Special Report
CMU/SEI-93-SR-004

ESC-SR-93-004

Dependable Software
Technology Exchange

Charles B. Weinstock
Fred B. Scheneider

June 1993






Special Report
CMU/SEI-93-SR-004
ESC-SR-93-004
June 1993

Dependable Software Technology Exchange

Charles B. Weinstock

Software Engineering Institute
Dependable Real-Time Software

Fred B. Scheneider

Cornell University

Unlimited distribution subject to the copyright.

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213



This report was prepared for the

SEI Joint Program Office

HQ ESC/AXS

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is publishied in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright© 1993 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL

IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-

TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.



Table of Contents

1

2

6

Introduction

Formal Methods and Verification
2.1 Technology Lecture: Dr. John Rushby
2.2 Application Lecture: Dr. David L. Parnas
2.3 Panel Discussion

Requirements
3.1 Application Lecture: Prof. John A. McDermid
3.2 Application Lecture: Mr. Gerry E. Pasek
3.3 Panel Discussion

Operating System Support
4.1 Technology Lecture: Dr. Keith Marzullo
4.2 Application Lecture: Dr. Doug Jewett
4.3 Panel Discussion

Object-Oriented Programming and Design
5.1 Technology Lecture: Dr. Gul Agha
5.2 Application Lecture: Dr. T. L. Wang
5.3 Panel Discussion

Participants’ Comments

Appendix A List of Participants

10
11

13
13
14
14

17
17
18
19

21

23

CMU/SEI-93-SR-4



CMU/SEI-93-SR-4



Dependable Software Technology Exchange

Abstract: On March 18 and 19, 1993, the Dependable Real-Time Software
project hosted a Dependable Software Technology Exchange. The exchange,
sponsored by the Air Force Space and Missile Systems Center and the Office
of Naval Research, brought together researchers and system developers,
providing an opportunity for the researchers to learn the needs of the
developers and for the developers to learn about techniques being investigated
by the researchers. This report summarizes what transpired at the meeting.

1 Introduction

Dependability is important in avionics, vehicle control, logistics systems, and command, con-
trol, and communications systems, to name but a few. As these systems increasingly rely on
computers, software becomes more important to the dependability and safety of their users.
Computer hardware has become more reliable, so software is now the bottleneck for achiev-
ing dependability. In recent years, however, a number of new approaches have emerged for
building software for dependable system applications.

One way to facilitate technology transfer between researchers and practitioners is to get them
talking to each other. With this mind, on March 18 and 19, 1993, the Software Engineering In-
stitute’'s Dependable Real-Time Software project hosted the first in what is hoped to be a se-
ries of Dependable Software Technology Exchanges. This initial technology exchange was
sponsored by the Air Force Space and Missile Systems Center and the Office of Naval Re-
search.

The purpose of the exchange was to bring researchers and system builders together to pro-
vide an opportunity for technology transfer in both directions. System builders are often too
busy to attend conferences or to write papers; researchers need exposure to “real world” con-
cerns. The technology exchange provided a forum where each side could educate the other.

The exchange was coordinated by a steering committee consisting of:

= Dr. Charles B. Weinstock, Software Engineering Institute

« Dr. Fred B. Schneider, Cornell University

= Dr. Yitzak Levendel, AT&T Bell Laboratories

= Dr. Ravi lyer, University of lllinois

= Dr. Walter L. Heimerdinger, Honeywell Systems and Research Center
=« Mr. Joseph Chiara, Air Force Space and Missile Systems Center

< Dr. Gul Agha, University of lllinois

The focus was on four topic areas that were deemed to be critical for achieving dependability:
formal methods and verification, requirements, operating system support, and object-oriented
methods and design. Each area was allocated a half day session divided into three parts. The

CMU/SEI-93-SR-4 1



session started with a one hour presentation from a researcher followed with a one hour long
presentation from an experienced practitioner. After a short break, a 75 minute panel discus-
sion was held. Each panel consisted of the two speakers, plus four additional panelists. Audi-
ence participation was encouraged throughout the sessions. The technology exchange was
videotaped.

By all accounts, the first Dependable Software Technology Exchange was successful. It was
well attended—demand almost exceeded capacity. Of perhaps greater importance is the di-
versity of backgrounds represented by the attendees. The over 70 attendees represented or-
ganizations including:

Industry = Universal Hi-Tech

= AEG/Westinghouse Development
Transportation Systems = Weinberg & Associates

= AlliedSignal Academia

= AT&T Bell Laboratories = Brown University

= Booz-Allen and Hamilton = Carnegie Mellon University

= Digital Equipment = Cornell University

= Honeywell = McMaster University

= Hughes Aircraft = University of Arizona

= |BM Federal Systems = University of California

= Lockheed Missile and Space = University of Illinois

= Martin Marietta = University of Pittsburgh

= MCC = University of Texas

= Mind Tools Corporation = University of York

e ObjecTime Limited Government

= Rockwell International = AFOSR

= Siemens e AF/SMC

e SOHAR = NASA

= SPARTA, Inc. = NIST

= System Technology = NRL
Development e NSWC

= Tandem Computers e ONR

= Texas Instruments e SDIO

= Transarc Corporation Other

= Aerospace Corporation
We clearly achieved our goal of bringing researchers and practitioners together.

At the end of the technology exchange, attendees completed a feedback form to help us eval-
uate the success of the meeting. Although not every respondent found all of the talks useful,
every talk was useful to some of the respondents. Virtually every respondent was enthusiastic
about holding further technology exchanges, and a variety of topics were suggested.

2 CMU/SEI-93-SR-4



The next sections describe the four sessions in detail, including the speakers and panelists as
well as a summary of the discussion. Following those sections is a synopsis of the comments
from participants. A complete list of attendees appears as an appendix.

CMU/SEI-93-SR-4 3



CMU/SEI-93-SR-4



2 Formal Methods and Verification

The morning session of Thursday, March 18, 1993, focused on formal methods and verifica-
tion. The technology lecture was given by Dr. John Rushby from SRI International. The title of
his lecture was “Formal Methods Technology: What Can it Do? How Best to Use it?” Dr. David
Lorge Parnas of McMaster University gave the application lecture, “The Application of Mathe-
matical Methods for Documentation and Inspection of Critical Software.” In addition to these
speakers, the panel consisted of Mr. Ricky Butler of NASA Langley Research Center, Mr. John
Dehn of IBM Federal Systems, Dr. Bill McKeeman of Digital Equipment, and Dr. Fred
Schneider of Cornell University. The session was coordinated by Dr. Schneider.

