== Software Engineering Institute

Carnegie Mellon University

Requirements and Architecture
Specification of the Joint Multi-Role
(IMR) Joint Common Architecture (JCA)
Demonstration System

Peter H. Feiler

December 2015

SPECIAL REPORT
CMU/SEI-2015-SR-031

Software Solutions Division

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

http://www.sei.cmu.edu

http://www.sei.cmu.edu

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer-
ing Institute, a federally funded research and devel opment center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by Carnegie Mellon University or its Software Engineering I nstitute.

This report was prepared for the

SEI Administrative Agent
AFLCMC/PZM

20 Schilling Circle, Bldg 1305, 3rd floor
Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-1S" BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
ASTOANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE
OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOESNOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted be-
low.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distrib-
uted in written or electronic form without requesting formal permission. Permission isrequired for any
other external and/or commercial use. Requests for permission should be directed to the Software En-
gineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

ATAM® and Carnegie Mellon® are registered in the U.S. Patent and Trademark Office by Carnegie
Méllon University.

DM-0002957

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

mailto:permission@sei.cmu.edu

Table of Contents

Executive Summary

Abstract

1

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

Introduction

11
1.2

Background
Challenges in Current Requirements Documentation Practice

An Architecture-Led Requirements Specification Process

2.1
2.2

2.3

Context of an Architecture-Led Requirements Specification

ALRS and the FAA Requirements Engineering Management Handbook
2.2.1 Modeling Notations in Use

2.2.2 From State Variables to Information Flow

Improving Requirements Coverage

2.3.1 Elements of a System Specification

2.3.2 Coverage of Relevant Design and Operational Quality Attributes
2.3.3 Exceptional Conditions and Their Impact

2.3.4 Integrating Requirements Specification and Safety Analysis
2.3.5 Toward Incremental Lifecycle Assurance

Modeling ASSA as Operational Context for MIS and DCFM

3.1
3.2
3.3

3.4
3.5
3.6

Points of Interaction with the Operational Environment
Observed Entities and ASSA Context

Representing the ASSA Functional Architecture

3.3.1 Functional Elements of the ASSA System

3.3.2 The Concept of Tracks as Observation Representation
3.3.3 The Functional ASSA Architecture with Data Representations
Identifying the System Boundary

System Boundary and Roles of MIS

ASSA Functional Architecture Performance

3.6.1 ASSA System Response Time Analysis

3.6.2 Track Data Volume

ASSA System Design Architecture

41
4.2

ASSA Design Architecture

Performance Analysis of the ASSA System Design Architecture
4.2.1 Response Time Requirement Revisited

4.2.2 Interaction Protocols

4.2.3 Response Time Analysis

Maintaining Requirement Specifications in ALRS

51
52
53
54

The ReqSpec Notation

Goal and Requirement Specifications

RegSpec Files

ASSA System Goal and Requirements Specification

Configurable Reference Architecture for Situation Assessment

6.1
6.2
6.3
6.4

Configurable Services and Interface Specifications
Reference Architecture Specification

Reference Architecture Analysis

Configuration for an Aircraft Platform

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Vi

N -

O N o o1 o

10
11
11
13
14
15

17
17
18
21
22
23
25
26
26
29
29
30

32
32
34
34
34
36

38
38
39
41
44

47
a7
48
50
50

7 ASSA System Safety Analysis Approach
8 Summary and Conclusion
Appendix Acronym List

References

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

53

54

56

57

List of Figures

Figure 1: Quality of Requirements [NIST 2002]

Figure 2: Example of Stakeholder Requirements Documentation

Figure 3: Requirements Specification Across Architecture Hierarchy (Courtesy of M. Whalen)
Figure 4: Textual State Machine Specification

Figure 5: A Graphical State Machine Specification: Not a Requirement

Figure 6: Eleven Practices of the FAA Requirements Engineering Process [Adapted from FAA
2008a]

Figure 7: Four-Variable Model Mapped into an Architecture Specification

Figure 8: Constraints, Products, Resources, Elements, and Transformation (CPRET)
Figure 9: Operational Quality Attributes and Utility Trees

Figure 10: Fault Ontology and Its Application to a System Specification

Figure 11: Identification of Unsafe System Conditions

Figure 12: Identification of Contributors to Unsafe System Conditions

Figure 13: Identification of Safety System Functionality to Address Unsafe System Conditions
Figure 14: Requirement Decomposition and Verification

Figure 15: Requirement Decomposition and Verification One Layer at a Time

Figure 16: Incremental Assurance Through Virtual System Integration

Figure 17: Operational Context of the Situational Awareness System

Figure 18: Observables in the Operational Environment

Figure 19: Textual Threat Specification

Figure 20: ASSA Context as Model

Figure 21: Information Presented to Aircrew

Figure 22: ASSA System Functional Architecture

Figure 23: Situational Awareness Sensors

Figure 24: Data Correlation Specification

Figure 25: Track Type Definitions in AADL

Figure 26: Scope of Standard Track Representation

Figure 27: Interaction Inconsistencies in the ASSA Functional Architecture

Figure 28: System Boundary of DCFM

Figure 29: Identification of MIS Services as Layered Architecture

Figure 30: ASSA System Information Flows and the Data-Conversion and Data-Storage Services
Figure 31: Response Time for Observed Enemy Radar Track

Figure 32: Response Time for Assessed Enemy Radar Track

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

A A W NN

10
11
12
13
14
14
15
15
16
16
18
18
19
20
21
21
22
23
24
25
25
26
27
28
30
30

Figure 33:

Figure 34:
Figure 35:
Figure 36:

Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:

ASSA System Design Architecture with SA Data-Conversion and Data-Storage
Services

Three-Step Pull Protocol
Two Implementation Configurations of the Three-Step Protocol

Response Time Analysis Results with Latency Contributions for the Cross-Partition
Pull Protocol

Sample of Imported Stakeholder Requirements

Goal Set for ASSA Sensors

Example of Requirement Specification Aligned with an AADL Model
Project with AADL Model Packages and RegSpec Files
Configurable ASSA Service

Partial Service Specification

ASSA Reference Architecture

Aircraft-Specific Interface Configuration

Aircraft Sensor Configuration

ASSA Data-Conversion Service Configuration

Aircraft Configuration

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

33
35
36

37
44
45
45
46
47
48
49
50
51
51
52

Executive Summary

The Carnegie Mellon University Software Engineering Institute (SEI) was involved in an Archi-
tecture-Centric Virtual Integration Process (ACVIP) shadow project for the U.S. Army’s Re-
search, Development, and Engineering Command Aviation and Missile Research, Devel opment,
and Engineering Center Science & Technology Joint Multi-Role program on the Joint Common
Architecture (JCA) Demonstration. The JCA Demo used the Modular Integrated Survivability
(MI1S) system, which provided a situational awareness service that was integrated with two in-
stances of a Data Correlation and Fusion Manager (DCFM) software component, which was con-
tracted to two suppliers.

The purpose of the ACVIP shadow project was to demonstrate the value of using ACVIP technol -
ogy, in particular the architecture models expressed in the Society of Automotive Engineering
(SAE) Architecture Analysis & Design Language (AADL) standard, for discovering potential sys-
tem integration problems early in the development process. To do this, the SEI team first captured
information from existing requirements documents and other documentation as a requirements
specification and architecture model expressed in AADL and atextual requirement specification
subset of the draft Requirement Definition & Analysis Language Annex, referred to in this report
as RegSpec. We then analyzed this system model for potential system integration issues.

This report summarizes the approach taken to capture in AADL the requirements and architecture
specification of the DCFM and its integration with MIS and to analyze the results. In this report,
we refer to the resultant system as the Aircraft Survivability Situation Awareness (ASSA) system.
By using an architecture-led approach to specifying requirements, the SEI team quickly identified
anumber of issues that, if not addressed, could result in system integration problems between
MIS and DCFM. We documented these issues in a separate report [Feiler 2015a]. Theissuesin-
clude understanding the stakeholder goals for the ASSA, identifying the system boundary be-
tween MIS and DCFM, clarifying mismatched assumptions in the interaction between MIS and
DCFM, and understanding the implications of architectural decisions on the system’s ability to
meet the requirements. Potential implications of architectural decisions include assumptionsin the
DCFM data model sequence diagrams that may hinder the system in meeting response time re-
guirements and in additional calibration requirements for DCFM that may create unexpected la-
tency and latency jitter that can introduce errors into the track data.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY v
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Abstract

The Carnegie Mellon University Software Engineering Institute (SEI) was involved in an Archi-
tecture-Centric Virtual Integration Process (ACVIP) shadow project for the U.S. Army’s Re-
search, Development, and Engineering Command Joint Multi-Role program in the Joint Common
Architecture (JCA) Demonstration. The JCA Demo used the Modular Integrated Survivability
(MI1S) system, which provides a situational awareness service that was integrated with two in-
stances of a Data Correlation and Fusion Manager (DCFM) software component, which was con-
tracted to two suppliers. The purpose of the ACVIP shadow project was to demonstrate the value
of using ACVIP technology, in particular the architecture models expressed in the Society of Au-
tomotive Engineering Aerospace Standard 5506 standard for the Architecture Analysis & Design
Language (AADL), for discovering potential system integration problems early in the develop-
ment process. To do this, the SEI first captured information from existing requirements docu-
ments in AADL and the draft Requirement Definition & Analysis Language Annex. Then, by
using an architecture-led approach to capturing requirements and architecture specification, the
SEI team quickly identified a number of issues that, if not addressed, could result in system inte-
gration problems between MIS and DCFM. The SEI’ s findings alowed contractor teams to ad-
dress these issues early in system devel opment.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vi
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

1 Introduction

The Carnegie Mellon University Software Engineering Institute (SEI) was involved in an Archi-
tecture-Centric Virtual Integration Process (ACVIP) shadow project for the U.S. Army’s Re-
search, Development, and Engineering Command Aviation and Missile Research, Devel opment,
and Engineering Center (AMRDEC) Science & Technology Joint Multi-Role (JMR) program in
the Joint Common Architecture Demonstration. The JCA Demo used the Modular Integrated Sur-
vivability (MIS) system, which provides a situational awareness service that will be integrated
with two separate versions of a Data Correlation and Fusion Manager (DCFM) software compo-
nent. The DCFM was acquired via a Broad Agency Announcement (BAA) from two suppliers.

In the JCA Demo ACVIP shadow project, the SEI team captured requirements found in various
MIS project documents using an architecture-led requirements and architecture specification pro-
cess and following the ACVIP approach. In that process, the SEI team identified shortcomingsin
the existing requirements documents that, if not addressed, would result in potential system inte-
gration problems between MIS and DCFM.

This report summarizes the approach taken to capture the requirements and architecture specifica-
tion of the integrated DCFM and MIS, referred to in this report as the Aircraft Survivability Situa-
tion Awareness (ASSA) system, in the SAE Architecture Analysis & Design Language (AADL).
We also describe the resultant model and analyses supported by the model.

1.1 Background

To perform the architecture-led requirements specification task, the SEI team was provided with a
February 2014 version of the MIS Stakeholder Reguirements document and MIS System/Subsys-
tem Specification (SSS) document, which contains system requirements. SEI used these docu-
ments to present afirst set of issues, such as lack of indication of the number of tracksto be
maintained by MIS, at the ACVIP Technical Interchange Meeting. The SEI team also received the
JCA Demonstration BAA and the DCFM Data Model document at the Technical Interchange
Meeting in early May 2014.

On June 15 and 17, 2014, the SEI team received April 2014 versions of the MIS Stakeholder Re-
guirements document, the MIS SSS document, the Situational Awareness Data Service Software
Design Description, the WeaponWatch Manager Software Design Description, the MIS Sys-
tem/Subsystem Design Description, the MIS SSS, and the DCFM BAA Supplement package. The
SEI team also received July 3, 2014, versions of the MIS Stakeholder Requirements document,
the MIS SSS, and a build plan, and July 17, 2014, versions of the MIS SSS and the MIS system
model. On September 18 and 22, 2014, the SEI team received revisions of the MIS SSS and the
DCFM data model.

The SEI team used the ACVIP approach to capture stakeholder requirements, system require-
ments, and the architecture design of the ASSA with its MIS and DCFM components. The ACVIP
approach uses AADL and its architecture fault modeling and requirements specification exten-
sions to represent relevant information in a single model with well-defined semantics. The tool

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

environment for AADL supports type checking, model consistency checking, and analysis capa-
bilities. The SEI team developed the AADL model over a three-month period, including two 2-
day working sessions with AMRDEC representatives. The SEI team presented its findingsin a se-
ries of meetings, including the May 2014 JMR face-to-face working session and JIMR meetings
with the two contractor teams. In addition, the SEI team did a walk-through of the model as part
of the Modeling System Architectures with AADL course, which was taught to the IMR team and
JCA contractors on September 15-19, 2014.

1.2 Challenges in Current Requirements Documentation Practice

A 2009 industry study of current requirements engineering practice showed that text-based re-
quirements specification is prevalent and that Microsoft Word® and DOORS® are the primary
tools [FAA 2008b]. The result isthat 70% of all software system problems are introduced during
requirements specification and architecture design, while 80% are discovered after unit testing
[NIST 2002, Redman 2010]. Figure 1 showsthe top 5 of 12 quality issue categories characteristic
of such requirement specifications [Hayes 2003]. It indicates that the quality of requirements can
easily be improved by better requirements coverage.

Requirements | %
error

Incomplete 21%
Missing 33%
Incorrect 24%
Ambiguous 6%
Inconsistent 5%

Figure 1: Quality of Requirements [NIST 2002]

Figure 2 shows a sample from the M1S Stakeholder Requirements document to illustrate the qual-
ity of the requirements. For example, the Mission Planning section indicates that MIS is expected
to “enable” aset of capabilities. Note that a hardware processor could enable these capabilities.
The Situational Awareness section suggests that M1S acts as integration mechanism for ASSA.
However, a communication mechanism such as publish/subscribe can play that role. In other
words, these requirements provide little insight as to what is specifically expected from MIS.

SR 59 L. .
6 Mission Planning

SR 73 | MIS shall be compatible with Aviation Mission Planning System (AMPS) planning information

SR 74 | MIS shall enable determining a primary route during pre-mission planning

SR_75 | MIS shall enable in-flight mission planning

SR 76 | MIS shall enable determining at least one alternate route during pre-mission planning

SR 77 | MIS shall enable in-flight mission re-planning

SR_46 . .
7 Situational Awareness

SR_64
7.1 Location

SR_78 | MIS shall convey non-degraded aircraft location information from systems that are integrated through MIS

SR_79 | MIS shall convey non-degraded airspace Situational Awareness (SA) information from systems that are integrated through
MIS

Figure 2: Example of Stakeholder Requirements Documentation

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Often acollection of requirement statements spans multiple layers of an architecture hierarchy.
Thisisillustrated in Figure 3 on asimple medical device example. On the left-hand side, four re-
guirements statements for a patient monitoring system are shown. They are precise in that they
provide details about volume and time. However, viewing the requirements statements in the con-
text of an architecture representation reveals that they represent requirements at four different lev-
elsin the architecture hierarchy. In other words, the set of requirements makes assumptions about
a(partial) system architecture.

|I. The patient shall never be infused
with a single air bubble more than

Smlvolume.
The patient shall never be infused 2. When asingle air bubble more

with a single air bubble more than than 5ml volume is detected,
S5ml volume. the system shall stop infusion
within 0.2 seconds.

/PATIENT THERAPY SYSTEM

When a single air bubble more

DRUG AR BUBBLE

than Sml volume is detected, SENSOR

" HARDWARE
the system shall stop infusion
within 0.2 seconds.

PUMP SYSTEM
When piston stop is received, the FUMP PUMP 4. Thesystem shall always
I i HARDWARE CONTROLLER 5
system shall stop piston movement stop the piston at the
within 0,01 seconds. - / bottom or top of the
chamber.

The system shall always \
stop the piston at the 3. When piston stop is received, the
bottom or top of the system shall stop piston movement
chamber. within 0.0 seconds.

Figure 3: Requirements Specification Across Architecture Hierarchy (Courtesy of M. Whalen)

In the case of IMR, we encountered similar assumptions about system architecture in require-
ments statements. Many of the MIS requirements primarily described desired capabilities of the
resultant ASSA system rather than MIS. Furthermore, two MIS components reside in a support
layer below DCFM, while a health-monitoring component resides in a layer above DCFM (see
Section 3.5).

In text-based requirement specifications, two rules are used to assess their quality:

« traceability to stakeholders and stakeholder requirements: For this reason, DOORS is a popu-
lar tool for managing requirements.

« theword “shall”: A statement or graphical presentation of amodel in arequirements specifi-
cation document is not considered a requirement if it does not include the word “ shall.”

Figure 4 and Figure 5 illustrate these rules. They are taken from the MIS SSS. The documentation
of the state machine describing the operational modes to be supported by MIS spans multiple
pages. From this description, it is difficult to tell whether the specification of this state machineis
complete.

