
quirements specification and architecture model expressed in AADL and a requirements specifi-
cation notation. We then analyzed this system model for potential system integration issues. 

This report summarized the ALRS process used to capture requirements and architecture specifi-
cation of the JMR ASSA system in AADL and described the resultant model and analyses sup-
ported by the model. The ALRS process covers the 11 recommended practices of requirements 
specification outlined in the FAA Requirement Engineering Management Handbook. ALRS spec-
ifies requirements by focusing on the system with a well-defined boundary, its operational con-
text, and its internal architecture; it utilizes system interface specifications, quality attribute utility 
trees, and a fault ontology to strive for improved requirements coverage. 

We developed an AADL specification of the system in its operational context, as a functional ar-
chitecture, and as a design architecture early in the development process. The resulting model re-
flected the architecture design information embedded in the requirements documents. In other 
words, it captured architecture decisions, whether they were made intentionally or unintentionally, 
and allowed us to assess the potential impact of these decisions. 

We then performed a virtual integration of the system and an architecture analysis by investigat-
ing response times and architecture design decisions whose impact may not have been understood 
when specified. We also investigated the implications of a sequence diagram specification of the 
interaction between the MIS and the DCFM in the context of ARINC 653 partitioning by model-
ing the implementation of the protocols and determining their latency contributions analytically. 
We represented the resulting latency contributions as properties on the virtual bus abstraction of 
the protocol and used them to analyze the ASSA system. This protocol abstraction can also be 
used to analyze other application systems. 

We annotated this AADL model with requirement specifications expressed in ReqSpec, a textual 
notation for the requirement specification subset of the RDAL metamodel. It identifies different 
parts of this system specification as a set of traceable requirements, whose satisfaction could be 
demonstrated by a set of verification actions. It also provides traceability to existing requirements 
documents and to stakeholders. By associating the requirements with the AADL model, we could 
assess whether the requirements address different elements of the ASSA system specification, 
such as interaction points with the operational context. 

The AADL specification of a system, expressed as an AADL model, acts as a requirements speci-
fication in two ways. First, the customer or acquirer develops a specification, and the supplier re-
sponse, also expressed as an AADL specification, is compared to the original to determine 
whether it meets the customer interest. Second, a specification represents a contract that a system 
implementation must meet. In this case, AADL models of the system architecture design, detailed 
design models in other notations, and code must be verified against this specification. 
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We also showed how a configurable reference architecture for a situational awareness system can 
be specified in a way that makes it analyzable. This architecture model could be configured for 
specific aircraft platforms and re-analyzed. 

By taking an architecture-led approach to specifying requirements for the ASSA system, the SEI 
team quickly identified a number of issues in the requirements documents for this system that, if 
not addressed, could result in system integration problems between MIS and DCFM. We docu-
mented these issues in a separate report [Feiler 2015a]. The issues include ambiguous, incom-
plete, and missing requirements; lack of clarity about the system boundary between MIS and 
DCFM; and mismatched assumptions in the interactions between MIS and DCFM. In addition, we 
found that architectural decisions, such as those reflected in the DCFM data model sequence dia-
grams, had unintended implications for the system’s ability to meet response time requirements. 
Other architectural decisions created additional calibration requirements for DCFM where unex-
pected latency contributors and latency jitter introduced errors into track data. 
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Appendix Acronym List 

AADL Architecture Analysis & Design Language 

ACVIP Architecture-Centric Virtual Integration Practice 

ALRS Architecture-Led Requirements Specification 

AMRDEC Aviation and Missile Research, Development, and Engineering Center 

ARINC  Avionics Application Standard Software Interface  

ASSA Aircraft Survivability Situation Awareness 

ATAM Architecture Tradeoff Analysis Method 

BAA Broad Agency Announcement 

COP Common Operational Picture 

CoRE Consortium Requirements Engineering 

DCFM Data Correlation and Fusion Manager 

EGI embedded GPS/inertial navigation system 

EMV2 Error Model Version 2 

FACE Future Airborne Capability Environment 

FENN friendly, enemy, neutral and noncombatant 

JCA Joint Common Architecture 

JMR Joint Multi-Role  

MFD Multi-Function Display 

MIS Modular Integrated Survivability 

NM nautical miles 

OSATE Open Source AADL Tool Environment 

RDAL Requirements Definition & Analysis Language 

SA situational awareness 

SEI Software Engineering Institute 

SSS System/Subsystem Specification 

STAMP System-Theoretic Accident Model and Processes 

QAW Quality Attributes Workshop 

UML Unified Modeling Language 

URI Uniform Reference Identifier 

WGS84 World Geodetic System 1984 
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