2.1 Technology Lecture: Dr. John Rushby

Most engineering disciplines have their foundations in applied mathematics. Mathematics is
then used as a notation for describing the artifacts being studied and as an analytical tool for
predicting the behavior of these artifacts. John Rushby (SRI International), the first speaker in
the Formal Methods and Verification session, argued that mathematical logic can play this role
for software. He explained that when writing specifications, one is concerned with giving as-
sumptions about the world in which a system will operate, stating requirements concerning
what the system is suppose to do, and describing how the system will satisfy its requirements.
Logic can be used in all three of these tasks. Moreover, given formal specifications for these
aspects of a system, it becomes possible to check for various forms of consistency and com-
pleteness, better understand the system by posing challenges, and prove that a design will
satisfy the requirements under the given assumptions.

According to Rushby, applying formal methods need not be synonymous with performing com-
plete proofs of correctness. Researchers in formal methods are standardizing on four levels
of rigor:

0. No use of formal methods.

1. Using ideas from formal methods, but with an ad hoc notation and proofs
based on ad hoc arguments. This is the way most mathematics is done today.

2. Using formal logic for specifications but doing proofs informally.

3. Using formal logic for specifications and employing automated theorem
provers to check proofs.

One must select the correct level of rigor for the task at hand. Workers on the two sides of the
Atlantic also seem to emphasize different ends of the spectrum. European work is more con-
cerned with levels 1 and 2; work in the U.S. has concentrated on level 3.

Rushby was careful to discuss limitations of formal methods. One cannot entirely formalize a
proof, because it is not possible to verify the correctness of a specification for requirements or
the accuracy of any formal description for the physical reality that underlies a computing de-
vice. Second, level 3 formal methods are expensive, much too expensive to be used on a sys-

CMU/SEI-93-SR-4 5



tem of significant size. Still, formal specifications do add value during system design. For
documentation, they provide precise, unambiguous descriptions of interfaces and functions.
This in turn supports reuse of components. Having formal specifications also provides trace-
ability for design decisions. For analysis, the existence of formal specifications permits early
validation of requirements and helps to identify assumptions that must be validated through
other means. Finally, formal methods are the only way to verify “negative” properties (i.e., the
absence of unintended effects).

In reflecting on the current state of the art, Rushby identified three traditions that now seem to
be converging. The first tradition starts with a specification notation, where an expressive no-
tation is chosen without concern for how difficult it would be to construct a supporting theorem
prover. The second tradition is motivated by a drive to build powerful theorem provers. The
logic of such a theorem prover is then used as the specification notation. A third tradition, now
becoming prevalent, seeks to combine the other two by making compromises in the specifica-
tion language and power of the theorem prover in order to obtain a coherent system.

2.2 Application Lecture: Dr. David L. Parnas

David Parnas (McMaster University) was the second speaker of the session. Parnas has used
formal methods in two large mission-critical systems: the software that controls a U.S. fighter
plane (the A7) and the safety-critical software for a nuclear power station in Darlington, Ontar-
io. Parnas’ talk outlined experiences with a formal specification notation that he used in the
Darlington project. The notation is easily read by engineers, making it possible for the client to
understand specifications. Parnas emphasized the importance of this attribute, as it allows the
customer to catch errors that software engineers are not qualified to find. And although the
notation looks informal, it has precise Predicate Logic semantics. Thus, the specification no-
tation enjoys the same benefits and potential for automated analysis as any specification no-
tation based on a formal logic.

According to Parnas, success in implementing safety-critical software depends on three ele-
ments. First, one must be prepared to write precise, organized, mathematical documentation
and review it systematically. Second, extensive testing is necessary to allow quick discovery
of gross errors and shared oversights. Third (and perhaps the most worrisome) is that qualified
people must be involved and an approved process employed. Parnas has found that writing
and reviewing rigorous specifications is basically a boring task. Without people having the right
skills, it is simply too easy to overlook a flaw. In the Darlington project, non-mathematicians
were employed in writing and analyzing the specifications. All the participants required exten-
sive training and supervision in the formal methods being used by the project. Being conver-
sant in the application, however, meant that the participants were effective in reviewing
specifications.

The Darlington project and the A7 project both employed level 2 formal methods. Proofs re-
mained informal, and only a limited degree of automated support was available. Parnas ar-
gued that formal specifications should be used for documentation and specification now.

6 CMU/SEI-93-SR-4



Otherwise, we can have no hope of using them in the future as input to rigorous mathematical
analysis. The success of the Darlington project certainly argues that level 2 formal methods
can have a real payoff.

2.3 Panel Discussion

The next four presentations were from people who had used or tried to use formal methods.
Ricky Butler (NASA Langley Research Center) was the first speaker. Butler is trying to proto-
type a fully verified reliable computing platform for use in flight control. His group has specified
and verified redundancy management, task scheduling, and clock synchronization protocols
for such a system. They have had experience using many of the currently available
tools—Butler reports that it takes about 6 months for him to master a new theorem prover. Still,
in contrast to Parnas, Butler believes that wrestling with a mechanical theorem prover is a nec-
essary prerequisite for writing good specifications. Butler has found, however, that the techni-
calities associated with getting a proof through a mechanical theorem prover are a distraction.

Jon Dehn (IBM Federal Systems Company) next spoke about his experiences in using formal
methods for the development of AAS, the next-generation Air Traffic Control System that he
is working on. This is a large system—over 1 million lines of source code (Ada), with each in-
stallation running on a network of over 200 processors linked by several local area networks.
The system must satisfy stringent reliability requirements. Dehn reported that his successes
with formal methods were all achieved when small teams had to solve particular aspects of a
problem or when the method being employed could be mechanized and applied to an entire
system or subset. As a success, Dehn cited the technique being used to manage the applica-
tion state data. Here, formal analysis allowed potential race-conditions to be detected auto-
matically. Dehn cautioned that formal methods have not worked when appropriate
mechanizations did not exist and when the method being employed involved too many ques-
tionable assumptions about the system being analyzed.

The third presentation was by Bill McKeeman (DEC) about his experiences moving the
LARCH specification language and method from Digital’s research laboratory into an industrial
software development organization. The plan was to extend LARCH to support the C program-
ming language and then use LARCH to support commercial development activities. Largely
for cultural reasons, the desired technology transfer did not occur. The impediments to adopt-
ing the system included the following. First, a significant fraction of the user community were
excluded from patrticipating by the choice of C as the language being supported. Second, us-
ing a system like LARCH is really feasible only for new code, and most software work by the
target users was concerned with extending existing code. And finally, the engineers regarded
formal specifications as constraining their designs and did not perceive a real pay off in the
time horizon of their projects.