The state machine in Figure 5 is not considered to be a requirement specification because it does

not contain the word “shall.” However, it provides a more concise specification of the desired be-
havior and, as amodel, it alows the specification to be processed by analytical tools. Even visual
inspection provides a quick understanding of desired behavior. For example, areader can see that
the system does not have a transition that supports areset operation to reinitialize the system after
a shutdown. The system can be reset only by restarting the computer that hosts the MIS.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

D MIS System Requirements Specification Requirement
sYs_51 | 3.1 Required states and modes False
Definitions: “shall include”: How do we know there are only three states?
S
SYS_52 The MIS System shall include the Startup system states. True
SYS_634 |fThe MIS System shall include the Operations system state. True
5¥5_635 |{The MIS System shall include the Shutdown system state. True
SYS_54 After a state transition to a new system state, the MIS System shall log the new system state entry True
event.
SYS_55 After a fault in any state, the MIS System shall log the fault event. True
SYS_275 | The MIS System shall ignore state transition events if the event is not defined for the current system | True
30 “shall” statements later: A state transition and its trigger condition
SYS_482 | If the duration of the Startup State exceeds an elapsed time threshold specified in system True
configuration data as a value between 1 minutes and 20 minutes and at least one AST interface
SYS_65 If the duration of the Startup State exceeds an elapsed time threshold specified in system True
configuration data as a value between 1 minutes and 20 minutes and at least one AST interface
\completes initialization, the MIS System shall transition to the Operations State. y
Figure 4: Textual State Machine Specification
SYS_242 Ke False
instantiated Y _]
O State
initialization complete Transition
Operations
fatal
fault
command or
w fatal fault
No transition to reset the system
Figure 5: A Graphical State Machine Specification: Not a Requirement

These issues motivated us to develop an architecture-led approach to requirements specification,
which we summarize in the next section.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

2 An Architecture-Led Requirements Specification Process

The objective of an architecture-led requirements specification (ALRS) approach is to specify re-
guirements in the context of an architecture specification. There are several benefits to this ap-
proach:

« Wecan clearly relate requirement statements to specific elements in an architecture model.

« Wegain insight into assumptions being made about a (partial) architecture.

o Wecan anaytically verify an architecture design early in the process through virtual system
integration.

There are three use case scenarios for the ALRS process:

« Exigting stakeholder and system requirements documentation: In this case, we use the ALRS
process to capture the information that has already been gathered in a text document. Captur-
ing it as an architecture model annotated with requirements specifications allows us to iden-
tify ambiguities and conflictsin the original documents. Thisis the scenario guiding our
shadow project. We summarize many of these issues in a separate report [Feiler 20153].

« Negotiation of system requirements. A system requirements specification becomes a contract
that a system provider will have to meet. Requirements must be specified in such away that
they are verifiable and conflicts between them have been resolved. Typically, a notional ar-
chitecture design is used to assess whether the proposed system can satisfy the requirements.
In other words, requirements affect architecture design decisions. We will demonstrate this
interplay between requirements and architecture design when we examine the ASSA with the
DCFM and MIS components in the context of a partitioned target platform that is based on
the ARINC-653 specification, the avionics standard for partitioned time and space.

« Requirements elicitation from stakehol der: Stakeholder requirements dicitation involves cre-
ating a common understanding of the primary mission drivers, of the operational use-case
(concept of operation) for the system, and of the boundaries between the system of interest,
entitiesin its operational context, and its parts. We show how a model representation can help
disambiguate and clarify domain concepts.

In addition, we utilize methods such as the SEI Mission Thread Workshop! and SEI Quality At-
tribute Workshop (QAW)? to guide the development of this common understanding and set priori-
ties for stakeholder requirements.

2.1 Context of an Architecture-Led Requirements Specification

The System Engineering Body of Knowledge (SEBoK) under Foundations of System Engineering
discusses stakeholder requirements and system requirements [BKCA SE 2015]. For classification

! For an overview of the Mission Thread Workshop, see http://www.sei.cmu.edu/architecture/tools/establish/mis-
sionthread.cfm.

2 For an overview of the Quality Attributes Workshop, see http://www.sei.cmu.edu/architecture/tools/estab-
lish/qaw.cfm.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

http://www.sei.cmu.edu/architecture/tools/establish/mis-sionthread.cfm
http://www.sei.cmu.edu/architecture/tools/establish/mis-sionthread.cfm
http://www.sei.cmu.edu/architecture/tools/establish/mis-sionthread.cfm
http://www.sei.cmu.edu/architecture/tools/estab-lish/qaw.cfm
http://www.sei.cmu.edu/architecture/tools/estab-lish/qaw.cfm
http://www.sei.cmu.edu/architecture/tools/estab-lish/qaw.cfm

of requirements, it utilizes ISO/IEC/IEEE 29148 [I1SO 2011]. Examples of classification of stake-
holder reguirementsinclude service or functional, operational, interface, environmental, human
factors, logistical, maintenance, design, production, verification, validation, deployment, training,
certification, retirement, regulatory, environmental, reliability, availability, maintainability, de-
sign, usability, quality, safety, and security requirements. Stakeholders will also be faced with a
number of constraints, including enterprise, business, project, design, realization, and process con-
draints.

This classification is similar to elements of a general model of sociotechnical control to analyze
system accidents, originaly developed by Rasmussen and adapted by Dr. Nancy Leveson of MIT
for the Systems-Theoretic Accident Model and Processes (STAMP) method of accident causality
analysis [Rasmussen 2000, Leveson 2012].

The ALRS process discussed in this report focuses on the specification of requirements for the
system in its operational context, leading to a set of verifiable system requirements for the system
and its subsystems. Integral to this processis the consideration of exceptional conditions that re-
sult in safety hazards or security vulnerabilities. ALRS assumes that requirements for the devel op-
ment process, as outlined in [BKCASE 2015], exist and are addressed.

2.2 ALRS and the FAA Requirements Engineering Management
Handbook

The FAA Requirements Engineering Management [REM] Handbook, developed by the Rockwell
Collins Formal Methods Group and published in 2009, illustrates 11 recommended practices that
allow for verifying completeness and consistency of requirements analytically [FAA 2008a]. This
handbook focuses on specifying system requirements systematically to make them verifiable.
These 11 practices are shown in Figure 6. The handbook el aborates each practice in a number of
substeps and illustrates their use with several examples. Dominque Blouin and colleagues have
demonstrated how this 11-step process can be supported through a combination of the draft Re-
guirements Definition & Analysis Language (RDAL) standard as annotations on AADL models
[Blouin 2011]. They combine RDAL with use-case maps notation, a sublanguage of the Interna-
tional Telecommunication Union User Reguirements Notation standard, to facilitate capture and
validation of stakeholder requirements and their translation into system requirements [ITU-T
2008].

1.Develop the System Overview.

2.ldentify the System Boundary.

3.Develop the Operational Concepts.

4.ldentify the Environmental Assumptions.

5.Develop the Functional Architecture.

6.Revise the Architecture to Meet Implementation Constraints.
7.Identify System Modes.

8.Develop the Detailed Behavior and Performance Requirements.
9.Define the Software Requirements.

10.Allocate System Requirements to Subsystems.

11.Provide Rationale.

Figure 6: Eleven Practices of the FAA Requirements Engineering Process [Adapted from FAA 2008a]

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

In our case study, we focus on tranglating information found in existing documents into a model-
based representation. In that process, we identify inconsistencies, ambiguities, and missing re-
guirements information. In addition, we use the resultant model to virtually integrate M1S and
DCFM and, in turn, analyze the resultant ASSA system to identify potential integration problems
early in the development process.

2.2.1 Modeling Notations in Use

We use AADL, the Error Model Version 2 (EMV 2) language, and atextual representation of the
requirements specification subset of RDAL, referred to in this report as ReqSpec.® ReqSpec fo-
cuses on stakeholder and system requirements specification, while the full RDAL notation also
allows users to specify a set of verification actions as elements of an assurance plan. Verification
actions include model consistency checks, virtual integration analysis, and tests. Users can then
track the execution of assurance plans by the results of verification actions throughout the sys-
tem’ s lifecycle. See Section 2.3.5 for an outline of thisincremental approach to lifecycle assur-
ance.

Weuse AADL to

« specify the operational context of the system of interest (REM Practice 1). The MIS Stake-
holder Requirements document provides a good description of the operational context of the
ASSA system. The MIS SSS document provides a good description of the ASSA system
functionality. We use the AADL abstract, system, and data component concepts to represent
the elements of the operational context and the architectural structure of ASSA. We aso use
abstract feature, ports, and feature groups with connections to represent the interactions be-
tween these parts.

« identify the system boundary (REM Practice 2). We identify the DCFM as one of the func-
tional components of ASSA. We identify MIS as consisting of three services: an SA data-
conversion service and an SA data-storage service provided in alayer below the ASSA appli-
cation layer, and an ASSA health-monitoring service provided in a supervisory layer above
the ASSA application layer. We represent these layersin AADL.

« represent operational concepts (REM Practice 3). The use case scenarios fall into two catego-
ries:
- developmental quality attributes such as portability through the use of the Future Air-

borne Capability Environment (FACE) and modifiability through the use of standard
track representations
- operational quality attributes such as situation assessment behavior, timely provision of
assessment results (timing), and provision of valid assessment results (saf ety)
« represent environmental assumptions (REM Practice 4). We capture these assumptions as part
of the interface specification of a system within the AADL model. See Section 2.3.1 for de-
tails.

8 Note: The draft RDAL document defines a metamodel of the RDAL concept but not a textual representation.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

develop the functional architecture (REM Practice 5). We do so for the ASSA systemin an
AADL model to fully understand the context of MIS and of DCFM. It helps usidentify the
desired functionality for DCFM and MIS.

reflect implementation constraints (REM Practice 6). We reflect information from system de-
sign documents. We also reflect architecture constraints and decisions regarding the use of
ARINC 653 partitioning. We use the AADL concepts of the virtual bus to represent system
interactions as abstract protocols and the virtual processor to represent partitions. We then as-
sess the impact of partitioning on end-to-end response time of critical flows.

identify system modes (REM Practice 7). We record system modes as AADL modes.

determine behavior and performance requirements (REM Practice 8). We use a prioritized
utility tree to determine key operational requirements to be specified (see Section 2.3.2). We
use flow specifications, data type representations, and various properties to capture the quality
attributes of interest.

capture safety requirements (implicit in REM practices). We capture safety-related infor-
mation through the AADL EMV 2 fault ontology and error propagation specifications. We
provide the results of afull safety analysisin a separate report [Feiler 2015c].

define software requirements (REM Practice 9). We map system functions into atask and
communication architecture expressed by AADL threads, devices, and hardware platform
specification. The threads represent executable software units. The specification includes
properties addressing operational quality attributes.

allocate system requirements to subsystems (REM Practice 10). As we elaborate the system
architecture, we decompose system requirements to requirements on each subsystem. They
arereflected in the AADL as properties and in the RegSpec notation as explicitly traceable
decomposition of requirement specifications that are directly associated with elementsin the
system architecture model.

provide rationale. We record rationale as part of each ReqSpec-based requirement specifica-
tion.

For the creation of AADL models, we utilize elements of the Virtual Upgrade Validation method
[de Niz 2012]. The method helps users identify the type of system they are dealing with and the
appropriate way of representing it in AADL. The method also provides guidance for focusing on
common problem areas in software-reliant systems and ways to represent critical operational
quality attributes.

Weuse AADL EMV2 Annex to

systematically identify exceptional conditions that, when propagated to other systems and
system components, represent hazards. We use the AADL EMV 2 fault ontology as a check-
list of these potential hazards. We use AADL EMV 2 error propagation declarations to specify
outgoing propagations of faults expected to be propagated and faults to be contained by the
system (guarantees), and incoming error propagations of faults whose propagation from other
components is acceptable or expected not to occur.

specify failure modes, identify what component is responsible for detection of fault occur-
rences, and determine how the system responds to recovery actions.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

We use RegSpec to

« distinguish between goals. System requirements specification acts as a contract between the
customer and the system provider. However, stakeholder requirements may be ambiguously
phrased, not verifiable, and in conflict with other goals and verifiable requirements.

« provide traceability to requirements specification and descriptions in existing documents.

« import aset of text-based requirement specifications into the ACVIP AADL model space.
This alows us to access the documentation without external tools such as DOORS. It aso al-
lows us to record additional relationships between requirements, such as refinement, architec-
tural decomposition, and evolution.

« associate requirement specifications with an architecture model expressed in AADL. This al-
lows us to understand which system or subsystem is targeted by a requirement specification.
It dso allows usto identify gaps in coverage (see Section 2.3) and add requirements as appro-
priate.

« maintain consistency between the textual representation of arequirement specification and a
representation of the requirement in the AADL, such asin the form of a property on a compo-
nent or port.

For asummary of the notational capabilities of RegSpec, see Section 5.1.
2.2.2 From State Variables to Information Flow

The practices described in the FAA Requirements Engineering Management Handbook draw
strongly on the Software Cost Reduction method and the four-variable model originally proposed
by Parnas and Madey [Parnas 1995] for specifying the requirements of the U.S. Navy’'s A-7E
Corsair |1 aircraft [Schouwen 1990]. The four-variable model consists of monitored variables to
represent observations in the physical system, controlled variables to represent control over the
physical system, input variables as digital representation of monitored variables read by the soft-
ware, and output variables as digital representation of controlled variables.

Later, the Software Productivity Consortium extended these ideas into the Consortium Require-
ments Engineering (CoRE) methodology [Faulk 1992, 1993], which was used to specify require-
ments for the C-130J aircraft. Many recommended practices on how to organize requirements are
based on ideas originally developed with the CoRE method. The concepts of monitored and con-
trolled state variables are also common in other specification methods for control systems, such as
the State Analysis methodology, which is part of the NASA Mission Data System technology.*

Figure 7 illustrates how we map these variables into a flow-oriented architecture specification.
Such amapping is desirable as it reflects the actual information flow explicitly, rather than being
hidden in the order in which different components perform read and write operations on the varia-
bles. A flow-oriented specification facilitates end-to-end flow analyses such as latency analysis.
The mapping is simple and intuitive.

4 For an overview of the NASA'’s State Analysis methodology, see http://mds.jpl.nasa.gov/public/sa.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

http://mds.jpl.nasa.gov/public/sa

Environment }1
Monitored ('uulmllh
Vi '111’11)]6\ \":uial!lcs/
oy \
’{ System i/ 1
\ .
. \

. «
~ 1y
Nama; Normal_Operation .
N N
“ .
S Name: operator_interface
«) s
~ A operator_feedback <
N ~, . an,—mm_s»anv\
& .
") \
~ N
. ~ r ----- - - I
° 1 5 | System boundary
L | | Name:thermostat AR 1
Vams. temperature_sensor .\ I \ I R o: hoat_source
\ o . — 3
- \i}up erator_settings \\l 1
1 operator_teedback—j
t_temperature
e epere My lcurrent temperature 1 P neat_control
l heat_controlp— |
1 1
1 1 heat
heat
e —— - Y
4 —
heat_in4—

Figure 7: Four-Variable Model Mapped into an Architecture Specification

To reduce interaction complexity through global variables, it is acommon modeling convention
that these state variables are updated by one entity and can be read by multiple entities. Thus, the
system updates the state variable that owns it and makes its value accessible to others through an
outgoing port. Entities interested in the value of the variable receive that value through an incom-
ing port. Port connections explicitly represent the data flow to all users of the variable content.

2.3 Improving Requirements Coverage

The ALRS captures stakeholder requirements as stakeholder goals for a system (borrowing the
concept of agoal from goal-oriented requirements engineering) and captures system requirements
as verifiable system specifications that act as contracts to be satisfied by system implementations.
For that purpose, we introduce an analyzable textual notation called ReqSpec for expressing goals
and requirements in the context of an architecture specification in AADL. A metamodel for this
notation has been proposed as the RDAL standard annex for the SAE AADL (AS5506B) standard
suite. In Section 5, we introduce this notation and offer guidance on using it with AADL to cap-
ture verifiable requirements and architecture specifications.

We improve the quality of requirements specification by providing a measurable way of assessing

requirements coverage. Our method consists of three parts:

1. Identify al interaction points with the operational environment in terms of input—processing—
output functionality and in terms of the resources and supervisory control necessary to pro-
vide this functionality. Each interaction point must be addressed by requirements.

2. ldentify and quantify design and operational quality attributes that are key to achieving the
mission. Each key quality attribute must be addressed by a requirement specification.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3. Ildentify exceptional conditions that represent hazards to the safe and secure operation of the
system. A fault ontology provides a checklist of failure conditions that are potentially propa-
gated between system components as well as to and from the operational environment.

2.3.1 Elements of a System Specification

In addition, we utilize a framework for specifying a system that originated with the French Sys-
tems Engineering Society (Association Francaise d' Ingénierie Systeme). It is known as CPRET,
which stands for Constraints, Products, Resources, Elements as input, and Transformations.® It is
graphicaly illustrated in Figure 8. CPRET defines a system process to perform a set of transfor-
mations of input elementsinto products: respecting constraints, requiring resources, meeting a de-
fined mission, corresponding to a specific purpose, and adapting to a given environment. The
transformation is the sequence of ASSA functionsillustrated in Figure 17.

1
Requirements ~.1
Guarantees :EQF‘"

Assumptions k.

1

1

1

1

1

1

1

I

I

1

1

I

— = |

= Q?f =
~1 .
,z-)ly = o~ Anomalies

Invariants ! :

Implementation constraints

Figure 8: Constraints, Products, Resources, Elements, and Transformation (CPRET)

This framework helps us identify additional requirements and assumptions. In addition, it helps us
identify resource requirements that ASSA hasfor the computing platform on which it executes
and for other physical resources, such as the electrical power necessary to operate the sensors that
arewithin ASSA. It also leads to a set of requirements for a command-and-control interface be-
tween the pilot and ASSA. Aswe elaborate the architecture of ASSA in the next section, it will
help us recognize that the MIS health-monitoring service plays a supervisory role, while the MIS
data-conversion and data-storage services play support roles by providing resources for accom-
plishing data interchange between components of ASSA.