The final presentation was by Fred Schneider (Cornell). Schneider argued that formal meth-
ods could have leverage today in analyzing small parts of systems and in analyzing simple
properties of entire systems. Based on his experience in applying formal methods at IBM and

CMU/SEI-93-SR-4 7



DEC, he proposed that the position of a “formal methodist” be added to the skills roster of sys-
tems projects. Such a person would design special-purpose, lightweight and disposable for-
mal methods for the problem at hand. Being successful, however, would require that a formal
methodist be an active participant in the system design—to understand what are the real prob-
lems and what approximations of reality are possible. It also would require access to powerful
and flexible tools that can be easily integrated.

8 CMU/SEI-93-SR-4



3 Requirements

The afternoon session of Thursday, March 18, 1993 focused on the problem of specifying re-
quirements for dependable software systems. The technology lecture was given by Prof. John
A. McDermid from the University of York. The title of his talk was “Dependability Require-
ments: Orthodoxy and a Goal-Structured Approach.” Mr. Gerry E. Pasek of Lockheed Missile
and Space gave the application lecture, “Dependable Software: A Challenge.” In addition to
these speakers, the panel consisted of Dr. Walter L. Heimerdinger of Honeywell Systems and
Research Center, Dr. Carl Landwehr of the Naval Research Laboratory, Dr. David Parnas of
McMaster University, and Dr. John Rushby of SRI International. The requirements session
was coordinated by Dr. Heimerdinger.

3.1 Application Lecture: Prof. John A. McDermid

Requirements analysis is a difficult subject, made all the more so because the customer may
think that the requirement means one thing while the developer sees it as something altogeth-
er different. The first speaker, John McDermid (University of York), claimed that in an attempt
to overcome this, requirements tend to be overly detailed, bordering on implementations. This
gives the system designers and implementers little freedom, and hampers the development of
efficient systems.

According to McDermid, the usual requirements specification is not much more than a list of
function definitions that cover normal functioning, abnormal functioning, dependability proper-
ties, performance, quality, and expected changes. These specifications contain too much de-
tail, forcing early design decisions. This hampers flexibility, making it difficult to incorporate
down-stream changes. Furthermore, it is hard to check the consistency between requirements
so specified.

What is needed, McDermid argued, is a systematic basis for the specification of the funda-
mental requirements of the system. These are the top-level goals of the stakeholders (e.g., the
customer, the users, etc.). The fundamental requirements are then refined into a set of derived
requirements that take into account constraints of the real-world (e.g., size limitations, power
consumption, etc.). McDermid suggests that, in general, there is still a need to identify conflicts
between requirements and to devise strategies that provide acceptable trade-offs. Depend-
ability requirements often expose conflicts.

Representing goals precisely is a difficult problem, according to McDermid. All of the assump-
tions behind the goals must be enumerated systematically, even hidden assumptions (e.g.,
the aerodynamics of each wing of an airplane are different). Constraints must also be enumer-
ated, and each goal has to have an “owning” stakeholder so that trade-offs can be evaluated,
perhaps by negotiating between stakeholders.

CMU/SEI-93-SR-4 9



In addition to goals, McDermid asserts that there are three other components to a require-
ment: there must be a way to tell when a requirement has been met, there must be a justifica-
tion for the requirement, and finally there must be a strategy for achieving the requirement
(e.g., goal sub-structuring).

A conceptual process for requirements definition, then, is to:

= |dentify goals—the stakeholders’ main aims and desires.
= Model the environment and causal properties.
= Derive more detailed requirements based on real-world constraints.

McDermid was not aware of any single tool that can take the designer through this process.
However, tools such as STEPS, ARE, KAOS and TARDIS can form a base.

3.2 Application Lecture: Mr. Gerry E. Pasek

The practitioner’s viewpoint was presented by Mr. Gerry Pasek (Lockheed). He suggested that
dependable software development is an iterative process that is almost “done in” by require-
ments analysis. Just when a system starts to satisfy the requirements, as specified, they
change, or the customer’s expectations change. So the current paradigm is to “code a little,
test a little, and document some.” Pasek considers 2167A too rigid, and primarily for bureau-
crats and lawyers.

According to Pasek, the realities of the procurement process make requirements analysis
even more important than it should be, but at the same time the requirements hobble innova-
tion. For instance, the development of the F22 fighter has an integrated 10-year master plan
with monthly milestones to be met. This means design decisions are made entirely too early
in the development process.

In the normal case, there is little if any user involvement in the requirements specification pro-
cess. Since developers and users have different viewpoints, this is detrimental to the quality
of the final system. Even in testing, developers and users will base their testing on their indi-
vidual viewpoints of what the system should do. Pasek gave the example of an F22 crash at
Edwards AFB that was traced to a pilot misuse of the aircraft, which the software wasn’t de-
signed to handle. The software failed, and its error recovery mechanism was faulty. Too much
attention is given to testing, and not enough to specifying, documenting, and validating user
functionality.

Another problem, Pasek claimed, is the incredible number of requirements typical for a large
system. As the number of requirements increases, it gets difficult to deal with interactions. In
one system, there were 300 system-level requirements, 40 real requirements, and 45,000
specific requirements. Until recently, it wasn’t possible to trace the requirements chain from
the specific to the general. In addition to tracability back to the stakeholder/owner of a require-

10 CMU/SEI-93-SR-4



ment, the rationale behind each requirement must be documented. This allows the need for a
specific requirement to be challenged and defended. Electronic communications is helping
here, and database tools are being developed, but tracability remains a major problem.

From a dependability standpoint, too little attention is given to defining what can go wrong.
Systems are therefore inherently undependable in their initial phases. Pasek suggested that
quality does not imply dependability. Specifying the fault set (especially credible faults) to be
accommaodated is a major challenge, especially if the hardware has not been defined.

Pasek was a big fan of the SEI level-three process, which he claimed goes a long way toward
getting the “right stuff” into products, but he feels we need to concentrate more on defining the
project before it starts. In particular, there needs to be a way to capture the thought process
leading to requirements.

3.3 Panel Discussion

Walt Heimerdinger (Honeywell) started the panel discussion by talking about requirements
that have worked well and those that have not. He divides the former into two classes: process
and function. By “process,” he means how the product is built. This covers design constraints,
reviews, etc. As examples, he cited DO-178A and MOD 55 (U.K. Ministry of Defense). They
are relatively easy to specify and follow, but they may not correlate with the actual behavior of
the product. By “function,” he means what the product does. This includes state machines,
scenarios, fault-tree analysis, etc. These can help to identify specific faults and hazards and
can include specific error-handing procedures.