Each interaction point must be addressed by requirements. The specification of each interaction
point must indicate the type of interaction, the type of data or control being exchanged with oth-
ers, the rate at which it is exchanged, and any exceptional conditions that the interaction must pro-
cess. For input, supervisory control, and resource usage interaction points, these specifications
represent assumptions about the operational environment. For output and supervisory control
feedback, these specifications represent guarantees made by the system to others.

2.3.2 Coverage of Relevant Design and Operational Quality Attributes

Next, we utilize the concepts of quality attributes and utility trees from the SEI QAW and Archi-
tecture Tradeoff Anaysis Method® (ATAM®). These quality attributes represent two categories of
requirements:

5 For an overview of CPRET, see http://en.wikipedia.org/wiki/Process_(engineering).

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

http://en.wikipedia.org/wiki/Process_

developmental requirements, such as modifiability, portability, or assurability

operational requirements, which include the subcategories of mission-, safety- and security-
critical requirements. Mission-critical requirements include function, behavior, and perfor-
mance to complete a mission. Safety-critical requirements include function, behavior, and
performance to mitigate |oss leading to death, destruction, or damage. Security-critical re-
guirements include function, behavior, and performance to mitigate compromise of classified
or confidential information and loss of capability, resources, or security in any combination.

Figure 9 illustrates a partial set of quality attributes, three operational and one developmental. It
also shows arefinement of the quality attributes into utility functions and their quantification into
requirements whose satisfaction can be assessed measurably. The annotations of low, medium,
and high (L, M, and H) pairsindicate levels of criticality and difficulty to help focus architectural
design, evaluation, and verification. This utility tree becomes a checklist for assuring that require-
ment specifications address the relevant quality attributes of the system.

L.m
Data {) Reduce storage latency on
— Performance Latency customerDBto < 200 ms.
Transaction m] Delivervideo inreal time.
Thrnughput sEEEENEEEEEE N,
New products (HH) Add CORBAmiddleware :bevelopmental .
o in < 20 person-months. * Requirements .
= Modifiability Change . . — - .
coTs (H,L) ChangeWeb userinterface - I T
~! in < 4 person-weeks. _= Moedifiability]
QA — (H.H) .) . e .
Utility Poweroutage atsite1 requires traffic T T T TN
HW failure redirected tosite2 in < 3 seconds. : l"i!\s‘lr.,ura|;|i|i|;y 1 n
— Availability Network failure detected and recovered s - T T T T .
COTSSW (HH]'" < 1.5 minutes. .'IIIII.I.I.IIIII..
failures (H,M)
Credit card transactions are secure

Data 3
— Security confidentiality 99.999% ofthe time.
Data Customer DB authorization works

integrity (H,L) 99.999% ofthe time.

" ‘/‘-; - —-----HEQ— n

fSafety-CriticaT Mission-Critical .

. RequirementsI Requirements |
—— o — n | e e e e o -
| EReIiabiIity: | !_ Function ,
=== | ——— —
Safety | | « | Behavior | |
r ge:uﬁty_) | | I Performance |
L]
\l—.l-' [——)

Figure 9: Operational Quality Attributes and Utility Trees

When specifying requirements for ASSA, MIS, and DCFM, we illustrate both developmental re-
guirements and operational requirements. For example, developmental requirements might in-
clude portability, achieved by conforming to the FACE Standard; modifiability; and
configurability, as aresult of using standardized representation for observation tracks. Operational
requirements include performance in terms of data volume and processing rates, response timein
terms of end-to-end latency, and avoidance of unsafe conditionsin terms of false positives and
false negatives in situation awareness and timing discrepancies of time-sensitive information
along multiple processing paths.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

2.3.3 Exceptional Conditions and Their Impact

Finally, we utilize afault ontology that has been defined as part of the EMV 2 language standard
from the SAE AADL standard suite. The purpose of this extension to AADL isto support archi-
tecture fault modeling of various forms of system safety analysis.

Figure 10 illustrates the fault ontology on the left. This ontology focuses on error types that repre-
sent failure modes of systems being propagated to and from other systems. The most commonly
used error type is omission, or the failure to provide a service or output. An exampleisfailure to
provide power. We distinguish between failure to provide a single item and failure of the source
to provide any item. Commission occurs when a service or an output is provided at atime when it
is not expected. Other error types represent value errors on individual items and sequences (se-
guence error), timing errors on individual items and sequences (rate error), replication errors for
inconsistencies in replicated information or components, and concurrency errors for exceptional
conditions when accessing shared resources. The terms used for the error types can be adapted to
the domain. For example, omission may represent no power, and an above-range value error may
represent a power spike.

The right-hand side of Figure 10 illustrates the systematic application of the error typesto asys-
tem specification. It shows the interaction between a control system and a system under control.
We can annotate this specification with error types to indicate whether certain types of excep-
tional conditions are expected to occur or not occur. Annotation of the interaction points repre-
sents assumptions and guarantees made by a system. Annotation of a connection indicates that the
interaction itself is the source of an exceptional condition.

Service errors

—_— T

Omission Commission

l Behavior I]

Control System |

Input

Behavior

System Under Control Sensor

l l State h l
| Value errors I X I Timing errorsl

Figure 10: Fault Ontology and Its Application to a System Specification

Actuator

The STAMP method has a similar model to classify hazards in control flows [Leveson 2012].
Some faults are characterized somewhat ambiguously (e.g., inadequate or inappropriate). These
descriptions can be refined into more precise descriptions using the utility tree approach of the
ATAM, leading to classifications that tend to align with the EMV 2 fault ontology.

We apply the fault ontology at all levels of the system specification to ensure that the impact of
exceptional conditions anywhere in the architecture design of the ASSA system are understood
and addressed. This practice helps us minimize the potential for incidents due to occurrences of
even “minor” faults.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

234 Integrating Requirements Specification and Safety Analysis

Including exceptional conditions in the requirements specification process facilitates the integra-
tion of safety analysis with requirements specification. We discuss the safety analysis of the
ASSA, DCFM, and MIS systems in a separate report [Feiler 2015c]. Here we provide a summary
of the three major stepsinvolved in addressing safety hazards:

1

Identify unsafe system states that must be addressed as safety requirements (Figure 11).
These states can be the result of failure modes of individual system components or unex-
pected interactions between components that in themselves are not failing.

Identify contributors to reaching unsafe system states; these exceptional system conditions
lead to hazards and must be managed (Figure 12). Typically, they take the form of control
actions that lead to unsafe system states or lack of control actionsto recover from unsafe sys-
tem states.

Identify capabilities for a safety system (derived safety requirements) in order to manage the
exceptional conditions (Figure 13). These capabilities typically take the form of sensorsto
observe systems that are involved in unsafe system states and to detect these unsafe system
states. Other derived requirements include restrictive conditions on control actions and addi-
tional control actions to provide reporting and recovery from unsafe system states.

Figure 11 through Figure 13 illustrate these stepsin asimple train example.

Identify unsafe system states
+ Failure hazards & interaction hazards (error sources)
+ Exceptional conditions that contribute to incidents/accidents

AtStation,
Enroute

Alignment
Train Motion:
Stopped, Moving

Door Position:
%ﬁf n, Opening,

sed, Closing
Passenger exch! nge

Crossi
Onboard,
OnPlatform,
Absent

[

Figure 11: Identification of Unsafe System Conditions

Identify contributors to unsafe system states functional

= Control functions as error sources that result in Architecture . |

System Architecture

exceptional condition/unsafe state .

inability to recover from exceptional condition = System undgr Control

Door Possition:
Train Control |_ Maaun.mm-)
System Train

Figure 12: Identification of Contributors to Unsafe System Conditions

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Identify derived safety requirements | Functional P cidifoc e

. . Architecture
« Fault tolerance, exception handling,
Fault Detection Isolation Recovery (FDIR) e e

« Health monitoring, safety system Door Posiion;
i - Train Control ey
+ Additional sensors, control conditions S

System under Control

Train

Sensors
Actuators Door Obstacle

L

i)

Figure 13: Identification of Safety System Functionality to Address Unsafe System Conditions

2.35 Toward Incremental Lifecycle Assurance

An objective of ALRS isto support an incremental lifecycle approach to safety-critical system as-
surance. The ALRS process addresses the gap that currently existsin many software-reliant sys-
tem devel opments between system requirements and software requirements [Boehm 2006]. The
ALRS processis driven by the close interaction between requirements specification and architec-
ture design, as we described in Section 2.3.4 on safety analysis and derivation of safety system re-
quirements. Similarly, we will refine the specification of ASSA into an ASSA system architecture
that will become the context for identifying the system boundaries of DCFM and MIS and for de-
termining the requirements placed on these subsystems by the ASSA as operational context.

Figure 14 illustrates generically how requirements associated with a system specification are de-
composed into requirements of the subsystems once the first layer of the system architecture has
been designed. In this context, we can assure that al system-level requirements are appropriately
mapped into requirements for the subsystems. We also assure that additional requirements on
each subsystem are addressed, such as a subsystem'’s use of the system’s internal resources or ex-
ceptiona conditions introduced by a subsystem that may or may not have been specified at the
system level.

The right-hand side of Figure 14 illustrates a second step in this process: the association of verifi-
cation activities with requirements as part of an assurance plan and their incremental execution
throughout the lifecycle. In that context, we assess whether satisfying the subsystem requirements
is sufficient evidence for meeting a system-level requirement or whether an explicit verification
activity is necessary.

Requirement Requirement [RS | sR::;IIII;?::‘ue:;

;=) Coverage i) Coverage (VA] Verification
Activity

Design & Req

Design & Req | T
Refinement | erification

Refinement

Figure 14: Requirement Decomposition and Verification

Figure 15 shows this process applied recursively. Because the hierarchy reflects the architecture
abstraction, we may be able to perform compositional verification. A verification activity may op-

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

erate on the assumption that the subsystem requirements have been met, allowing for composi-
tional verification, or it may provide results of a different level of fidelity, depending on the level
of expansion in the architecture hierarchy.

Requirement Requirement
=)] Coverage ;53] Coverage

mpositional Design & Req ompositional
erification Refinement erification
Design & Req Compositional
Refinemen Verification
Requirement

Design & Req
Refinement

Design & Req
Refinemen

m m m Specification
Verification
Activity

Figure 15: Requirement Decomposition and Verification One Layer at a Time

This process of incrementally refining a system architecture and analyzing the virtually integrated
system early in the lifecycle leads to early discovery of system-level problems that are currently
not discovered until after unit testing. The same process aso |eads us to assure the system incre-
mentally throughout the lifecycle by evolving the assurance plan and incrementally executing ver-
ification activities against it. Thisisgraphically illustrated in Figure 16.

Architecture

Requirements | Requirements | Deployment | " [Acceptance
Engineering | < |Validation Modeling Build > |Test
Analysis &
Generation
System Target I " [System
Design Build > Test

Early Discovery Reduces Rework

Architectural Architecture Int?graﬂon Integration
Design Validation Build Test
Component " [Design
Software <+ |validation
Design
Build the Code $ /AT Assure the
System Development | — |ygst System

Figure 16: Incremental Assurance Through Virtual System Integration

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3 Modeling ASSA as Operational Context for MIS and DCFM

Together, the MIS Stakeholder Requirements document, the M1S SSS document, and the BAA
Supplement document provide descriptions of the operational context for MIS and DCFM. In this
section, we explain how we capture this operational context in AADL models to help us identify
the system boundaries of MIS and of DCFM.

To do this, we created three projects in the Open Source AADL Tool Environment (OSATE). The
first project, Stuational AwarenessCommon, contains AADL models of concepts and services
used in the other two projects. The second project, Stuational AwarenessSystem, contains the
AADL model and requirement specifications as arecord of the information found in the docu-
mentation provided to us. The third project, Stuational AwarenessRefArch, contains an AADL
model of the ASSA reference architecture and its configuration for a specific aircraft platform.

3.1 Points of Interaction with the Operational Environment

In our case study, thefirst step isto trandate the information from the MIS Stakeholder Require-
ments document into an AADL model and annotate it with appropriate specifications of stake-
holder goals. This document tells us that we are dealing with a situational awareness system for
aircraft survivability.

One objective of the stakeholder requirements elicitation process is to establish a common under-
standing of the application domain, domain-specific concepts, and desired capahilities. The ASSA
system collects observational data about the operational environment, in particular about threats,
obstacles, terrain, and weather. All these factors potentially affect the survivability of the aircraft.
The ASSA system performs data correlation, data fusion, and situation assessment and reports the
results to the pilot and an automated rerouting system. Both of these entities can take corrective
actions to avoid or recover from situations that negatively affect aircraft survivability. In other
words, ASSA together with the pilot or automated rerouting system acts as a control system to
manage the flight path of the aircraft. For more information about sensor correlation and fusion
processes, the Air University New World Vistas volume on sensors provides a nice framework
[AU 1996].

We specify the entities of the operational environment as abstractly as possible, but still with a
precise characterization relevant to performing situational awareness functions. For example, dif-
ferent threats may be characterized as stationary or moving, while obstacles may always be char-
acterized as stationary.

Figure 17 illustrates the ASSA system in its operational context. The key entities that the system
will observe are shown on the left as solid-line rounded rectangles, while additional entities are
shown as dashed-line rounded rectangles. The figure also shows specific types of threats to be ob-
served.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Hostile Fir'

¥
e Automated
-~ # / i Rerouting
i

- s ’

‘ \\‘n ASSA

[Collection, Correlation/Fusion, Assessment of Observations] -

o

4 4
e i iy {
Obstacle | ¢~~~ ~~~~---~ e
/Adjacent Aircraft, /1 Weather |
7

|
---------- - A

Figure 17: Operational Context of the Situational Awareness System

3.2 Observed Entities and ASSA Context

Ancther early step isto identify entities in the operational context that ASSA must track. We use
data modeling techniques to capture those entities. With AADL, we can use the abstract compo-
nent type construct to represent these entities. We place al the abstract component typesin a
package called SAObservations. For data modeling, we could also use other notations such as
Unified Modeling Language (UML) class diagrams. In that case, we would map relevant aspects
of the resulting UML data model into AADL using the Data Modeling Annex guidance.

The MIS Stakeholder Requirements document identifies three types of entities: threats, obstacles,
and terrain. We use the AVCIP:: aliases property to keep track of different terms that are used in
various documents and seem to describe the same concept or entity. By recording this infor-
mation, we can later confirm whether thisis actually the case or whether each term represents a
different concept or entity.

Threats are entities that can inflict damage to the aircraft with weapons. The stakeholder require-
ments and other documents identify different types of threat. We capture them as abstract compo-
nent types in atype hierarchy, as shown in Figure 18. Thisis done by declaring atype as an
extension of the type Threat, as shown in textual AADL in Figure 19. The type Threat indicates
that all subtypes of threat must be considered. In some documents, only subsets of the threat types
are identified; for example, the DCFM data model has an enumeration type that identifies only
three of the threat types. The type hierarchy helps us recognize and resolve such ambiguities.

{ Terrain | Threat | { Obstacle | | AdjacentAircraft | [cop |
/‘/"r<I ______ T T e e T b ey
i BallisticWeapoy!Fire/i | FlightPathObstacle | e
; / ' : ’ { COP.incoming |
R TRO ER, RRa R
B | / HES T : MOtherAircraft]| [vieatias]
J LaserDesignator | | WireObstacle | S

e
i Missile

Figure 18: Observables in the Operational Environment

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

abstract Threat

end Threat;

abstract BallisticWeaponsFire extends Threat

properties
ACVIP::aliases => ("HostileFire (in DCFM Data Model) ",
"HostileFireDetectionSystem") ;

end BallisticWeaponsFire;

Figure 19: Textual Threat Specification

Obstacles are entities that may be in the flight path and can cause a collision. Examples of obsta-
cles are towers and electrical power lines. We find two more specific terms for obstacles: flight
path obstacles and wire obstacles. By relating them in a component type hierarchy and providing
appropriate descriptions, we can clarify the intended meaning and relationship of each term. For
example, is WireObstacle a subclass of FlightPathObstacle, or are they two orthogonal catego-
ries?

One of the documents indicates that aircraft are lost more often due to collision with obstacles
than dueto threats. This provides arationale in the stakeholder requirements for tracking obsta-
cles. Weinitially record this information as part of the Obstacle abstract type using the
ACVIP::Rationale property and include it as rationale for a stakeholder goal regarding obstacles.

Thethird type of entity isterrain. In low-atitude flight, it is critical for an aircraft and the pilot to
be aware of the terrain.

Various documents a so refer to other aircraft and adjacent aircraft, the weather, and a Common
Operational Picture (COP) as entities that the system must be aware of. Again, by relating these
entities we can reduce ambiguity in the interpretation of these concepts. It helps answer questions
such as “Is weather part of the COP?’ “Are other aircraft and adjacent aircraft the same?’ and
“Are enemy aircraft and coalition aircraft being distinguished?’

Finally, we specify the ASSA system as an AADL system type with two outputs, as shownin Fig-
ure 20. It is defined in the package ASSASystem. The two outputs are presenting situation aware-
ness results to the aircrew and passing the results to an automatic control system, such as aflight
path rerouter. We use the property JIMRMI S : ObservedObjects to indicate the entities that ASSA
will observe. The values refer to the abstract types we defined in SAObservations. This leaves
open the decision as to whether ASSA sensors are part of the ASSA system or outside the ASSA
system. The property IMRMIS.: ObservationRadius is used to indicate the expected radius within
which awareness is raised to the aircrew (according to the Stakeholder Requirements document).

Aswe identify information that is expected to be supplied to the ASSA system by other aircraft
systems, we specify corresponding incoming features in the ASSASystem system type, such as
OwnAircraftPosition. We use feature group declarations in cases where multiple pieces of infor-
mation will be communicated, such as the information presented to the aircrew. Where appropri-
ate we may identify a specific data type, asillustrated for OwnAircraftPosition.

system ASSASystem

features

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

IncomingCOP: in data port;
FENNLocations: in data port;
GeospatialData: in data port;
EnvironmentalInformation: in data port;
Weather: in data port;
OwnAircraftPosition: in data port MissionSystemDataTypes::Position;
AMPSInterface: in out event data port;
ThreatAlerts: out feature;
ASSAAirCrewPresentation: out feature group ASSAInterfaces::AirCrewSAInformation;
ASSAAutoControl: out feature group;
properties
JMRMIS: :ObservedObjects => (
classifier (SAObservations::Threat),
classifier (SAObservations::Obstacle),
classifier (SAObservations::Terrain));
JMRMIS: :ObservationRadius => 5 NM applies to SA AirCrewPresentation;

end ASSASystem;

Figure 20: ASSA Context as Model

Figure 21 illustrates how we use a feature group type declaration to specify the type of infor-
mation expected to be presented to the aircrew. It isdefined in the AADL package ASSAInter-
faces. Where appropriate, we use properties to characterize the presented information, such as an
indication of the observation radius covered by each dataitem.

feature group AirCrewSAInformation
features
AircrewSphericalTerrainInformation : out feature {
JMRMIS: :ObservationRadius => 5 NM;};
AircrewTerrainLocationAwareness : out feature {
JMRMIS: :ObservationRadius => 2 NM; };
AircrewTerrainHeightAwareness : out feature {
JMRMIS: :ObservationRadius => 2 NM;};
AircrewTerrainHazards : out feature;
AircrewSphericalObstacleInformation : out feature
JMRMIS: :ObservationRadius => 5 NM;};
AircrewRelativeFlightPathObstaclePositionAwareness : out feature {
JMRMIS: :ObservationRadius => 5 NM;};
AircrewFlightPathObstacleHeightAwareness : out feature {
JMRMIS: :ObservationRadius => 5 NM; };
AircrewFlightPathObstacleSeparationAwareness : out feature {
JMRMIS: :ObservationRadius => 5 NM;};
AircrewRelativeWireObstaclePositionAwareness : out feature {
JMRMIS: :ObservationRadius => 5 NM; };

AircrewFlightPathObstacleHorizontalSeparationAlert : out feature {

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

JMRMIS: :ObservationRadius => 5 NM; };
AircrewFlightPathObstacleVerticalSeparationAlert : out feature {

JMRMIS: :ObservationRadius => 5 NM;};
AircrewSphericalAdjacentAircraftInformation : out feature {

JMRMIS: :ObservationRadius => 5 NM; };
AircrewRelativeAdjacentAircraftPositionAwareness : out feature;
AircrewOtherAircraftPositionAwareness : out feature;
AircrewOtherAircraftAltitudeAwareness : out feature;

end AirCrewSAInformation;

Figure 21: Information Presented to Aircrew

3.3 Representing the ASSA Functional Architecture

The MIS SSS document provides details about the ASSA functional architecture and system ar-
chitecture in terms of ASSA sensors. These are illustrated in Figure 22, which shows several types
of sensors representing the data collection functionality, several instances of data correlation and
fusions functionality, one instance of situation awareness functionality, and presentation function-
ality. In alater section, we present a reference architecture for ASSA with each of these functional
areas that then get instantiated for particular aircraft platform and sensor configurations.

Figure 22 shows which sensors are responsible for observing which threats, obstacles, and terrain.
It also shows that the source of the own aircraft position is an embedded global positioning sys-
tem (GPS)/inertia navigation system (EGI) external to ASSA. We see that a data correlation and
fusion service combines tracks from two sensor sources, while a data correlation service deals
with only one sensor source. Correlation in this context relates the position of observed entities to
the own aircraft position. The resultant tracks are then assessed for situational awareness against
proximity conditions for raising awareness and alerts.

Threat (}.,| ASSA Max ASSA
— SensorAT Response
) A] Latency = 1.6
i e Seconds
P Data
M I
issi SensorWW| Fco_rralta[;ig:M Track Set
usion T
o AssA Sourg:;l‘rack Situation T3 ASSA % Pilot]
Terrain } SensorJT Data Assessment Alort Pr) i
Sensor Track Correlation & Annunciation
Obstacle b Format
-4 ASSA Data
SensorLas Std Track|Correlation
Format
(T TTTTTTTTT 1 e L
‘Adjacent Aircrafti”” : ’
:::::::::::::;f" - Auto
E CoP ¥ Weather i Streams of Time-Stamped Observation Track Sets} Rerouting
Figure 22: ASSA System Functional Architecture
CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3.3.1 Functional Elements of the ASSA System

We use the ASSASensor package to specify the different ASSA sensor types, shown graphically in
Figure 23. The top row shows the four types of aircraft survivability threat sensorsidentified in
the Stakeholder Requirements document. This document also distinguishes between active and
passive sensors. The concrete sensors are represented by the AADL device component, while the
concepts of Sensor and ASSASensor are represented as abstract components.

[JaTAs | |weaponWatch | [APR39D |

[ActiveTerrainSensor | [ActiveObstacleSensor |

| ASSASensor |

e

|| PassiveTerrainSensor ” |] PassiveObstacleSensor ||

| Sensor |

Figure 23: Situational Awareness Sensors

Each sensor type is characterized with a set of properties. They include project-specific properties
and predeclared properties for devices:

o JMRMIS:ObservationRadius: the maximum radius within which the sensor observes entities
« JMRMIS:ObservedObjects:. the set of entities that the sensor is designed to observe

« JMRMIS:SensorKind: an indicator as to whether the sensor is active or passive

« Period: the rate at which a sensor operates to collect sensor information

We use the DCFM package to specify the data correlation and fusion functions. It includes a data
correlation-only function, a data correlation and fusion function, and aradar track correlation
function (the threat type that is not included in the standard track representation, according to the
DCFM data model). Figure 24 shows the specification for the data correlation function, including
the data types expected for the incoming and outgoing ports, the data flow from source tracks to
the correlated track (used in analysis of latency in the end-to-end flow), and a set of project-spe-
cific and standard properties. The data correlation and fusion function has a similar specification.
We aso included contractor-specific specifications of the DCFM function, highlighting differ-
ences from the specification based on the DCFM data model.

system DataCorrelation

features
SourceTracks: in data port TrackTypes::DCFMSourceTrackSet;
OwnAircraftPosition: in data port MissionSystemDataTypes::Position;
CorrelatedTracks: out data port TrackTypes::CorrelatedThreatTrackSet;

flows

ThreatCorrelation: flow path SourceTracks -> CorrelatedTracks;

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

properties
JMRMIS: :MaxTimeStampVariation => 100 ms;
JMRMIS: : FrameOfReference => WGS84 applies to SourceTracks;
JMRMIS: :FrameOfReference => OwnAircraft applies to CorrelatedTracks;
Transmission Type => Pull applies to SourceTracks;
Transmission Type => Push applies to CorrelatedTracks;
JMRMIS: :ObservationRadius => 25 km applies to CorrelatedTracks;
ACVIP: :InputInterval => 100 ms applies to SourceTracks;
ACVIP: :OutputInterval => 1 sec applies to CorrelatedTracks;
Latency => 1 sec .. 1 sec applies to ThreatCorrelation;

end DataCorrelation;

Figure 24: Data Correlation Specification

The ASSAAssessment package contains a specification of the situation assessment function, and
the SAAwarenessAnnunciation package contains a specification of the situation awareness display
and the situation awareness annunciation device for the aircrew. The display specification lists
different data items sent to the display as separate ports. For use in the reference architecture spec-
ification, we separately defined a configurable specification of the ASSAMFDDisplay in the AS-
SADisplayAnnunciation package.

3.3.2 The Concept of Tracks as Observation Representation

The package TrackTypes contains the specification for the concept of Track. The requirements
documents and the DCFM data model identify source tracks and correlated tracks. We introduced
the additional track-related concepts of track set, track sequence, and track history, which are val-
uable to the specification in an AADL model.

We defined a data type Track with atrack ID. Thistype indicates an instance of the track repre-
senting the position of an observed entity at a given point in time.

We added the concepts of TrackSet and TrackSetDiff. A TrackSet represents a collection of tracks
at agiven point in time, such as the set of observations made available by an ASSA sensor or the
set of tracks processed by DCFM. TrackSetDiff represents the difference between two track sets.
According to the DCFM data model, DCFM produces as output a set of changes relative to the
previous track set in terms of removing, adding, and modifying tracks in the track set. This con-
cept alows us to specify that the track set or set difference must be communicated and processed
as asingle consistent abstraction.

Figure 25 illustrates the definition of Track and TrackSet in AADL. Thetrack ID isidentified asa
32-bit integer, and the size of the track set is bounded by a maximum value defined as property
constant JIMRMISConstants: : MaxTrackslnSet.

data Track
properties

ACVIP::Description => "Track represents an observed entity at a given point in
time";

end Track;

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

data implementation Track.basic
subcomponents
trackID: data Base Types::Integer 32;

end Track.basic;

data TrackSet
properties

ACVIP: :Description => "Set of tracks represents a collection of tracked entity at a
given point in time";

end TrackSet;

data implementation TrackSet.basic
subcomponents
elements: data Track [JMRMISConstants::MaxTracksInSet];

end TrackSet.basic;

Figure 25: Track Type Definitions in AADL

TrackSequence represents atrack of the same observed entity over time. All elementsin the se-
guence are assumed to have the same track 1D. We can document this assumption as a predicate
in an associated requirement.

TrackHistory represents a bounded track sequence, which may be used for extrapolation or for
showing atrace of atrack over recent time.

We have separate data types for SourceTrack and CorrelatedTrack to reflect the DCFM data
model. Our specification of SourceTrack includes Position, Velocity, and SamplingTime—the lat-
ter two are not present in the DCFM data model. We elaborated Position with a representation
specification that includes the dimensions of a position as well as the frame of reference. The
package MissionSystemDataTypes a so contains definitions for velocity, Spherical TerrainSA, and
other data types for data being exchanged. For CorrelatedTrack, we specify two variantsto repre-
sent two variations of the relation to source tracks used in the correlation: alist of source track
IDsand alist of actual source track (copies) as part of the correlated track. The former representa-
tion assumes that the source tracks at a given point in time remain available. The latter replicates
the source track, increasing the memory footprint of ASSA.

Track sets, track sequences, and correlated tracks include a specification of the maximum size of
the set, sequence, or source track references.

We added the data type AssessedTrack to represent atrack that includes the situation assessment
results with respect to awareness and alert thresholds.

We introduced the IMRMI S : FrameOfReference property to specify the frame of reference used
in the specification of alocation. The frame of reference may be the World Geodetic System 1984
(WGS84) global reference system or the own aircraft position. This allows us to extend the con-
nection-consistency check to include a consistent frame of reference across connections.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

We introduced the IMRMI S : MaxTimeStampVariation property to specify the maximum accepta-
ble variation in time stamp values within atrack set. This allows us to specify conditions under
which variation in time results in an unsafe condition.

The MIS System Requirements Specification document distinguishes between sensor-specific
track representations and a standardized track representation. The latter is specified in the DCFM
data model. The TrackTypes package includes data types for both of these categories.

3.3.3 The Functional ASSA Architecture with Data Representations

We use the various track data types to annotate incoming and outgoing port specifications for
each functional element of the ASSA system. The package ASSASystem: : Functional defines the
functional architecture of the ASSA system. The interactions shown in Figure 26 are defined by
port connections.

[Collection, Correlation, Fusion, Assessment of Observations => Inform and Act]
E OwnAircraft :>—-~.__

________________ [Scope of Standardized Data Formats]
% gc [aft Pos

» ASSA
SensanA\
l SensorTB] Correlation

Fusion /
Sourge Track
7

ASSA et
Obstacle -] -
L
‘errain SensorTe | Data

............ std TrackCorrelation

Max
Response
Latency > 1.6

Seconds
Prpsentation [=y=»
ASSA _jm

Annunciation

Track set

Trd

Situation
Assessment

r)
‘Adjacent Aircraft, \ Format .

_____________ ——sg050 TIACK
‘ Format N S \\ .

! COoP] Rerouting

Figure 26: Scope of Standard Track Representation

The AADL compiler will check for various forms of type inconsistencies. Type inconsistencies
can occur between the data types of outgoing and incoming ports on both ends of a connection.
An elaborated form of consistency check includes comparison of base types, measurement units,
and range of acceptable values. In our case, the checker identifies a mismatch between sensor-spe-
cific and standardized track representations (see Figure 27). They are identified at the boundary of
the standardized track representation scope and are resolved by applying the ASSA data-conver-
sion service. Such type checking also identifies potential inconsistencies in hardware connections,
such as whether a system is connected to the correct type and variant of a network.

+ @ Errors (4 items)
@ 'SourceTracks' and 'Sourcetracks' have incompatible classifiers.
9 'SourceTracks' and 'Sourcetracks' have incompatible classifiers.
® 'SourceTracks' and 'Sourcetracks1' have incompatible classifiers.
@ 'SourceTracks' and 'Sourcetracks2' have incompatible classifiers.

Figure 27: Interaction Inconsistencies in the ASSA Functional Architecture

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3.4 Identifying the System Boundary

Thefina step of this phaseisthe identification of the system boundary for DCFM and MIS. For
DCFM, we determined the functions that must be packaged into the DCFM and which types of
observationsit will handle. The purple line in Figure 28 indicates the potential scope of DCFM,
that is, whether it performs correlation and fusion of threats only or also terrain, obstacles, and
even data from non-situational awareness sensors such as aircraft position. It also shows that
DCFM receives aircraft position, which suggests that DCFM changes the frame of reference for
track data from global to aircraft relative. Finally, it indicates that DCFM may perform situation
assessment to determine whether a critical proximity threshold has been crossed.

Max Response ASSA
Latency = 1.6
Seconds

[Threat }“m ASSA

HT
1“‘ .\
W ASSA Data
L o
SensorWW| I Correlation

ASSA
Presentation

ASSA :‘_=| Pilot

& Annunciation

Track set
Fusion (DCFM)| |

Source Track

Situation Traz
Assessment

ASSA s
- -] et
Terrain |‘" SensorJT “_“‘—-——_.____ Data
Correlation

Sensor Track

B ASSA Data

T
SensorLas std Track|Correlation
Format

s

R 7 -
‘Adjacent A"’crﬂfﬁ” ’ DCFM: Single or Multiple Streams? Threats

P or also Terrain, Own and Adjacent Aircraft? Is Auto

i coP ' Weather Situation Assessment Included? Rerouting

Figure 28: System Boundary of DCFM

Note that the MIS Stakeholder Requirements document discusses threats, obstacles, and terrain,
while the MIS SSS and the DCFM data model mention only threats.

3.5 System Boundary and Roles of MIS

MIS provides three services for the ASSA system:
1. adata-conversion service as part of an infrastructure layer below ASSA

2. adatastorage service as part of an infrastructure layer below ASSA

3. asupervisory monitoring and control service (safety system) that oversees the nominal
ASSA system operation in a supervisory layer above ASSA

The relationship between the ASSA application functionality and the MIS servicesisillustrated in
Figure 29 in terms of alayered architecture. The SA data-conversion and data-storage services
can effectively be viewed as protocols to support the flow of track information through the ASSA
system. The SA data-conversion service is employed where there is a mismatch in track data rep-
resentation, asidentified in Section 3.3.3 and shown in Figure 29 by arrows to the appropriate
connections from the SA data-conversion service. The SA data-storage service accepts output

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

from various ASSA subsystems and then makes it available to the same and other ASSA subsys-
tems. In Figure 29, arrows from the SA data-storage service identify potential candidates of data
to be handled by this service.

[ASSA Health Monitor & Configuration |

e

ASSA
T

— T~ Max
%;h- Response
7 Latency > 1.6
i c":;':k Sot Seconds
: >

o Assess Presentation
[~
PI tati

Situation
& Annunciation

- ASSA ! Aszessment
Obstacle * SonsorJT Coslaton skl
Terrai | ASSA
‘errain I . Las S | : D al

(Tt TT T B

0. Trach
/Adjacent Aircraft] Sensor Track on;'lﬁ‘\

w77

Rerouting

e . SA Data Conversionl | SA Data Service |

Figure 29: Identification of MIS Services as Layered Architecture

The provided documents contained ambiguous information as to the complete set of data to be
handled. For example, it is unclear whether the SA data-storage service will provide own aircraft
position only to DCFM or also to situation assessment and to the Multi-Function Display (MFD)
for the pilot or whether the latter should come directly from the EGI source. Similarly, it is un-
clear whether the SA data-storage service should manage assessment results as well as other situa-
tion assessment data, such as adjacent aircraft, weather, and friendly, enemy, neutral and
noncombatant (FENN) entities.