According to Heimerdinger, requirements that don’t work well include attributes (because it is
difficult to cover the entire product), and statistical objectives (because it is hard to get a sta-
tistically significant sample for ultradependable systems). Heimerdinger suggests reuse and
benchmarks as possible solutions to these problems.

Carl Landwehr (NRL) talked about domains where he has dealt with requirements for depend-
able software. These included security, safety, and real-time systems. Techniques that have
served him well included natural language, cookbooks (e.g., the Yellow Book, MOD 55/56),
structured informal techniques (e.g., assertions), semi-formal techniques (e.g., SCR), and for-
mal techniques, both manual and automated. The techniques have proven useful for capturing
intended critical properties precisely, facilitating communications between stakeholders, re-
vealing conflicts and errors early in system development, easing the design process, facilitat-
ing system assurance, and training users. On the flip side, available techniques don’t work well
when dealing with combinations of critical requirements or in supporting the composition/de-
composition of requirements onto design entities, especially in the realm of security.

David Parnas (McMaster University) contested at least one of Heimerdinger’s points, stating
his belief that some of the process mechanisms hinder the precise specification of require-
ments. Many aspects of a system are never documented because they never cause trouble.

CMU/SEI-93-SR-4 11



The final panelist was John Rushby (SRI International), who discussed areas where SRI In-
ternational had specified dependability properties. These included fault-tolerance for flight
control, the “Jet Select” function for the Space Shuttle Orbit DAP, Microprogram correctness,
simple real-time properties, and security properties. In general this worked well. Expressive
formal methods can be used to specify almost anything in an easily understood way, given
talented and skilled users. The crucial need is for transferable methodologies tailored to each
application area. In almost all areas, considerable work is needed to create transferable meth-
odologies.

Comments raised by members of the audience, led by Herb Hecht and George Gilley, involved
the procurement process. The procurement process is the major problem. You are serving an
amorphous, volatile, customer due to frequent personnel changes. Hundreds of people are in-
volved, each with a different set of expectations. The result is a changing set of requirements
every time a new person is put in charge. There is only one shot at getting the requirements
right, even though iteration will be inevitable. If a requirement is eliminated downstream, some
bean-counter is going to want a “give-back”.

12 CMU/SEI-93-SR-4



4 Operating System Support

The morning session of Friday, March 19, 1993, focused on operating system support for de-
pendable software. The technology lecture was given by Dr. Keith Marzullo of Cornell and the
University of California at San Diego. The title of his talk was “Distributed Fault-Tolerant Pro-
gramming Using Group Programming Tools.” Dr. Doug Jewett of Tandem Computers gave the
application lecture, “Tandem Fault Tolerant Systems.” In addition to the speakers, the panel
consisted of Dr. Edward Balkovich of Digital Equipment, Mr. Jon Dehn, of IBM Federal Sys-
tems, Mr. Craig Hatfield of IBM Federal Systems, and Dr. Alfred Spector of Transarc. This top-
ic area was coordinated by Dr. Ravi lyer of the University of lllinois and the session was
chaired by Dr. Charles B. Weinstock of the Software Engineering Institute.

4.1 Technology Lecture: Dr. Keith Marzullo

Abstractions for implementing fault tolerance are frequently supported in an operating system.
Consequently, this session concerned the various abstractions that have been proposed for
supporting fault-tolerance and included representative users’ experiences with these abstrac-
tions. The first speaker was Keith Marzullo (Cornell/U.C. San Diego). Marzullo summarized
the “group programming” approach to distributed computing. This approach, typified by the
ISIS system, allows the programmer to assume that events are seen in the same order by all
members of a distributed group of processes. Having the illusion of a total order on distributed
events simplifies programming. Solutions to the election problem illustrated simplifications that
become possible when primitives to support group programming are available.

Marzullo explained that systems to support group programming usually implement certain key
abstractions. At the lower levels are protocols to implement the causal delivery of a message
to the members of a process group, protocols to detect failures of members, and protocols to
maintain a consistent view of a group’s membership. High-level abstractions found usually in-
clude ordered multicasts, state transfer protocols so that new members can be added to a
group, coordinator-cohort and other group coordination protocols, and support for logging and
recovery.

As a non-trivial example of group programming, Marzullo described his RNFS replicated NFS
file system. This system provides to clients the same interface as the SUN NFS network file
system. However, in RNFS, files can be replicated on multiple file servers. Different replicas
are kept consistent by RNFS. Marzullo also described ongoing projects that are exploring
group programming support. Although the list is dominated by university research efforts, the
approach has been employed, for example, by IBM in two product efforts (AAS air traffic con-
trol and TSAF VM/370 support).

CMU/SEI-93-SR-4 13



4.2 Application Lecture: Dr. Doug Jewett

Doug Jewett (Tandem Computers Inc.), the second speaker in this session, surveyed Tan-
dem'’s efforts to provide fault-tolerant computing. Their first and best known offering was built
in the mid 1970’s using a custom operating system running on top of custom hardware. The
target customer application was online transaction processing. Tandem’s system is based on
using “process-pairs” for system processes. Each process pair has a primary and backup. The
primaries write periodic state checkpoints, which allows a backup process to take over when
a primary process fails. Unfortunately, Tandem has found that designing process-pairs is dif-
ficult. Moreover, the mechanism is not immune to correlated failures arising from programmer
errors.

The difficulty in building process-pairs led Tandem to implement operating system support for
transactions. Again, a primary and backup are employed, but now the usual transaction se-
mantics simplifies the checkpointing problem. By writing transactions rather than process-
pairs, users of Tandem systems are able to implement fault-tolerance in their applications. The
current system, then, is a hybrid: critical software (including a transaction manager) is written
as process-pairs and gives continuous service across failures; most user software is written
in terms of transactions and, therefore, is restarted in response to a failure.

Tandem is also designing a fault-tolerant UNIX system. During his lecture, Jewett briefly out-
lined this system as well. The goal is to support existing UNIX applications program interfaces
and be able to survive hardware failures. A variety of design changes are being used to harden
the kernel, as UNIX was not originally intended for this domain. Jewett also discussed some
of the difficulties encountered in debugging such a system.