In addition, it is unclear whether the SA data-storage service isto store or even generate aerts.
According to the MIS SSS, “the MIS System shall determine whether a new threat alert should be
created,” and “the MIS System shall periodically evaluate alerts according to a periodic schedule
defined by system configuration data to determine whether they should be deactivated.”

Capturing requirements information in an AADL model helpsidentify such ambiguities quickly.
Figure 30 shows the AADL model equivalent to the graphical depiction in Figure 29. We defined
an ASSASystem implementation that represents a basic configuration that gets extended with addi-
tional sensors and DCFM services as appropriate. We defined instances of the SA data-conversion
and data-storage services as abstract components. We recorded the association of these services
with different connections in the model by the property ACVIP:: Service_Binding. For some con-
nections, we identified the need for both data conversion and data storage, while for others we
identified data-storage only.

system implementation ASSASystem.Common
subcomponents
APR39D : device ASSASensors::APR39D;

WW : device ASSASensors::WeaponsWatch;

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

RadarDCM : system DCFM::RadarTrackCorrelation;
SAAssessment : system ASSAAssessment::SituationAssessment;
AirCrewDisplay : device SAAwarenessAnnunciation::SituationAwarenessDisplay;
AircrewAnnunciation : device SAAwarenessAnnunciation: :SAAnnunciationDevice;
ASSAHealthMonitor : abstract;
ASSADataService : abstract ASSADataService;
ASSADataConversion : abstract ASSADataConversion;

connections
WeatherInfo : port Weather -> AirCrewDisplay.WeatherInformation;
RadarTracks : port APR39D.SourceTracks -> RadarDCM.SourceTracks;
CorrelatedRadars : port RadarDCM.CorrelatedTracks -> SAAssessment.RadarTracks;

CorrelatedRadarTracks : port RadarDCM.CorrelatedTracks -> AirCrewDisplay.RadarInfor-
mation;

AssessedTracks : port SAAssessment.AssessedTracks -> AilrCrewDisplay.AssessedInfor-
mation;

SAAlerts : port SAAssessment.Alerts -> AlrcrewAnnunciation.Alerts;

AircrewVisuals : feature group AirCrewDisplay.AircrewSAInformation -> ASSAAirCrew-
Presentation;

MyPositionAssessment : port OwnAircraftPosition -> SAAssessment.OwnAircraftPosition;
MyPositionDisplay : port OwnAircraftPosition -> AirCrewDisplay.OwnAircraftPosition;
flows
RadarAlert : end to end flow APR39D.RadarObserved -> RadarTracks ->
RadarDCM.RadarCorrelation -> CorrelatedRadars ->
SAAssessment .RadarAlerts -> SAAlerts -> AlrcrewAnnunciation.SoundAlerts;
RadarObservation : end to end flow APR39D.RadarObserved -> RadarTracks ->
RadarDCM.RadarCorrelation -> CorrelatedRadars ->
SAAssessment .RadarAssessment -> AssessedTracks ->
AirCrewDisplay.AssessedThreatInfo;
properties
Latency => 1650 ms .. 1650 ms applies to RadarObservation, RadarAlert;
ACVIP: :Supervise => (reference (APR39D), reference (WW))
applies to ASSAHealthMonitor;
ACVIP::Service Binding => (reference (ASSADataService))
applies to CorrelatedRadarTracks, CorrelatedRadars, SAAlerts,
MyPositionAssessment,MyPositionDisplay, WeatherInfo;
ACVIP::Service Binding => (reference (ASSADataService),
reference (ASSADataConversion))
applies to RadarTracks;

end ASSASystem.Common;

Figure 30: ASSA System Information Flows and the Data-Conversion and Data-Storage Services

The data types on the ports involved in various connections identify whether they expect individ-
ual tracks, the most recent track set, or atrack history. Thislets us determine the types of datare-
guests that the SA data-storage service is expected to handle.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The SA health monitor is responsible for determining whether al elements of the ASSA system
are operational. In other words, it acts as the safety system for ASSA to ensure that the aircrew

can safely operate the aircraft from an aircraft survivability perspective. Potential issues with its
specification will be discussed in the context of the ASSA system safety analysis [Feiler 2015c].

3.6 ASSA Functional Architecture Performance

At this stage, we can consider two types of performance-related quality attributes:

1. responsetime of the ASSA system for informing the aircrew about athreat, obstacle, or ter-
ran

2. expected maximum data volume to be processed

3.6.1 ASSA System Response Time Analysis

As we investigated response time requirements for the ASSA system, we defined the end-to-end
flow from the time that a sensor detects a threat to the time that the pilot sees the threat on the dis-
play. We annotated this definition with the appropriate Latency property value. This response time
is of interest to stakeholdersin the ASSA system, such as the pilot.

MIS documentation mentions an expected latency of 1,600 milliseconds (ms) for threats. The re-
guirement statement does not distinguish between different types of threats. Also, there are no re-
guirement statements about |atency for obstacles or terrain. In the AADL model, we can add
flows with the appropriate latency values as necessary.

We annotated each of the functional subsystems with various types of performance-related prop-
erties. Where appropriate we defined the Period at which a functional unit isintended to operate.
The requirement documents indicate that ASSA and MIS services may operate at rates between
100 msand 1 s. For the purpose of response time analysis, we assume a best case of 100 ms.

We also defined flow specifications for each component, including flow sources when data starts
within a component, flow paths from a component input to its output, and flow sinks when data
flow ends within a component. For each of those flows, we specified an expected latency value. In
addition, we specified latency contributions by the SA data-conversion and data-storage services.

For the SA data-storage service, documentation indicates that clients request datafrom it. This
“pull” protocol adds one frame of communication delay, in the best case of 100 ms, if the SA
data-storage service and the client reside in different partitions.

Within the ASSASystem implementation declaration, we included end-to-end flow specifications
for radar and for hostile fire threats. For each we defined an end-to-end flow from the sensor to
present the correlated track on the display without going through situation assessment (Radar-
Observation and HostileFireObservation), an end-to-end flow from the sensor to provide a warn-
ing asresult of situation assessment (Radar Assessment and HostileFireAssessment), and an end-
to-end flow from the sensor to the annunciation device to provide an aert as result of situation as-
sessment (Radar Alert and HostileFireAlert).

After we created an instance model for the ASSA system and ran the end-to-end latency analysis,
we got afirst set of results that accounted for latency contributions by al the functional units as

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

well asthe SA data-conversion and SA data-storage services. The AADL Wiki provides details on
how the latency analysis works and how to interpret the results [SEI 2015].

Figure 31 shows the analysis results for Radar Observation. The maximum latency is|ess than the
expected maximum latency, and the same istrue for the minimum latency. In addition, the analy-
sis compares the expected latency jitter against the calculated latency jitter, that is, the difference
between the minimum and maximum latency. In this case, the calculated jitter is less than the ex-
pected jitter.

Latency analysis for end-to-end flow 'RadarObservation’ of syst "ASSASY DCMC p with latency preference stettings AS-PE-ET-EQ
Contributor Min SpecitMin Value Min Method Max SpeciMax Value Max Method Comments

device APR38D 0.0ms first sampling 0.0ms first sampling Initial 100.0ms sampling latency not added

device APR39D 250ms 250ms specified 50.0ms 50.0ms specified

(system ASSADataService) 100.0ms 100.0ms specified 100.0ms 100.0ms specified Using specified bus latency
(system ASSADataConversion) 3.0ms 3.0ms specified 5.0ms 5.0ms specified Using specified bus latency

Connection 103.0ms no latency 105.0ms nolatency Adding latency subtotal from protocols and bus - shown with ()
system RadarDCM 0.0ms sampling 0.0ms sampling Best case 0 ms, worst case 0.0ms (penod) sampling delay
system RadarDCM 1000.0ms 1000.0ms specified 1000.0ms 1000.0ms specified

(system ASSADataService) 100.0ms 100.0ms specified 100.0ms 100.0ms specified Using specified bus latency

Connection 100.0ms no latency 100.0ms nolatency Adding latency subtotal from protocols and bus - shown with ()
device AirCrewDisplay 0.0ms sampling 100.0ms sampling Best case 0 ms, worst case 100.0ms (period) sampling delay
device AirCrewDisplay 1.0ms 1.0ms specified 1.0ms 1.0ms specified

Latency Total 1129.0ms 1229.0ms 1156.0ms 1356.0ms

End to End Latency 1400.0ms 1600.0ms

End to end Latency Summary

B - <! end-to-end flow latency jitter for RadarObservation is within specified end to end latency jitter and minimum reposne time is better

Figure 31: Response Time for Observed Enemy Radar Track

Figure 32 shows the analysis results for Radar Assessment when the processing path includes situ-
ation assessment processing. In this case, the numbers are slightly higher. Both the maximum and
minimum cal culated latency are less than the expected values. However, the calculated latency
jitter is larger than the expected latency jitter; thus, it produces an error message.

Latency is for end-t d flow t' of system 'ASSASy D with latency pref tetti AS-PE-ET-EQ
Contributor Min SpecilMin Value Min Method Max SpeciMax Value Max Method Comments

device APR39D 0.0ms first sampling 0.0ms first sampling Initial 100.0ms sampling latency not added

device APR33D 250ms 250ms specified 500ms 50.0ms specified

(system ASSADataService) 100.0ms 100.0ms specified 100.0ms 100.0ms specified Using specified bus latency

(system ASSADataConversion) 3.0ms 3.0ms specified 5.0ms 5.0ms specified Using specified bus latency

Connection 103.0ms no latency 105.0ms no latency Adding latency subtotal from protocols and bus - shown with ()
system RadarDCM 0.0ms sampling 0.0ms sampling Best case 0 ms, worst case 0.0ms (period) sampling delay
system RadarDCM 1000.0ms 1000.0ms specified 1000.0ms 1000.0ms specified

(system ASSADataService) 100.0ms 100.0ms specified 100.0ms 100.0ms specified Using specified bus latency

Connection 100.0ms no latency 100.0ms no latency Adding latency subtotal from protocols and bus - shown with ()
system SAAssessment 0.0ms sampling 100.0ms sampling Best case 0 ms, worst case 100.0ms (period) sampling delay
system SAAssessment 100ms 10.0ms specified 100ms 10.0ms specified

Connection 0.0ms no latency 0.0ms no latency

device AirCrewDisplay 0.0ms sampling 100.0ms sampling Best case 0 ms. worst case 100.0ms (pericd) sampling delay
device AirCrewDisplay 1.0ms 1.0ms specified 1.0ms 1.0ms specified

Latency Total 1139.0ms 1239.0ms 1166.0ms 1466.0ms

End to End Latency 1400.0ms 1600.0ms

End to end Latency Summary

Jiller of actual latency total 227.0 ms exceeds expected end to end latency jitter 200.0ms with minimum actual latency total less then expected minimum

Figure 32: Response Time for Assessed Enemy Radar Track

In Section 4.2, we revisit the latency analysis on the ASSA system as elaborated into a design ar-
chitecture.

3.6.2 Track Data Volume

The volume of track data to be processed is essential for determining the memory footprint of the
SA data-storage service as well asthat of functional units. In addition, the volume affects trans-
mission time between functional units and processing time by the units.

We introduced two properties—ACVIP: : Outputl nterval and ACVIP:: Inputl nterval—that allow
the modeler to specify the rate at which input is expected and output is intended to be sent. Aswe

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

do thisfor each functional unit, a consistency checker can ensure that the outgoing rate is con-
sistent with the incoming rate for each connection. The data volume is also affected by the size of
each track set being communicated. To account for this variability, we specified maximum track
set sizes using the Data_Model: : Dimension property. For the property value, we used a property
constant. The property constants themselves are defined in the property set IMRMISConstants.
The constants allow us to change the sizes of various types of track setsin a single place without
searching through the model for each occurrence.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4 ASSA System Design Architecture

In this section, we summarize the ASSA system design architecture, in which the SA data-conver-
sion and SA data-storage services are explicitly included. We also provide a specification of inter-
action protocols used in communicating SA data between subsystems. We do so by defining the
protocol as avirtual bus with the appropriate latency contribution specified as the Latency prop-
erty. We also model each protocol implementation as an AADL model and analyze it to verify
that the latency value used in the protocol specification is correct.

4.1 ASSA Design Architecture

The ASSA system design architecture is specified in the package ASSASystem:: Design. We cre-
ated two variants of the design architecture:

1. ASSASystem.MISDataConversionArchitecture: In this architecture, the SA data-conversion
service isinserted into the interactions between ASSA components, while the SA data stor-
ageisrepresented asa servicein alayer below. In this case, the information flow is still ap-
parent in the model.

2. ASSASystem.MIDataServiceArchitecture: In this architecture, the SA data-storage serviceis
also inserted into the interactions between ASSA components. In this case, al interactions
between ASSA components become interactions with the SA data-storage service. The result
isamodel in which the information flow between ASSA components becomes implicit in
the storage and retrieval order of datato and from the SA data-storage service (see Figure
33).

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

ASSASensors::WeaponsWatch

Source Tracks

ww ‘

ASSADataConversion i FEThreatCM 3
| i SSADataC i

APR39D
ASSASensors:APR39D

SourceTracks
RalfarObserved

RadarDCM

StoreThreat$gurceTracks

StoreRadarourceTracks

Tnreat

K
i

edTracks
DCFMSourceTracks

InedmingAssessedTracks O

A dTracks

assessedTracks

SAAssessment
[Threatiracks Ment:SituationAssessment
Ra:
Ob:

ssment

k- : 4 Peathlerts
[OwnAircraftPosition Rai

Figure 33: ASSA System Design Architecture with SA Data-Conversion and Data-Storage Services

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

33

AirCrewDisplay

Weatherinformation

[Threatinformation

Aircrew SAInformation

AssBksadlitformai
p——
Ra deitrdfiaaons
—
DbéiatteTiformation
Terraininformation

DwnAircraftPosition

AssessedThreatn{oTomlot

AircrewAnnunciation

Device

4.2 Performance Analysis of the ASSA System Design Architecture

In this section, we revisit response time requirements and perform appropriate analysis on this
more detailed architecture. We al so represent the interactions between the ASSA application com-
ponents as protocols and model the implementation of each protocol in AADL in the context of an
ARINC 653-compliant partitioned architecture to determine the latency contribution of each in-
teraction.

4.2.1 Response Time Requirement Revisited

The MIS SSS document states that “ The MIS System shall publish Correlated Tracksto Client
Systemsin less than 1,600 ms measured from the pop-up threat arrival time from one or more
AST Systems.” When we interpret this statement in the context of the ASSA design architecture,
we realize that the response time is the flow from the time that track data arrives from one of the
ASSA sensorsto the time that datais sent to the display (see Figure 28). Thisis different from the
end-to-end flow specification in the previous section, which reflected the notion of response time
useful to stakeholders. This distinction allows us to clarify that the 1,600-ms response time was
not intended to reflect the response time from threat appearance to observation by the aircrew but
instead that the response time will actually be larger and thus present a greater risk.

4.2.2 Interaction Protocols

From the requirements documents, we gathered that the communication from the SA sensors to
the SA data serviceisa* push” architecture; that is, the datais transferred at the rate the sensors
produce it. The DCFM and the aircrew display request data to be sent at the rate of the receiver,
whichisa“pull” architecture. AADL has a Transmission_Type property that allows modelers to
indicate which connections assume a push or a pull.®

We also know that different ASSA system functionsreside in different partitions: data conver-
sion, DCFM, SA data storage, and display. At this stage of modeling, we can reflect cross-parti-
tion communication and the resulting latency contribution in a protocol abstraction modeling the
details of aparticular partition configuration. Later, we can elaborate the architecture, map each
functional unit into the appropriate partitions, and revisit the latency analysis to ensure that the ab-
stractions we introduced here are consistent.

The package MI SProtocols contains several virtual bus specifications, each reflecting a different

protocol. Different connections of the ASSA system design architecture include a specification of

the type of protocol that we expect to be used, which is expressed by the Required Virtual_Bus

Class property. The end-to-end latency analysis will take this property into account in order to in-

clude latency contributions by the respective protocol. The protocols are:

e SensorPushProtocol: communication from the SA sensor to the SA data-conversion function
(also referred to as “ sensor manager” in some documents). Its latency contribution can vary
between zero and a maximum of amajor partition frame, depending on the alignment of the

Push/pull is different from publish/subscribe. Publish/subscribe allows a system to dynamically establish con-
nections without knowing the other party. In push/pull, the sender or receiver determines the transmission rate
over an established connection.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

recipient partition windows with the sensor dispatch schedule. Note that transfer latency by a
physical buswill be represented separately by an AADL bus component.

« PullProtocol: asingle request/reply cycle across a partition boundary. Its latency is specified
as aminimum and maximum of 100 ms—the smallest partition rate.

o PullDCFMInputDataSetProtocol: an abstraction of the DCFM interaction protocol specified
as a sequence diagram in the original documentation. The diagram specifies that DCFM inter-
acts with SA data storage through three sequential request/reply actions. We specify its la-
tency as a minimum and maximum of 300 ms.

« SADataServiceProtocol: an abstraction of the SA data service as a communication protocol.
We use it in the MI SDataConver sionAr chitecture variant of the ASSA system design archi-
tecture and verify it in the Ml SDataServiceArchitecture variant.

The package also contains models of the implementation of these protocols running on a parti-
tioned processor system. We use these implementation models to determine the latency contribu-
tion by the protocol, that is, to verify the latency value used in the virtual bus specification of the
protocol. The implementation model has a sending thread and a receiving thread. Each thread has
a set of ports that represent the request/reply interactions. The sender/receiver interaction is repre-
sented by an end-to-end flow, which is shown graphically in Figure 34.

i requestor ! | sender
MISProtocols PullDCFMDataSetRequestor MISProtocols PullDCFMDataSetSender

SourceTracksRe uest;
SourceTrackRequestFlow
ReceivedSourceTrac kSet
SourceTrackReceivedSink

STRequest

SourceTracksRequest

SourceTrackFlowpath

endSourceTrackSet SenderData

.

Sn; urceTrackFlow SenderDataSetFLow
CorrelatedTracksRequest

il CorrelatedFlow
SendCorrelatedTrackSet

SourceTrackReceivedFlow
CorrelatedTracksReque

ReceivedCorrelatedTrackSei:

CorrelatedTrackReceivedFlow

OwnAircraftPositionRequest
OwnAircraftPositionReque _ APRequest— .

i| AircraftPositionFlow
SendOwnAircraftPosition

el RecewedOwnAlrcraﬂPosntaon AP

AircraftPositionRecei ;edFIow
ReceivedDataSetFlow

Figure 34: Three-Step Pull Protocol

We modeled the protocol implementation in two ways:

1. Immediate and delayed connections: In this case, we use the semantics of the AADL imme-
diate connection (communication within the same frame) and delayed connection (communi-
cation to the next frame) to reflect the cross-partition delay in one of the two directions
through the connection semantics. Depending on whether the sender or the receiver has the
earlier partition window, the frame boundary is crossed on reply or on request (delayed con-
nection).

2. Explicit partition binding: In this case, we introduce a processor with two partitions and bind
the sender and the receiver to one partition each. Then we validate that one direction is
frame-delayed based on actual partition schedules. We can switch the binding of the sender

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

and receiver to demonstrate that the result is independent of the partition order in the sched-
ule. We can also explore whether placing partitions on different processors creates additional
latency overhead.

In the AADL model, we defined the protocol once and then configured it as the two implementa-
tion variants, as shown in Figure 35. Each configuration is instantiated and analyzed for end-to-
end latency. The next section discusses the results of this analysis.

abstract implementation PullInputDataset.CrossPartitionTasks
extends PullInputDataset.Common
properties
Timing => immediate applies to STRequest, CTRequest, APRequest;
Timing => delayed applies to STReply, CTReply, APReply;

end PullInputDataset.CrossPartitionTasks;

abstract implementation PullInputDataset.PT extends PulllInputDataset.Common
subcomponents

pform : processor ASSAHardware::GPU.TwoPartition;

properties
Actual_ Processor Binding => (reference(pform.partl)) applies to requestor;
Actual Processor Binding => (reference(pform.part2)) applies to sender;

end PullInputDataset.CrossPartitionTasks;

Figure 35: Two Implementation Configurations of the Three-Step Protocol

4.2.3 Response Time Analysis

In this example, we demonstrate compositional response time analysisin two steps. First, we per-
form end-to-end latency analysis for each protocol implementation to verify that the computed la-
tency of the implementation corresponds to the specified latency valuesin the virtual bus
abstraction. Second, we verify the end-to-end latency for the ASSA system based on the required
binding specifications to the virtual buses representing the protocol abstraction.

In the case of the PullDCFMInputDataSetProtocol, we get alatency of 600 ms. Thisis dueto the
default preference setting for latency analysis. By default, cross-partition data transfer is assumed
to occur at the end of amajor frame. Thereis a delay of 100 msfor each of the three requests and
replies. If we change the setting in the OSATE Preferences for latency analysis to Partition End
output policy so that output is flushed at partition end rather than frame end, we get 100 msfor
each request/reply pair of the protocol. We reflect these results in the latency specification of the
virtual bus that represents the respective protocol.

When we instantiate the design architecture of ASSA and perform latency analysis, we include
the latency contributions of these protocols. The result is shown in Figure 36. It indicates that for
the synchronous system case, the response time exceeds the required 1,600 ms.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Latency analysis for end-to-end flow "Threatinfo' of system 'ASSASystem.MISDataConversionArchitecture’ with latency preference stettings $5-MF-

Contributor Min SpeciiMin Value Min MethoMax SpeciMax Value Max Methc Comments

device WW 0.0ms first sampli 0.0ms first sampli Initial 100.0ms sampling latency not added

device WW 200ms 200ms specified 30.0ms 30.0ms specified

Connection 0.0ms no latency 0.0ms no latency

abstract ASSADataCor 0.0ms sampling 0.0ms sampling Min: RountAssume syMax: Round up to sampling period 0.0ms

abstract ASSADataCor 3.0ms 3.0ms specified 5.0ms 5.0ms specified

(Protocol MISProtocols 300.0ms 300.0ms specified 300.0ms 3000ms specified Using specified bus latency

(Protocol MISProtocols 100.0ms 100.0ms specified 100.0ms 100.0ms specified Using specified bus latency

Connection 400.0ms no latency 400.0ms no latency Adding latency subtotal from protocols and bus - shown with ()
system ThreatDCM 0.0ms sampling 0.0ms sampling Min: RountAssume sy Max: Round up to sampling period 0.0ms
system ThreatDCM ~ 1000.0ms 1000.0ms specified 1000.0ms 1000.0ms specified

(Protocol MISProtocols 100.0ms 100.0ms specified 100.0ms 100.0ms specified Using specified bus latency

Connection 100.0ms no latency 100.0ms no latency Adding latency subtotal from protocols and bus - shown with ()
system SAAssessment 0.0ms sampling 0.0ms sampling Min: Rount Assume syMax: Round up to sampling period 100.0ms
system SAAssessment 10.0ms 10.0ms specified 10.0ms 10.0ms specified

(Protocol MISProtocols 100.0ms 100.0ms specified 100.0ms 100.0ms specified Using specified bus latency

Connection 100.0ms no latency 100.0ms no latency Adding latency subtotal from protocols and bus - shown with ()
device AirCrewDisplay 90.0ms sampling 90.0ms sampling Min: RountAssume syMax: Round up to sampling period 100.0ms
device AirCrewDisplay 1.0ms 1.0ms specified 1.0ms 1.0ms specified

Latency Total 1334.0ms 1724.0ms 1346.0ms 1736.0ms

End to End Latency 1400.0ms 1600.0ms

End to end Latency Summary

] | Minimum specified flow latency total 1334.0ms less then expected minimum end to end latency 1400.0ms (better response time)
Minimum actual latency total 1724 0ms ds expected i end to end latency 1600.0ms
Maximum actual latency total 1736 .0ms exceeds expected maximum end to end latency 1600.0ms

Figure 36: Response Time Analysis Results with Latency Contributions for the Cross-Partition Pull
Protocol

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5 Maintaining Requirement Specifications in ALRS

The AADL specification of a system such as ASSA or DCFM—expressed as an annotated system
type, abstract type, or device type—acts as a requirements specification in two ways.

1. The customer or acquirer has developed a specification. The supplier response, also ex-
pressed as an AADL specification, is compared against the original for compliance to deter-
mine whether it meets the customer’ sinterest.

2. A specification represents a contract that a system implementation must meet. In this case,
AADL models of the system architecture design, detailed design models in other notations,
and code must be verified against this specification.

In this section, we introduce the RegSpec notation, which allows us to explicitly identify different
parts of this system specification as a set of traceable requirements whose verification and satis-
faction can be demonstrated by a set of verification actions. A more compl ete description of
ReqSpec will appear in aforthcoming report.”

5.1 The ReqSpec Notation

In this case study, we use RegSpec, the requirements specification subset of the RDAL draft
standard metamodel in textual form. The notation has its roots in goa-oriented requirements engi-
neering, which distinguishes between stakeholder requirements, referred to as goals, and system
requirements, referred to as requirements. Goals express stakeholder intent and may conflict with
each other, while system requirements represent a contract that the system implementation must
meet.

The notation accommodates several capahilities:
« Import of existing stakeholder and system requirements documents, such as from DOORS,
allows users to examine and reference them without the respective external tool.

« Definition of placeholders for other external documents, such asthe MIS BAA Supplement,
allow for references into these documents by other RDAL elements.

« God's and requirements can be associated with an architecture model expressed in AADL.
These goals and requirements may have been imported from existing documents, or they may
have been specified separately in the context of an architecture model. In the latter case,
ReqSpec maintains traceability to existing requirements documents.

« ReqSpec facilitates an explicit record of goal and requirement refinement, decomposition, and
evolution. This record may identify conflicts between goals.

« Association of verification actions with requirements can specify how they are to be verified
and satisfied.

7 Feiler, P. and Delange, J. A Requirement Specification Language for AADL. CMU/SEI-2015-SR-034. Software
Engineering Institute, Carnegie Mellon University. Forthcoming.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5.2 Goal and Requirement Specifications

RDAL goal and requirement specifications are associated with AADL component types, compo-
nent implementations, and elements within them. A goal or requirement specification has the fol-
lowing elements. All but the name are optional.

« hame: unique identifier with respect to other goals (or requirements) for the same component
« title: ashort descriptor of the goal or requirement
« for: referenceto amodel el ement within a component, such as a port or end-to-end flow

« category: indicator of agoa or requirement category (e.g., assumption, guarantee, safety, per-
formance). Categories are user definable.

o description: along descriptor of the goal or requirement

o asetof variables: used to parameterize goal and requirement specifications. Many of the
changesto agoal or requirement arein avalue used in the goal or requirement specification.
Variables allow users to define a requirement value once and reference it in the description,
predicates, and verification activities of verification plans expressed in a Verify notation®.

« rationale: rationale for the goal or requirement

« refines: reference to another goal (requirement) of the same component that this goal (re-
guirement) refines. This represents the refinement of goals (requirements) for a specific sys-
tem into more detailed requirement specifications for the same component.

« conflictswith (goal only): list of other goals that this goal may conflict with

« evolves: reference to agoal (requirement) of the same component that another goal (require-
ment) evolvesto. This provides arecord of agoa (requirement) evolving into another specifi-
cation over time. Dropped is used to indicate that the original requirement of the evolved
requirement is not relevant any more.

« stakeholder (goal only): list of stakeholder references for a given goa

« see reference to amodel element or property in the model that represents the requirement in
the model

« seedocument requirement: reference to a stakeholder requirement in an existing document

« seedocument: reference to an external document and element within expressed as a Uniform

Reference Identifier (URI). It records the fact that a stakeholder requirement isfoundin a
document other than an imported requirement document.

o issues: list of text strings expressing issues with respect to the goal or requirement

In the ReqSpec syntax, the elements within the square brackets can be declared in any order. The
syntax of agoal declaration isasfollows:

Goal ::=
goal Name (: Title)?

(for TargetElement)?

8 The Verify notation is part of a set of notations developed under the Incremental Lifecycle Assurance project
and will be published in early 2016.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

(category (<RegCategorys>)+)?
(description)?
(ConstantVariable)*

(rationale String)?

(refines (<Goals>)+)?

(conflicts with (<Goals>
)+)?

(evolves (<Goals>)+)°?

(dropped)?

(stakeholder (<Stakeholder>)+)?

(see document requirement (<Requirements>)+)?
(see document (DocReference)+)?

(issues (String)+)?

(ChangeUncertainty)?

Title ::= String

TargetClassifier ::= <AADL Component Classifiers
TargetElement ::= <ModelElement>

DocReference ::= URI to an element in an external document

The following elements are for requirement specifications only:

« predicate: aformalized specification of the condition that must be met to indicate that the re-
quirement is satisfied. The predicate may refer to variables defined as part of this requirement
or the enclosing requirement specification container.

« mitigates. reference to one or more hazards that the requirement addresses. A hazard is repre-
sented by an error propagation in an error model EMV 2 subclause for a component.

« decomposes: reference to agoal (requirement) of an enclosing component. This represents the
decomposition of system goals (requirements) into goal's (requirements) of subsystems.

« development stakeholder: reference to a stakeholder from the development team, such asa
security engineer or atester. During architecture design, design choices may lead to new re-
guirements, whose stakeholder is the developer making the choice.

« seegoal: referenceto a (stakeholder) goa that the (system) requirement isrelated to

The syntax of arequirement specification declaration is as follows:

Requirement ::=
requirement Name (: Title)?

(for TargetElement)?

(category (<RegCategorys>)+)?
(description)?

(Variable)=*

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

(Predicate)?

(rationale String)?

(mitigates (<Hazards>)+)?

(refines (<Requirements>)+)?

(decomposes (<Requirements>)+)?

(evolves (<Requirement>
)+)7?

(dropped)?

(development stakeholder (<Stakeholder>)+)?

(see goal (<Goals>)+)7?
(see document goal (<Goals>)+)?
(see document requirement (<Requirements>)+)?

(see document (DocReference)+)?
(issues (String)+)?

(ChangeUncertainty)?

5.3 ReqSpec Files

ReqSpec declarations are not embedded in the AADL through annex clauses. Instead they are
placed in separate files with the extension goals for a set of stakeholder goals, reqspec for a set of
system requirements, goaldoc for stakeholder goal documents, and reqdoc for system requirement
documents in document section format to mirror existing text documents.

The Stakeholder Goals construct is a container for Goal declarations that are associated with a
specific system. The system isidentified by its AADL component classifier declaration using the
for clause. The NestedName can be an identifier or a sequence of identifiers separated by a <dot>,
for example, aircraft.system. Thisis similar to AADL package names where :: is used as separa-
tor.

The ConstantVariable is available to al goal declarationsin this SakeholderGoals container.

StakeholderGoals ::=
stakeholder goals NestedName (: Title)?
for TargetClassifier
[
(description)?
(see document (DocReference)+)?
(ConstantVariable)*
(Goal)+

(issues (String)+)?

The SystemRequirements construct is a container for Regquirement declarations. It istypically used
to group together system requirements for a particular system; for components of a specified cate-

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

gory, such as arequirement for all processors to be schedulable; or for components of all catego-
ries. The system isidentified by its AADL component classifier declaration using the for clause.
Separately defined constants (use constants) and locally defined variables are available to al re-
guirements within the SystemRequirements container.

SystemRequirements ::=
system requirements NestedName (: Title)?
for (TargetClassifier | ComponentCategory | all)
(use constants <GlobalConstants>*)?
[
(description String)?
(see document (DocReference)+)?
(Variable)*
(Requirement) *
(issues (String)+)?

1

Goals and reguirements can be referenced by qualified name—that is, by the SystemRequirements
name and the Requirement name—separated by a <dot>. For an example, see Figure 39, which
shows a reference from aregquirement to agoal. In some cases, qualification is not necessary, such
as when arequirement refines another requirement and both are declared in the same SystemRe-
guirements container.

The Document construct represents existing stakeholder goals or system requirements documents
that are imported into a ReqSpec representation. In these documents, goals and requirements are
organized into sections. Once an existing stakeholder requirements or system requirements docu-
ment has been imported into ReqSpec, users can associate its goals with an AADL model and per-
form traceability and consistency checks on stakeholder goals and system requirements.

A Document contains a set of document sections, stakeholder goals, or system requirements. A
DocumentSection can recursively contain document sections, stakeholder goals, or system re-
guirements. A Document represents a name scope for the goal and requirement declarations con-
tained init; agoal or requirement is referenced by the Document name and the goal or
requirement name, separated by a <dot>. Document sections do not contribute to qualifying a
name. This means that goal and requirement declarations must be unique within the Document.

Document ::=
document Name (: Title)?
[
(description String)?
(Goal | Requirement | DocumentSection)+

(issues (String)+)?

DocumentSection ::=
section Name (: Title)?
CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

(description String)?
(Goal | Requirement | DocumentSection)+

(issues (String)+)?

The organization notation allows users to define organizations and stakeholders that belong to or-

ganizations. Stakeholder names must be unique within an organization. Stakeholders are refer-

enced by qualifying them with the organization name. Each organization is declared in a separate

file with the extension org.

Organization: :=
organization Name

(Stakeholder)+

Stakeholder ::=
stakeholder Name
[
(full name String)?
(title String)?
(description String)?
(role String)?
(email String)?

(phone String)?