4.3 Panel Discussion

The next four presentations discussed systems efforts to support fault-tolerance. Edward
Balkovich (DEC) started by describing three representative system architectures for imple-
menting different degrees of fault-tolerance. From these, Balkovich then concluded that man-
aging redundancy in storage, processing, and the communications network must be integral
to the design of an operating system. The use of journaling (i.e., logging on stable storage)
was found to be quite useful for implementing critical services and is frequently used in DEC
systems applications. Balkovich also pointed out that fault-tolerance support could be em-
ployed to allow system upgrades without shutting down a system.

The next presentation was by Craig Hatfield (IBM Federal Systems Company) concerning an
operating system that IBM is building for a defense application. Among the system’s capabil-
ities are replication of critical files and restart without reloading. The system runs on multiple
communicating processors and has a master and slaves. A slave can take over for the master,
if that master fails. Echoing Tandem’s experiences, Hatfield found that writing applications

14 CMU/SEI-93-SR-4



programs was complicated by the need to take checkpoints for failure recovery. Hatfield also
reported that coping with power failures was particularly difficult, because some hardware in-
terfaces had to be reinitialized following power outages.

Alfred Spector (Transarc) then reported on the use of transactions as a way of providing fault-
tolerance. Spector discussed elements of current OSF DCE and Transarc’s Encina systems
in order to illustrate the practicality and acceptance of this approach. The use and implemen-
tation of transactions is well understood; the hardest part at this point is getting all the details
right so that an implementation correctly deals with system partitions and heterogeneous pro-
cessors. Spector did identify some outstanding research issues. Work needs to be done in un-
derstanding replicated datatypes and in automated support for application development.
Spector also called for simplified administration of replicated systems.

The final speaker of the session was Jon Dehn (IBM Federal Systems Company). Dehn briefly
outlined how group programming is employed in IBM’'s AAS system. Application programmers
do not see a group programming interface. Rather, group programming is used to implement
a primary-backup style of fault-tolerance. The replication that group programming would entail
for the application levels of the system was deemed to be too expensive to be practical.

CMU/SEI-93-SR-4 15



16

CMU/SEI-93-SR-4



5 Object-Oriented Programming and Design

The afternoon session of Friday, March 19, 1993, focused on object-oriented programming
and design as a means of achieving dependable software. The technology lecture was given
by Dr. Gul Agha of the University of Illinois. The title of his lecture was “Object-Oriented De-
pendable Computing.” Dr. T. L. Wang of AT&T Bell Laboratories gave the application lecture,
“Object Oriented Design of a Highly Available Switching System.” In addition to these speak-
ers, the panel consisted of Dr. Jacob Abraham of the University of Texas at Austin, Dr. Jim
Coplien of AT&T Bell Laboratories, Mr. Bran Selic of ObjecTime, and Dr. Peter Wegner of
Brown University. The object-oriented programming and design topic was coordinated by Dr.
Yitzak Levendel of AT&T Bell Laboratories and Dr. Gul Agha of the University of Illinois.

5.1 Technology Lecture: Dr. Gul Agha

Dr. Agha’s (University of lllinois) talk began with a short tutorial on object-oriented program-
ming. He discussed procedure abstraction, data encapsulation, data abstraction, and the idea
of object inheritance. The key use of abstractions is to separate how the code is implemented
from its functional specification. It is also common to want to separate the time that something
is done from the actual task. For instance, asynchronous communication allows computation
to proceed in parallel with that communication. This leads to the need for synchronization.

According to Agha, the advantage of object orientation are in data abstraction, modeling pow-
er, and reuse. Abstractions are provided by encapsulation and hidden representation. Data
abstraction’s modeling power comes from the hierarchical organization and through special-
ization (achieved through inheritance). Reuse is achieved through incremental refinement of
software components.

Agha then went on to describe a methodology for dependability. The four pieces of this meth-
odology include modularity, reusability, flexibility, and composability. He introduced the actor
model. In this model, the universe contains computational agents called actors. Each actor
has a mail address, a behavior, and a local state. Behaviors can be dynamically replaced and
new actors can be created. Actors communicate using a point-to-point, asynchronous, buff-
ered protocol. Mail addresses can be communicated, which allows for dynamic topology. Ar-
rival order and activation order form the fundamental synchronization mechanisms.

Agha believes that three aspects of the behavior of an actor are necessary and sufficient for
most dependability protocols. These are the structure of its mail queue, the dispatcher that
handles message sends, and the state of the actor. Each of these components is a separate
object, independent of the application. He then went on to describe the Broadway Kernel and
the HAL language.

As an example of a specific dependability mechanism, Agha showed how actors can be rep-
licated. The changes are relatively minor. The dispatcher in new copies of the actor is modified
to send all messages to the original actor’s dispatcher. The original actor’s mail queue is mod-

CMU/SEI-93-SR-4 17



ified to broadcast to all of the replicated copies, and the behavior of the original actor’s dis-
patcher is modified to collect messages from the copies, vote the results, and pass the
resulting message to other actors.

5.2 Application Lecture: Dr. T. L. Wang

Dr. Wang (AT&T) discussed applying object oriented methods to the design of a highly avail-
able switching system. Switching systems are real-time systems where continuous operation
is of paramount importance. Some errors (e.g., dropped or misrouted calls) are tolerable, as
the customer can retry or redial. But once a call is completed, the goal is that the call be main-
tained. The switch has a three minutes per year maximum downtime requirement. Over time,
they have observed that outages are caused by hardware failures 20% of the time, software
failures 40% of the time, and procedure failures 40% of the time. The design goal of high avail-
ability means that repairs must be made quickly when there is a failure. A major research issue
is software repair.

As Wang described it, the logical hardware architecture of the switch is functionally distributed
across several processor families. These include call processing, operation, accounting and
maintenance, interconnect, and peripheral control. Each of these families is its own environ-
ment with its own availability strategy. Fault tolerance is provided by having spares for each
family. They are considering a heterogeneous environment (different architectures) to avoid
common mode failures.

The software architecture is component oriented. All of the components are based on the
same basic framework. Implementations of specific components use inheritance to help im-
plement the specific functionality. The architecture supports flexible distribution of software
components. Wang suggested that this allows for load balancing and for dynamically relocat-
ing software modules to minimize the size of repair groups. The architecture is made of both
static components (e.g., those representing the switch itself) and dynamic objects (e.g., those
representing a particular call).

The design makes heavy use of an object model with complete data and text encapsulation.
No single component knows what any other component is doing. Multiple inheritance provides
a way to resolve name conflicts and priorities. Individual designers use incremental redefini-
tion of classes and methods. According to Wang, this provides a modular structure for the sys-
tem architecture, provides for localization of recovery and repair actions, and coordinates
hardware and software initializations. A virtual machine memory model provides safe access
to program and data objects.