The following is an example set of stakeholder declarations.

organization mrj
stakeholder cs
[
full name "Claude Shannon"
title "Lead Engineer"
description "Mission system user"

role "JMR representative"

stakeholder hl

[
full name "Heddy Lamarr"
title "Principal Researcher"
description "System architect™"
email "heddylamarr@screensiren.com"
phone "555-555-5555"

role "Responsible for ASSA System Design"

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

43

mailto:heddylamarr@screensiren.com

1

Requirement categories are user-definable in files with the extension cat. The following isa sam-
ple.
requirement categories
[
safety
security
performance

1

5.4 ASSA System Goal and Requirements Specification

We used ReqSpec declarations in two ways for the ASSA system. First, we imported the content
of the MIS Stakeholder Requirements document and the MIS System Requirements Specification
document into the OSATE environment (MISStakehol der Requirements.goaldoc and MIS
SSSreqdoc). Figure 37 illustrates the result of importing a stakeholder document. Users can then
develop an AADL model to represent concepts, entities in the operational environment, and sys-
tem components and identify them in goals with afor clause. Then a ReqSpec tool can identify
whether requirements in a document section address a single system or refer to multiple subsys-
tems at different architecture levels (asillustrated notionally in Figure 3).

document MISStakeholderRequirements [
section ActualRequirements [

goal SR 57 : "MIS shall operate during all aircraft operations missions and flight
profiles" [

stakeholder mrj.hl

]

goal SR 56 : "MIS shall operate during visual meteorological conditions" [
stakeholder mrj.hl

1

Figure 37: Sample of Imported Stakeholder Requirements

Second, we created a set of ReqSpec stakeholder goal and system requirement declarations that
are associated with a system represented in an AADL model. In this case, the requirements are or-
ganized around elements in the system architecture. Figure 38 shows an example of a set of goals
specified for ASSASensor. The name of the stakeholder goal set mirrors the qualified name of the
system classifier, but does not have to do so. Each goal specification has a unique name within the
goal set. In our example, it includes atitle, description, stakeholder reference, and list of refer-
ences to the MIS Stakeholder Requirements document.

stakeholder goals ASSASensors.ASSASensor for ASSASensors::ASSASensor [
goal goall : "Passive ASE (ASSA sensor type}"
[description "MIS shall support passive SA sensors (ASE)"
stakeholder mrj.cs
see document requirement MISStakeholderRequirements.SR 13

MISStakeholderRequirements.SR_69 MISStakeholderRequirements.SR 15

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

]
Figure 38: Goal Set for ASSA Sensors

Figure 39 illustrates a set of system requirements for a particular component. The component type
isidentified by the for statement. The first requirement is associated with the component. It uti-
lizes a constant variable (val) to specify arequirement value that may change. The variableisref-
erenced in the description text. The requirement also includes a cross-reference to agoal in the
imported stakeholder goals document.

The second requirement is defined for an element of the component type; a particular port isiden-
tified by the for clause. The requirement declaration includes a constant variable for the desired
observation radius. This variable is referenced in the description text as well as in the value predi-
cate specification. A second variable (compute) is defined as a placeholder for values computed
by verification methods used to verify this requirement. The value predicate specifies how the
system will compare the desired (required) value and the value resulting from an analysis, smula-
tion, or test run.

system requirements PassiveSensorReqgs for ASSASensors::PassiveTerrainSensor
[
requirement Reg4 : "Passive sensor"
[
val EnergyLevel = 0
description "Passive sensor radiates " EnergyLevel " energy"
see document goal MISStakeholderRequirements.SR_27
]
requirement Reqgl : "Spherical terrain awareness for aircrew"
for TerrainSphere
[

description "Spherical SA of terrain within " DesiredObservationRadius " radius for
aircrew"

val DesiredObservationRadius = 5 nm
compute MeasuredDistance
value predicate MeasuredDistance >= DesiredObservationRadius

see document goal MISStakeholderRequirements.SR_27

]
Figure 39: Example of Requirement Specification Aligned with an AADL Model

We al so defined stakeholders and requirement categories. Figure 40 shows all the filesin the
AADL Navigator View in OSATE.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

*AADL Navigator = 2
SituationalAwarenessCommon
SituationalAwarenessRefArch
+ & SituationalAwarenessSystem
& bin
= diagrams
& packages
+ i~ ReqSpec
= ASSASensors.goals
= ASSASensors.regspec
= ASSASystem.reqspec
= Categories.cat
2 DCFM.goals
= MISProtocols.reqspec
= MISSpecification.reqspec
2 MIS-SSS.reqdoc
= MISStakeholderRequirements.goaldoc
2 SAObservationRegs.goals
2 stakeholders.org
= TrackTypes.reqspec

Figure 40: Project with AADL Model Packages and ReqSpec Files

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

46

6 Configurable Reference Architecture for Situation
Assessment

This section describes how we defined a configurable reference architecture for situation assess-
ment in AADL. We followed an approach that has been demonstrated for the JPL Mission Data
System reference architecture [Feiler 2010].° The AADL model of this reference architecture can
be found in the project Stuational AwarenessRefArch. This project uses some AADL packagesin
the project Situational AwarenessCommon.

6.1 Configurable Services and Interface Specifications

We specify the ASSA system as a set of services for SA data conversion, data correlation and fu-
sion, data storage, situation assessment, and information preparation for display on an MFD. They
are specified as AADL processes to indicate each is intended to reside in a separate, protected ad-
dress space. They are defined in the ASSAServices package.

The interface with other servicesis expressed as a feature group with an empty feature group type.
The feature group types are specified without features in the ASSAlnterfaces package (found in
the Stuational Awar enessCommon project). We will refine this feature group type into one spe-
cific to aparticular aircraft configuration.

Figure 41 shows ASSASensor s as a system type because its implementation will contain device
instances to represent the particular sensors. For software-only services, we use a process type to
indicate that the service will reside in its own address space, as shown in Figure 42. The ASSA-
Sensors system type has two feature groups as interfaces. Sensor SetOutput represents the logical
interface, which when configured will contain data ports of each different sensor reading. Sensor-
SetComm represents the physical interface to the platform hardware; once configured it will indi-
cate the necessary access requirements to networks (AADL bus access).

system ASSASensors
prototypes
SensorSetOutput: feature group ASSAInterfaces::SensorTrackSets;
SensorNetworkConnections: feature group ASSAInterfaces::SensorNetworkConnections;
features
SensorSetReadings: feature group SensorSetOutput;
SensorSetComm: feature group SensorNetworkConnections;
flows
SensorReadings: flow source SensorSetReadings;

end ASSASensors;

Figure 41: Configurable ASSA Service

° For an overview of the NASA Mission Data System, see http://mds.jpl.nasa.gov/public.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

http://mds.jpl.nasa.gov/public

The interfaces of these services get configured for a particular aircraft platform in one of two

ways (also see Section 6.4):

« Thefeature group type without features is specified as a prototype, identifying that any exten-
sion of the specified feature group type is acceptable as a configuration parameter. The proto-
types are referred to in the feature group declaration (see Figure 41). We will supply an
aircraft-specific feature group type, which is an extension of the feature group type referenced
by the prototype, as a prototype actual when we declare the subcomponents of the service
specification.

« Thefeature group type without features is referenced in the feature group declaration (see
Figure 42). In this case, we will refine the feature group declaration of interest into one refer-
encing the aircraft-specific feature group type in a process type extension.

process SAInformationPreparation
features
WeatherInformation: in data port;
AssessedInformation: in feature group inverse of ASSAInterfaces::AssessedTrackSets;
ObstacleInformation: in data port;
TerrainInformation: in data port;
OwnAircraftPosition: in data port MissionSystemDataTypes::Position;
MFDSAInformation: out feature group ASSAInterfaces::MFDSAInformation;
flows
AssessedThreatInfo: flow path AssessedInformation -> MFDSAInformation;
OwnAircraftInfo: flow path OwnAircraftPosition -> MFDSAInformation;
properties
Period => 100 ms;
Latency => 1 ms .. 1 ms applies to AssessedThreatInfo,OwnAircraftInfo;

end SAInformationPreparation;

Figure 42: Partial Service Specification

6.2 Reference Architecture Specification

We defined the reference architecture of ASSA in the package ASSASystem: : Common. The speci-
fication of ASSASystem as a system type can be found in the package ASSASystem in the Stua-
tional Awar enessCommon project. This specification defines the external interface of ASSA. Itis
an elaboration of the ASSASystem specification, as discussed in Section 3.3, that includes every
external interface mentioned in the various M1S documents.

Figure 43 shows the reference architecture of ASSA as a system implementation. Each subcom-
ponent represents a functional unit that is a configurable placeholder. The reference architecture
includes connection declarations to represent the interaction topology within ASSA. Finally, the
declaration includes a set of flow declarations that will be used in end-to-end flow analysis.

system implementation ASSASystem.Common
subcomponents
Sensors: system ASSAServices::ASSASensors;

Conversion: process ASSAServices::SADataConversion;

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Fusion: process ASSAServices::DCFM;
Assessment: process ASSAServices::SituationAssessment;
ASSAFormatting: process ASSAServices::SAInformationPreparation;
AirCrewDisplay: device ASSADisplayAnnunication::ASSAMFDDisplay;
AircrewAnnunciation: device ASSADisplayAnnunication::ASSAMFDDisplay;
connections
srctracks: feature group Sensors.SensorSetReadings -> Conversion.SensorSetReadings;
stdtracks: feature group Conversion.StdSourceTracks -> Fusion.IncomingData;

fusedtracks: feature group Fusion.OutgoingCorrelatedTracks -> Assessment.Assess-
mentInput;

assessedtracks: feature group Assessment.AssessmentResults -> ASSAFormatting.As-
sessedInformation;

formattedtracks: feature group ASSAFormatting.MFDSAInformation -> AirCrewDis-
play.MFDSAInformation;

showtopilot: feature group AirCrewDisplay.AircrewSAInformation -> ASSAAirCrewPresen-
tation;

ownaircraftposfusion: port OwnAircraftPosition -> Fusion.ownAircraftPosition;

ownaircraftposdisplay: port OwnAircraftPosition -> ASSAFormatting.OwnAircraftPosi-
tion;

flows

assessedASSAAircraftpos: flow path OwnAircraftPosition ->
ownaircraftposfusion -> Fusion.AircraftPositionFusion ->
fusedtracks -> Assessment.Assessment ->
assessedtracks -> ASSAFormatting.AssessedThreatInfo ->
formattedtracks -> AirCrewDisplay.ASSAInfoToPilot ->
showtopilot -> ASSAAirCrewPresentation;

directAircraftpos: flow path OwnAircraftPosition ->
ownaircraftposdisplay -> ASSAFormatting.OwnAircraftInfo ->
formattedtracks -> AirCrewDisplay.ASSAInfoToPilot ->
showtopilot -> ASSAAirCrewPresentation;

ASSASensorObservations: flow source Sensors.sensorReadings ->
srctracks -> Conversion.TrackConversion ->
stdtracks -> Fusion.TrackFusion ->
fusedtracks -> Assessment.Assessment ->
assessedtracks -> ASSAFormatting.AssessedThreatInfo ->
formattedtracks -> AirCrewDisplay.ASSAInfoToPilot ->
showtopilot ->ASSAAirCrewPresentation;

end ASSASystem.Common;

Figure 43: ASSA Reference Architecture

The context of the ASSA system is specified in a package called AircraftSystem. The system Air-
craftSystem has an implementation that consists of the ASSA system, an EGI to supply aircraft
position, and the aircrew. We provided three variants of this system implementation. Thefirst re-
fers to the ASSASystem system type; it does not include the generic subsystems of the ASSA ref-
erence architecture specification. It is used in a system-level safety analysis. The second variant
refines the original one to configure in the ASSASystem implementation with the subsystems. The

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

third variant refines the second variant to configure in a generic instance of the hardware platform
for ASSA.

6.3 Reference Architecture Analysis

We defined end-to-end flows at the aircraft-system level to investigate potential time skew in dis-
playing the own aircraft position by direct data flow from the EGI input to the display compared
to the longer processing path and greater latency for display of threats or obstacles relative to own
aircraft position. In addition, we can perform the response time analysis within the ASSA system
by taking into account decisions about ARINC 653-compliant partition architecture, aswe did in
Sections 3.6.1 and 4.2.3. The specification of different services as AADL process provides a clear
indication in the model that the service must be executed in a separate, runtime-enforced, pro-
tected address space.

We a so use the reference architecture to perform afunctional hazard assessment and fault impact
analysis. Section 7 summarizes our approach, which we discussin detail in a separate report titled
Architecture-Led Safety Analysis of the Joint Multi-Role (JMR) Joint Common Architecture (JCA)
Demonstration System [Feiler 2015c].

6.4 Configuration for an Aircraft Platform

In this section, we describe how the reference architecture can be configured into an architecture
for a specific aircraft platform. The example isillustrative only. We keep the aircraft-specific con-
figuration specification in a separate set of packagesin afolder called ASSAConfigurations. Con-
figuration of the reference architecture involves several steps.

Thefirst step isto elaborate the interfaces to a specific aircraft by defining extensions of various
feature group types. The package ASSAConfiguredi nterfaces contains these extensions. For the
sensor interface, we introduce a data port for each sensor with a data type representing the sensor-
specific data representation (see Figure 44). Similarly we configure the other interface specifica-
tions via the respective feature group type.

feature group SensorSourceTrackSets extends ASSAInterfaces::SensorTrackSets
features

WWSensorTracks: out data port TrackTypes::WWTrackSet;

ATWSensorTracks: out data port TrackTypes::ATWTrackSet;

end SensorSourceTrackSets;

Figure 44: Aircraft-Specific Interface Configuration

The second step is to elaborate the ASSASensors system into an aircraft-specific configuration by
adding the appropriate types of sensors as instances (subcomponents), as shown in Figure 45. We
define the system type of the configuration as an extension of the ASSASensor s system in the ref-
erence architecture. As part of this specification, we supply the feature group types that are spe-
cific to the aircraft, also shown in Figure 45. In addition, we define the system implementation of
ASSASensor Configuration, which contains instances of the specific sensors for the target aircraft,
connections to the Sensor SetReadings feature group (the logical interface), and network access to
the Sensor SetComm feature group (physical interface). The package ASSASensor Configurations
contains these extensions.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

system ASSASensorConfiguration extends ASSAServices::ASSASensors
(SensorSetOutput => feature group
ASSAInterfaceConfigurations::CH47F: :SensorSourceTrackSets,
SensorNetworkConnections => feature group
ASSAInterfaceConfigurations::CH47F: :SensorNetworkConnections
)

end ASSASensorConfiguration;

system implementation ASSASensorConfiguration.CH47F

subcomponents
WW: device ASSASensors::WeaponsWatch;
ATW: device ASSASensors::ATW;

connections
WWconn : port WW.SourceTracks -> SensorSetReadings.WWSensorTracks;
ATWconn : port ATW.SourceTracks -> SensorSetReadings.ATWSensorTracks;
wwtol553 : bus access ww.tol553 -> SensorSetComm.Tol553;
atwtol553 : bus access atw.tol553 -> SensorSetComm.Tol553;

end ASSASensorConfiguration.CH47F ;

Figure 45: Aircraft Sensor Configuration

Thethird step is to perform the same elaboration for the different ASSA services. The configura-
tion for the SA data-conversion service can be found in the package ASSAMISConfigurations and
is shown in Figure 46. The process type is extended to bind the appropriate feature group type
configuration as prototype actual. The process implementation specifies a thread for each data-
conversion function and connectsiit to the appropriate feature group port.

process ASSADataConversion extends ASSAServices::SADataConversion
(SensorTrackSets =>
feature group ASSAConfiguredInterfaces::CH47FSensorSourceTrackSets,
StdSourceTrackSets =>
feature group ASSAConfiguredInterfaces::CH47FStdSourceTrackSets)

end ASSADataConversion;

process implementation ASSADataConversion.CH47F

subcomponents
WWConversion: thread ASSADataConverters::WWTrackConverter;
ATWConversion: thread ASSADataConverters::ATWTrackConverter;
connections
WWin: port SensorSetReadings.WWSensorTracks -> WWConversion.SourceTracks;
WWout: port WWConversion.StdSourceTracks -> StdSourceTracks.WWStdTracks;
ATWin: port SensorSetReadings.ATWSensorTracks -> ATWConversion.SourceTracks;
ATWout: port WWConversion.StdSourceTracks -> StdSourceTracks.WWStdTracks;

end ASSADataConversion.CH47F ;

Figure 46: ASSA Data-Conversion Service Configuration

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Thefina step isto configure the top-level system specification of the reference architecture into
one for a specific aircraft. This configuration can be found in the package CH47FConfiguration.
Figure 47 shows the configuration of the ASSA system by refining the specification of severa
subcomponents to the aircraft-specific specifications. In addition, we configured in an instance of
a hardware platform and connected it to the ASSA system through a MIL-STD-1553 bus provided
by the platform. We a so configured the top-level specification for the aircraft system to utilize
the aircraft-specific ASSA system configuration.

system implementation AircraftSystem.CH47F
extends AircraftSystems::AircraftSystem.ASSASystem
subcomponents
assa: refined to system ASSASystem.CH47F;

end AircraftSystem.CH47F;

system implementation ASSASystem.CH47F extends ASSASystem::ASSASystem.common
subcomponents
Sensors: refined to system
ASSASensorConfigurations: :CH47F: :ASSASensorConfiguration.CH47F;
Conversion: refined to process
ASSAServicesConfigurations: :CH47F: :ASSADataConversion.CH47F;
Assessment: refined to process
ASSAServicesConfigurations: :CH47F::SituationAssessment .CH47F;
Fusion: refined to process
ASSAServicesConfigurations: :CH47F: :CorrelationFusion.CH47F;
ASSAFormatting: refined to process
ASSAServicesConfigurations: :CH47F: :SAInformationPreparation.CH47F;

AirCrewDisplay: refined to device ASSAMFDDisplay;

myplatform: system platform.ch47f;
connections
sensorstol553: feature group Sensors.SensorSetComm ->
myplatform.SensorNetworkAccess;

end ASSASystem.CH47F;

Figure 47: Aircraft Configuration

Once we completed the aircraft specific configuration, we could instantiate the aircraft system and
revisit various analyses—in our case, the end-to-end latency analysis—to determine response time
for a particular platform. We could also refine this architecture with different hardware platform
configurations, partition configurations, and partition deployment configurations of the ASSA ser-
vices to understand the impact of such deployment changes.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

7 ASSA System Safety Analysis Approach

From an aircraft-airworthiness perspective, the ASSA system is categorized as Design Assurance
Leve D, which meansthat the criticality level is minor. At the same time, enhancements to the
ASSA system in the form of obstacle awareness have been justified by the fact that aircraft are
lost more often due to collision with wires than due to enemy fire.

We examined the ASSA system from a safety perspective, including the following hazards. We

will also do so on the ASSA reference architecture to demonstrate its feasibility.

o Impact of lost ASSA service: Analyzing risks to the pilot, aircraft, and mission by all the
contributors to such losses gave us insight into the probability of their occurrence.

« Incorrect SA datareporting (false positives and false negatives): Incorrectly reporting the
absence of tracked objects to the pilot would give the pilot a false sense of safety. For exam-
ple, thereisarisk that the absence of obstaclesisreally afailure of an ASSA function and
that the pilot will not be aware of such afailure. This situation could result from mode confu-
sion between the system and the pilot due to problemsin the safety system, health monitor, or
both.

« Timelinessof SA presentation to pilot: We consider whether latency contributors due to
software are reflected in the error margins calculated and reported by DCFM.

« Availability of ASSA services: Unnecessary unavailability of ASSA can occur due to (1)
overzealous mapping of exceptional conditions into fatal faults without attempt at recovery or
repair and (2) the inability of the pilot to restart the ASSA service without completely reboot-
ing the computing platform hosting ASSA and other services.

Given these hazards, we then identified potential hazard contributors. These are al failures of
ASSA components and mismatched assumptions in the interactions between the components.
Some of the hazard contributors are due to design decisions whose impact was not well under-
stood. Those are avoidable hazards that can possibly be eliminated through changes in the design.
Other hazard contributors are inherent, such as failure or malfunction of the physical SA sensor or
the ASSA host computer. In these cases, we derived requirements for the SA health-monitoring
system.

We annotated the model from the regquirements specification task with fault information by using
EMV2. The fault ontology, in terms of commonly occurring fault effect types, helped us consider
various types of exceptional conditions that a subsystem failure can impose on interacting subsys-
tems. In the process, we identified requirements for the SA health monitor in terms of what excep-
tional conditions it needs to detect or be informed of by subsystems, and what resulting systems
states it needs to report to the pilot or automated system processing SA information. We summa-
rize the annotated models and the results of this safety analysis in the Architecture-Led Safety
Analysisreport [Feiler 2015c].

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 53
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

8 Summary and Conclusion

The purpose of the ACVIP shadow project was to demonstrate the value of using ACVIP technol-
ogy, in particular the value of using architecture models expressed in the SAE AADL standard, to
discover potentia system integration problems early in the development process. The SEI team
captured information from existing requirements documents and other documentation as are-
guirements specification and architecture model expressed in AADL and a requirements specifi-
cation notation. We then analyzed this system model for potential system integration issues.

This report summarized the ALRS process used to capture requirements and architecture specifi-
cation of the IMR ASSA system in AADL and described the resultant model and analyses sup-
ported by the model. The ALRS process covers the 11 recommended practices of requirements
specification outlined in the FAA Requirement Engineering Management Handbook. ALRS spec-
ifies requirements by focusing on the system with a well-defined boundary, its operational con-
text, and itsinternal architecture; it utilizes system interface specifications, quality attribute utility
trees, and a fault ontology to strive for improved regquirements coverage.

We developed an AADL specification of the system in its operational context, as afunctional ar-
chitecture, and as adesign architecture early in the development process. The resulting model re-
flected the architecture design information embedded in the requirements documents. In other
words, it captured architecture decisions, whether they were made intentionally or unintentionally,
and allowed us to assess the potential impact of these decisions.

We then performed avirtual integration of the system and an architecture analysis by investigat-
ing response times and architecture design decisions whose impact may not have been understood
when specified. We also investigated the implications of a sequence diagram specification of the
interaction between the M1S and the DCFM in the context of ARINC 653 partitioning by model -
ing the implementation of the protocols and determining their latency contributions analytically.
We represented the resulting latency contributions as properties on the virtual bus abstraction of
the protocol and used them to analyze the ASSA system. This protocol abstraction can also be
used to analyze other application systems.

We annotated this AADL model with requirement specifications expressed in ReqSpec, atextua
notation for the requirement specification subset of the RDAL metamodel. It identifies different
parts of this system specification as a set of traceable requirements, whose satisfaction could be
demonstrated by a set of verification actions. It also provides traceability to existing requirements
documents and to stakeholders. By associating the requirements with the AADL model, we could
assess whether the requirements address different elements of the ASSA system specification,
such as interaction points with the operational context.

The AADL specification of a system, expressed as an AADL model, acts as a requirements speci-
fication in two ways. First, the customer or acquirer devel ops a specification, and the supplier re-
sponse, also expressed as an AADL specification, is compared to the original to determine
whether it meets the customer interest. Second, a specification represents a contract that a system
implementation must meet. In this case, AADL models of the system architecture design, detailed
design models in other notations, and code must be verified against this specification.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 54
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

We also showed how a configurable reference architecture for a situational awareness system can
be specified in away that makesit analyzable. This architecture model could be configured for
specific aircraft platforms and re-analyzed.

By taking an architecture-led approach to specifying requirements for the ASSA system, the SEI
team quickly identified a number of issues in the requirements documents for this system that, if
not addressed, could result in system integration problems between M1S and DCFM. We docu-
mented these issues in a separate report [Feiler 2015a]. The issues include ambiguous, incom-
plete, and missing requirements; lack of clarity about the system boundary between MIS and
DCFM; and mismatched assumptions in the interactions between MIS and DCFM. In addition, we
found that architectural decisions, such as those reflected in the DCFM data model sequence dia-
grams, had unintended implications for the system’ s ability to meet response time requirements.
Other architectural decisions created additional calibration requirements for DCFM where unex-
pected latency contributors and latency jitter introduced errorsinto track data.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 55
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix Acronym List

AADL Architecture Analysis & Design Language
ACVIP Architecture-Centric Virtual Integration Practice
ALRS Architecture-Led Requirements Specification
AMRDEC | Aviation and Missile Research, Development, and Engineering Center
ARINC Avionics Application Standard Software Interface
ASSA Aircraft Survivability Situation Awareness

ATAM Architecture Tradeoff Analysis Method

BAA Broad Agency Announcement

COP Common Operational Picture

CoRE Consortium Requirements Engineering

DCFM Data Correlation and Fusion Manager

EGI embedded GPS/inertial navigation system
EMV2 Error Model Version 2

FACE Future Airborne Capability Environment

FENN friendly, enemy, neutral and noncombatant

JCA Joint Common Architecture

JMR Joint Multi-Role

MFD Multi-Function Display

MIS Modular Integrated Survivability

NM nautical miles

OSATE Open Source AADL Tool Environment

RDAL Requirements Definition & Analysis Language
SA situational awareness

SEI Software Engineering Institute

SSS System/Subsystem Specification

STAMP System-Theoretic Accident Model and Processes
QAW Quality Attributes Workshop

UML Unified Modeling Language

URI Uniform Reference Identifier

WGS84 World Geodetic System 1984

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

56

References

URLs are valid as of the publication date of this document.

[AU 1996]

Air University, USAF Center for Strategy & Technology. 3.0 The Sensor and Fusion Process. In
New World Vistas: Air and Space Power for the 21st Century, Sensors Volume. Federa Infor-
mation Exchange. 1996. Pages 15-25. http://www.au.af.mil/au/awc/awcgate/vistas/sabmnse.htm

[BKCASE 2015]

Body of Knowledge and Curriculum to Advance Systems Engineering Editorial Board. The Guide
to the Systems Engineering Body of Knowledge (SEBoK). Version 1.4. Edited by R. D. Adcock.
Trustees of the Stevens Ingtitute of Technology. 2015. http://www.sebokwiki.org. Stakeholder Re-
quirements: http://sebokwiki.org/wiki/Stakeholder Needs and Requirements. System Require-
ments: http://sebokwiki.org/wiki/System Requirements.

[Blouin 2011]

Blouin, D. et a. Defining an Annex Language to the Architecture Analysis and Design Language
for Requirements Engineering Activities Support. In Model-Driven Requirements Engineering
Workshop (MoDRE), 2011. Trento, Italy. August 2011. http://ieeexplore.ieee.org/xpl/articleDe-
tails.jsp?arnumber=6045362& filter=AND%28p_Publication_Number:6035928%29

[Boehm 2006]

Boehm, B. Some Future Trends and Implications for Systems and Software Engineering Pro-
cesses. Systemns Engineering. Volume 9. Number 1. January 2006. Pages 1-19.
http://www.cs.cof c.edu/~bowring/classes/csi s%20602/docs/FutureT rendsSEProcesses.pdf .

[de Niz 2012]

de Niz, Dio et a. A Virtual Upgrade Validation Method for Software-Reliant Systems. CM U/SEI-
2012-TR-005. Software Engineering Institute, Carnegie Mellon University. 2012. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?assetid=10115

[FAA 20084a]

Federal Aviation Administration. Requirements Engineering Management Handbook.
DOT/FAA/AR-08/32. FAA. 2008. http://www.faa.gov/aircraft/air_cert/design_approvalsair_soft-
ware/media/A R-08-32.pdf

[FAA 2008b]

Federal Aviation Administration. Requirements Engineering Management Findings Report.
DOT/FAA/AR-08/34. FAA. 2008. http://www.faa.gov/aircraft/air_cert/design_approvalsair_soft-
ware/media/A R-08-34.pdf

[Faulk 1992]
Faulk, S. et al. The CoRE Method for Real-Time Requirements. IEEE Software. Volume 9. Num-
ber 5. September 1992. Pages 22-33.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 57
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

http://www.au.af.mil/au/awc/awcgate/vistas/sabmnse.htm
http://www.sebokwiki.org
http://sebokwiki.org/wiki/Stakeholder_Needs_and_Requirements
http://sebokwiki.org/wiki/System_Requirements
http://ieeexplore.ieee.org/xpl/articleDe-tails.jsp?arnumber=6045362&filter=AND%28p_Publication_Number:6035928%29
http://ieeexplore.ieee.org/xpl/articleDe-tails.jsp?arnumber=6045362&filter=AND%28p_Publication_Number:6035928%29
http://ieeexplore.ieee.org/xpl/articleDe-tails.jsp?arnumber=6045362&filter=AND%28p_Publication_Number:6035928%29
http://www.cs.cofc.edu/~bowring/classes/csis%20602/docs/FutureTrendsSEProcesses.pdf
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetid=10115
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetid=10115
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetid=10115
http://www.faa.gov/aircraft/air_cert/design_approvals/air_soft-ware/media/AR-08-32.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_soft-ware/media/AR-08-32.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_soft-ware/media/AR-08-32.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_soft-ware/media/AR-08-34.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_soft-ware/media/AR-08-34.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_soft-ware/media/AR-08-34.pdf

[Faulk 1993]
Faulk, S. et al. Consortium Requirements Engineering Guidebook. Technical Report SPC-92060-
CMS. Software Productivity Consortium. 1993.

[Feiler 2009]

Feiler, Peter et al. System Architecture Virtual Integration: An Industrial Case Sudy. CMU/SEI-
2009-TR-017. Software Engineering Institute, Carnegie Mellon University. 2009. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?assetid=9145

[Feiler 2010]

Feiler, Peter et al. Case Sudy: Model-Based Analysis of the Mission Data System Reference Ar-
chitecture. CMU/SEI-2010-TR-003. Software Engineering Institute, Carnegie Mellon University.
2010. http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9407

[Feiler 20154a]

Feiler, Peter H. and Hudak, John. Potential System Integration Issuesin the Joint Multi-Role
(IMR) Joint Common Architecture (JCA) Demonstration System. CMU/SEI-2015-SR-030. Soft-
ware Engineering Institute, Carnegie Mellon University. 2015. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?assetid=447176

[Feiler 2015c]

Feiler, Peter H. Architecture-Led Safety Analysis of the Joint Multi-Role (JMR) Joint Common Ar-
chitecture (JCA) Demonstration System. CMU/SEI-2015-SR-032. Software Engineering Institute,
Carnegie Méellon University. 2015. http://resources.sei.cmu.edu/library/asset-view.cfm?as-
setid=447189

[Hayes 2003]

Hayes, J. H. Building a Requirement Fault Taxonomy: Experiences from a NASA Verification
and Validation Research Project. Pages 49-59. In 14th International Symposium on Software Re-
liability Engineering (ISSRE). Denver, Colorado. November 2003. IEEE Computer Society Press,
2003.

[ISO 2011]

I|SO/IEC/IEEE. Systems and software engineering - Requirements engineering. Geneva, Switzer-

land: International Organization for Standardization (1SO)/International Electrotechnical Commis-
sion/ Institute of Electrical and Electronics Engineers (IEEE), (IEC), ISO/IEC/IEEE 29148. 2011.

[ITU-T 2008]

International Telecommunication Union Telecommunication Standardization Sector. Recommen-
dation Z.151 (11/2008): User Requirements Notation (URN) — Language Definition. ITU-T. No-
vember 2008.

[Leveson 2012]
Leveson, N. Engineering a Safer World. MIT Press. 2012.

[NIST 2002]
National Institute of Standards and Technology. The Economic Impacts of Inadequate Infrastruc-
ture for Software Testing. Planning Report 02-3. NIST. 2002.

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetid=9145
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetid=9145
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetid=9145
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9407
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetid=447176
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetid=447176
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetid=447176
http://resources.sei.cmu.edu/library/asset-view.cfm?as-setid=447189
http://resources.sei.cmu.edu/library/asset-view.cfm?as-setid=447189
http://resources.sei.cmu.edu/library/asset-view.cfm?as-setid=447189

[Parnas 1995]
Parnas, D. and Madey, J. Functional Documents for Computer Systems. Science of Computer
Programming. Volume 25. Number 1. October 1995. Pages 41-61.

[Rasmussen 2000]
Rasmussen, Jens and Svending, Inge. Risk Management in a Dynamic Society. Swedish Rescue
Services Agency. 2000.

[Redman 2010]

Redman, David et a. Virtual Integration for Improved System Design. Pages 57-64. In Proceed-
ings of the First Analytic Virtual Integration of Cyber-Physical Systems Workshop in Conjunction
with RTS52010. San Diego, CA. November 2010.

[Schouwen 1990]
Van Schouwen, A. The A-7 Requirements Model: Re-examination for Real-Time Systems and an
Application to Monitoring Systems. Technical Report 90-276. Queens University. 1990.

[SEI 2015]
Software Engineering Ingtitute. Latency Analysis. Software Engineering Institute, Carnegie
Méllon University. 2015. https://wiki.sei.cmu.edu/aadl/index.php/Latency Analysis

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 59
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

https://wiki.sei.cmu.edu/aadl/index.php/Latency_Analysis

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES

(Leave Blank) December 2015 COVERED
Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Requirements and Architecture Specification of the Joint Multi-Role (JMR) Joint Common FA8721-05-C-0003
Architecture (JCA) Demonstration System

6. AUTHOR(S)
Peter H. Feiler

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University CMU/SEI-2015-SR-031
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AFLCMC/PZE/Hanscom AGENCY REPORT NUMBER
Enterprise Acquisition Division nia
20 Schilling Circle
Building 1305
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 128 DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)
The Carnegie Mellon University Software Engineering Institute (SEI) was involved in an Architecture-Centric Virtual Integration Process
(ACVIP) shadow project for the U.S. Army’s Research, Development, and Engineering Command Joint Multi-Role program in the Joint
Common Architecture (JCA) Demonstration. The JCA Demo used the Modular Integrated Survivability (MIS) system, which provides a
situational awareness service that was integrated with two instances of a Data Correlation and Fusion Manager (DCFM) software com-
ponent, which was contracted to two suppliers. The purpose of the ACVIP shadow project was to demonstrate the value of using ACVIP
technology, in particular the architecture models expressed in the Society of Automotive Engineering Aerospace Standard 5506 stand-
ard for the Architecture Analysis & Design Language (AADL), for discovering potential system integration problems early in the develop-
ment process. To do this, the SEl first captured information from existing requirements documents in AADL and the draft Requirement
Definition & Analysis Language Annex. Then, by using an architecture-led approach to capturing requirements and architecture specifi-
cation, the SEI team quickly identified a number of issues that, if not addressed, could result in system integration problems between
MIS and DCFM. The SEI's findings allowed contractor teams to address these issues early in system development.

14. SUBJECT TERMS 15. NUMBER OF PAGES
AADL, Architecture-Centric Virtual Integration Practice, architecture models, software develop- 68
ment, system integration, requirements specification

16. PRICE CODE

17. SECURITY CLASSIFICATION OF 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION | 20. LIMITATION OF
REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

CMU/SEI-2015-SR-031 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

	Executive Summary
	Abstract
	1 Introduction
	2 An Architecture-Led Requirements Specification Process
	3 Modeling ASSA as Operational Context for MIS and DCFM
	4 ASSA System Design Architecture
	5 Maintaining Requirement Specifications in ALRS
	6 Configurable Reference Architecture for Situation Assessment
	7 ASSA System Safety Analysis Approach
	8 Summary and Conclusion
	Appendix Acronym List
	References