The error checking aspects of the system described by Wang include run-time type checking,
application signaled errors, and customized stack recovery actions. This simplifies exception
handler design and recovery actions, and reduces the need for audits during execution.

18 CMU/SEI-93-SR-4



Wang closed with a summary of the key attributes of the system that enhance availability,
which include repairable interfaces, flexible software configuration, update on-the-fly, elimina-
tion of memory errors, graceful error recovery, run-time error detection, and standardized
maintenance frameworks.

5.3 Panel Discussion

The panel discussion started with a brief talk by Jacob Abraham (University of Texas). He has
used object-based techniques in application software development and as a basis for increas-
ing system dependability. In particular, it was used for development of CAD tools for VLSI test
and verification as well as for tools to design and evaluate fault-tolerant systems. This includes
a fault injection system written in C++.

Object-oriented techniques have, in general, worked well for Abraham. During the develop-
ment of prototypes, the ability to change algorithms, modify data structures, etc., in parts of
the tool has allowed easy exploration of alternatives. It has also made it easy to integrate tools
written by different programmers. However, there is a need for an object-based language that
can capture specifications of a program or design. Also needed is support for designing sys-
tems seamlessly at the software and hardware levels.

James Coplien (AT&T) talked about “Objects, Multiple Paradigm Integration and Organization
Structure.” His thesis is that complexity is the root of many software woes and that abstraction
is one way to attack complexity. Object-oriented techniques are one tool for dealing with ab-
stractions, but they aren’t suitable for every domain. A good abstraction encapsulates change.
Object partitioning doesn’t always accomplish this and may lead to unsuitable coupling. Ob-
jects are bad at encapsulating change in real-time embedded systems.

Bran Selic (ObjecTime) talked about work he has done in the telecommunications area for
Northern Telecom. The system he is involved with has over 20 million lines of code, making
individual methods all but invisible. In this system, requirements are continually being added,
the level of distribution is changing, the structure is changing, and it is mostly soft real-time.

In this environment the object model has resulted in a significant productivity improvement
(measured at 5:1). This is due primarily to a more appropriate programming paradigm, reuse,
and an exceptional development environment (Smalltalk-80). The object model is inherently
architectural. The basic programming model is a network of interacting components, which is
a natural model for distributed real-time systems. According to Selic, the built-in abstractions
mechanisms encourage specification of evolvable systems.

However, according to Selic, all is not perfect with the architectural model. Object-oriented
concepts are unnecessarily restricted to the programming language level, and programming
languages are not conducive to architectural modeling. Consequently one cannot exploit use-
ful object-oriented concepts at the architectural level where the payback would be the great-
est.

CMU/SEI-93-SR-4 19



Peter Wegner's talk concluded the object oriented panel. He presented a list of research is-
sues for object-oriented programming and design, including how to use Ada in this environ-
ment, interface-oriented programming, type safety versus incremental class flexibility,
languages for talking about interconnection and communication, reflective architectures, con-
straints, concurrency and synchronization of objects, persistence, and heterogeneous objects.

In the ensuing discussion, one of the key themes was how object-oriented programming and
design applies to dependability. One response was that it helps to constrain the design by pro-
viding rules for interactions between objects. However, Jim Coplien claimed that fault toler-
ance needs a much deeper understanding of the world than the basic system design.
Recovery is not a part of the objects, but rather it is in the backplane of the system. Dr. Wang
then said that the object paradigm is a starting point, not a complete solution; it's just easier to
start with objects.

20 CMU/SEI-93-SR-4



6 Participants’ Comments

All of the participants attending the Technology Exchange were asked for written comments
on the meeting. Over 25% of the attendees provided this feedback. This section summarizes
those comments.

Participants completed a form that asked what their expectations about the exchange were
and how well these expectations were met. For the most part, the participants’ expectations
were met:

= The meeting allowed patrticipants to find out about potentially useful state-of-
the-art work in dependable software.

« The discussions helped set an agenda of technology issues that are ripe for
further exploration.

* Participants had a chance to meet new colleagues and compare
experiences.

In general, participants found the selected topics to be appropriate (average 4 out of 5), the
technical depth of talks was almost right (average 3 out of 5), and the format was useful (av-
erage 4+ out of 5).

When asked which talk they liked most and which they liked least, the responses were mixed.
Most of those responding found the formal methods and verification session to be outstanding.
But, good and bad things were said about all of the sessions:

“Gul Agha’s talk, although more abstract, was full of excellent ‘future’
practical implementation suggestions. Some moments in the panel
discussion were very informative.”

“Gul Agha'’s presentation was not well thought out and was not appropriate
for the audience.”

“The formal methods and verification topics were useful—these are important
areas for our company.”

“The formal methods section was interesting but provided little that | can
implement in a tight schedule, minimum budget environment.”

There was some unhappiness with the industry lectures. As one respondent put it, “The indus-
try presenters were not that helpful—either their material was not very thoughtful or it was de-
scription of large, untractable (sic), definitely not safety-critical systems.” Yet, at the same
time, the respondents felt that “the idea of having different types of representation, to get a
good mix of practitioners and technology makers” was worthwhile.

Nearly all of the respondents would like to see additional exchanges (5- average out of 5). Top-
ics that they suggested include:

= Metrics
= Analysis of results on real life cases.

CMU/SEI-93-SR-4 21



= Implementation issues on real hardware.

= Design of small, real-time kernels for safety critical systems.

= Testing of safety critical systems.

= More on formal methods.

< More on requirements (but more focused).

= Reliability.
Most participants would attend additional exchanges and would like to see one held within a
year. One respondent suggested the next exchange be in 4 months. Six months was the typ-
ical time frame suggested.

A mailing list “exploder” depend-sw@sei.cmu.edu has been created to reach the people who
attended the exchange.

22 CMU/SEI-93-SR-4



Appendix A List of Participants

Jacob Abraham
University of Texas in Austin

Computer Engineering Research Center

2201 Donley Drive
Suite 395

Austin, TX 78758
(512) 471-8983
jaa@cerc.utexas.edu
FAX: (512) 471-8967

Leonor Abraido-Fandino
Siemens Corporate Research
(609) 734-3387

Gul Agha

University of lllinois

Department of Computer Science
1304 W. Springfield Avenue
Urbana, IL 61801

Ed Balkovich

Digital Equipment Corporation
Cambridge Research Lab
One Kendall Square
Cambridge, MA 02139

(617) 621-6630
eeb@crl.dec.com

FAX: (617) 621-6650

Mario R. Barbacci

Program Manager

Software Engineering Institute
Technology Division

Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-7704
mrb@sei.cmu.edu

FAX: (412) 268-5758

Steve Bravy

SDIO/GMN

19142 Roman Way
Gaithersburg, MD 20879
(703) 693-1595

FAX: (703) 693-1700

Mark Breland

Project Leader

MCC

3500 West Balcones Center Drive
Austin, TX 78759-6509

(512) 338-3509
breland@mcc.com

FAX: (512) 338-3900

Donald Brown

AT&T

263 Shuman Blvd
Room 1A143
Naperville, IL 60566
(708) 713-5050

FAX: (708) 713-5398

Rickey Butler

Fault-Tolerant Systems Research Engineer

NASA

Langley Research Center
Mail Stop 130

Hampton, VA 23681-0001
(804) 864-6198
rwg@airl6.larc.nasa.gov
FAX: (804) 864-4234

CMU/SEI-93-SR-4

23



Stephen Cha

Member of Technical Staff

The Aerospace Corporation

Trusted Computer Systems Department
(M1/055)

2350 E El Segundo Blvd.

El Segundo, CA 90245-4691

(310) 336-7977

cha@aero.org

FAX: (310) 336-5833

Joe Chiara

U.S. Air Force Space & Missiles Systems
Center

Air Force Space Center

P.0O. Box 92960

Los Angeles, CA 90009-2960

(310) 363-3521

chiara@cnb.laafb.af.mil

FAX: (310) 363-0265

James Coplien

AT&T Bell Laboratories

1000 East Warrenville Road

P.O. Box 3013, Room IHC-1G341
Naperville, IL 60566-7013

(708) 713-5384
cope@research.att.com

FAX: (708) 713-4982

Mark Cornwell

President

Mind Tools Corporation

2 Davis Drive

P.O. Box 12076

Research Triangle Park, NC 27709
(919) 990-9105
cornwell@rock.concert.net

FAX: (919) 990-8561

Jon Dehn

IBM Corporation

Systems Intergration Division
9201 Corporate Blvd.
Rockville, MD 20850

(301) 640-2912
dehn@ibm.vmt.com

FAX: (301) 640-3103

Jorge Diaz-Herrera

Member of Technical Staff
Software Engineering Institute
Products and Services Division
Rm 4120

Pittsburgh, PA 15213-3890
(412) 268-7636
jldh@sei.cmu.edu

FAX: (412) 268-5758

Gary Falacara

SPARTA, Inc.

30100 Town Center Drive
#438

Laguna Niguel, CA 92677
(714) 363-9101
gnf@orion.oac.uci.edu

D. Helen Gill

Principal Scientist

MITRE Corporation

1820 Dolly Madison Boulevard
McLean, VA 22102

(703) 883-7980

George Gilley

The Aerospace Corporation
2350 East El Segundo Blvd.
El Segundo, CA 90045
(310) 336-1552
gilley@aero.org

FAX: (310) 336-8266

24

CMU/SEI-93-SR-4



Peter Goddard

Section Head

Hughes Aircraft Company
Ground Systems Group
P.O. Box 3310 618/W308
Fullerton, CA 92634
(714) 732-7754

FAX: (714) 732-2613

B.K. Gogia

Vice President

Datamat Systems Research, Inc.
13955 South Spring Drive
Clifton, VA 22024-2453

(703) 222-5996

FAX: (703) 222-5996

Craig Hatfield

IBM Federal System Corporation
9500 Godwin Drive

Manassas, VA 22110

(703) 367-5879

FAX: (703) 367-4259

Herbert Hecht

President

SOHAR

8421 Wilshire Blvd.

Suite 201

Beverly Hills, CA 90211-3204
(213) 653-4717
soharlherb@cs.ucla.edu
FAX: (213) 653-3624

Walter Heimerdinger

Honeywell Systems & Research Center
3660 Technology Drive

MN 65-2100

Minneapolis, MN 55418-1006

(612) 951-7332
walt@src.honeywell.com

FAX: (612) 951-7438

Raymond C. Hoppes
Advisory Engineer

IBM Corporation

Federal Systems Company
P.O. Box 9023

003B

Boulder, CO 80301

(303) 924-9752
hoppes@blofum9.ibm.com

Frank Houston

Weinberg & Associates
1440 Conchester Highway
Boothwyn, PA 19061
(215) 459-2732 x625

FAX: (215) 459-8381

Chuck Howell

MITRE Corporation

Software Engineering Center, J80
7525 Colshire Drive

MS W197

McLean, VA 22102-3481

(703) 883-6080

howell@mitre.org

FAX: (703) 883-1339

Michelle Hugue, Ph.D.
Member of Technical Staff
Allied-Signal

9140 Old Annapolis Road
Columbia, MD 21045-1998
(410) 964-4158
michelle@batc.allied.com
FAX: (410) 992-5813

CMU/SEI-93-SR-4

25



Bruno Jambor

Senior Staff Engineer

Martin Marietta

P.O. Box 179

MS:T320

Denver, CO 80201

(303) 977-1972
bjambor@hellcat.den.mmc.com
FAX: (303) 977-1145

Doug Jewett

Tandem Computers
14321

Tandem Blvd.

Austin, TX 78728
(512) 244-8273
dej@mpd.tandem.com
FAX: (512) 244-8588

Mary Jones

Universal Hi-Tech Development Inc.

20 West Gude Drive
Rockville, MD 20850
(301) 340-8899

FAX: (301) 217-0131

John C. Kelly

Group Leader

Jet Propulsion Laboratory
Software Product Assurance
4800 Oak Grove Drive

MS 125-233

Pasenda, CA 91109

(818) 354-4495
jckelly@spal.jpl.nasa.gov
FAX: (818) 393-6682

Nick Klavin

IBM Corporation
9221 Corporate Blvd.
Rockville, MD 20850
(301) 640-4135

FAX: (301) 640-4010

Gary Koob

Chief of Naval Research
United States Navy

Code 1133

800 N. Quincy Street
Ballston Tower One
Arlington, VA 22217-5660
(703) 696-0872
koob@itd.nrl.navy.mil
FAX: (703) 696-0934

Carl Landwehr

Naval Research Laboratory
United States Navy

Code 5542

Washington, DC 20375-5337
(202) 767-3381
landwehr@itd.nrl.navy.mil
FAX: (202) 404-7942

Yitzak Levendel

AT&T Bell Laboratories

263 Shuman Blvd

P.O. Box 3050, Room 2S-202
Naperville, IL 60566-7050
(708) 979-1310
levendel@att.com

Randall Lichota

Hughes ESC/AVS

Building 1704

Room 107

Hanscom AFB, MA 01731-5000

(617) 377-2520
lichotar%emis2.decnet@v5.hanscom.af.mil

David Littman

Asst. Professor of Computer Science
George Mason University
Department of Computer Science
Fairfax, VA 22030-4444

(703) 993-1545

26

CMU/SEI-93-SR-4



Keith Marzullo

University of California, San Diego
Department of Computer Science and
Engineering

9500 Gilman Drive

La Jolla, CA 92093-0114

(619) 534-3729
marzullo@cs.ucsd.edu

FAX: (619) 534-4428

John McDermid

Professor of Software Engineering
University of York

University of York

Department of Computer Science
York, YO1 5DD

ENGLAND

(449) 044-3272 6
jam@uk.ac.york.minster

FAX: (490) 443-2708

W.M. McKeeman

Digital Equipment Corporation
100 Spit Brook Road
ZK02-N30

Nashua, NH 03062
mckeeman@tle.enet.dec.com

Steven Miller

Software Verification Specialist

Rockwell International

Collins Commercial Avionics Engineering
400 Collins Road NE

MS 124-211

Cedar Rapids, 1A 52498

(319) 395-8008
spm@hwking.cca.cr.rockwell.com

FAX: (319) 395-4068

Daniel Mosse

University of Pittsburgh
Department of Computer Science
Pittsburgh, PA 15260

(412) 624-8923
mosse@cs.pitt.edu

FAX: (412) 624-8854

Arup Mukherjee

Carnegie Mellon University
School of Computer Science
5000 Forbes Avenue
Pittsburgh, PA 15213

(412) 268-3047
arup@cmu.edu

Tony Ng

IBM Corporation

Federal Systems Company
9221 Corporate Blvd.
Rockville, MD 20850

(301) 640-4025
ngt@wmavm?7.vnet.ibm.com
FAX: (301) 640-4010

David Parnas

Professor

McMaster University

Communications Research Laboratory
McMaster University

Hamilton, Ontario

CANADA L8S 4K1

(416) 525-9140 x7353
parnas@triose.eng.mcmaster.ca

FAX: (416) 525-9140

Jerry Pasek

Lockeed Missile & Space
1111 Lockheed Way
Org:6930, Building 592
Sunnyvale, CA 94089-3504
(408) 756-5955

CMU/SEI-93-SR-4

27



Ragunathan Rajkumar
Member of the Technical Staff
Software Engineering Institute
Technology Division

Carnegie Mellon University
Pittsburgh, PA 15213

(412) 268-8707
rr@sei.cmu.edu

FAX: (412) 268-5758

Chuck Roark

Senior Member of the Technical Staff
Texas Instruments

Defense Systems & Electronics Group
P.O. Box 869305

M/S 8435

Plano, TX 75086

(214) 575-3537

roark@skvaxl.ti.com

Arthur Robinson

President

System Technology Development
Corporation

1035 Sterling Road

Suite 101

Herndon, VA 22070

(703) 478-0687

FAX: (703) 478-0689

Michael Rodbell
Booz-Allen & Hamilton, Inc.
891 Elkridge Landing Road
Linthicum, MD 21090

(410) 684-6249
rodbellm@asq8.ads.com
FAX: (410) 684-6475

Steven Rogers

MCC

3500 West Balcones Center Drive
Austin, TX 78759-6509

(512) 338-3691
srogers@mcc.com

John Rushby

SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025
(415) 859-5456
rushby@csi.sri.com

Richard Scalzo

Naval Surface Warfare Center
10901 New Hampshire Avenue
Silver Spring, MD 20903

(301) 394-2926
rscalzo@nswc-wo.nswc.navy.mil
FAX: (301) 394-1164

Richard Schlichting

Associate Professor

University of Arizona

Department of Computer Science
Tucson, AZ 85721

(602) 621-4324
rick@cs.arizona.edu

FAX: (602) 621-4246

Fred Schneider

Professor

Cornell University

Department of Computer Science
4130 Upson Hall

Ithica, NY 14853

(607) 255-9221
fos@cs.cornell.edu

Zary Segall

Carnegie Mellon University
Department of Elec. & Computer
Engineering

5000 Forbes Avenue

Pittsburgh, PA 15213

(412) 268-3736

2sdcs.cmu.edu

FAX: (412) 268-3890

28

CMU/SEI-93-SR-4



Bran Selic

Vice President R & D
ObjecTime Limited
340 March Road
Kanata

ONTARIO, CANADA
(613) 591-3435
bran@objectime.on.ca
FAX: (613) 591-3784

Daniel P. Siewiorek

Professor

Carnegie Mellon University
SCS and ECE

Wean Hall

Pittsburgh, PA 15213-3890
(412) 268-2570
arpanet:dps@a.gp.cs.cmu.edu
FAX: (412) 681-5739

Gunnar Skogsholm

AEG Westinghouse Transportation Systems
1501 Lebanon Church Road

Pittsburgh, PA 15236-1491

(412) 655-5824

James G. Smith

Program Manager Information Systems
Office of Naval Research

Code 1267

800 N. Quincy Street

Arlington, VA 22217-5000

(202) 696-4715
jgsmith@ltd.nrl.navy.mil

FAX: (202) 696-0308

Thomas Smith

Lead Scientist

MITRE Corporation

Navy & Info Systems Division
7525 Colshire Drive

MS 2645

McLean, VA 22102

(703) 883-7992
TSmith@mitre. ARPA

Alfred Z. Spector
Transarc Corporation
The Gulf Tower

707 Grant Street
Pittsburgh, PA 15219

Jay K. Strosnider

Asst. Professor - ECE
Carnegie Mellon University
ECE

Schenley Park

Pittsburgh, PA 15213
(412) 268-6927
jks@gauss.ece.cmu.edu

Steven Suddarth

United States Air Force
AFOSR-Boling AFB

110 Duncan Avenue

Suite B115

Washington, DC 20332-0001
(202) 767-4939

Neeraj Suri

Allied-Signal

9140 Old Annapolis Road
Columbia, MD 21045-1998
suri@batc.allied.com

CMU/SEI-93-SR-4

29



Joseph E. Tatem

Member of Technical Staff
Texas Instruments
Central Research Labs
3825 Furneaux Lane
Carrollton, TX 75007
(214) 995-0385
tatem@csc.ti.com

FAX: (214) 995-0304

Dolores R. Wallace

Computer Scientist

National Institute of Standards and
Technology

Division 872

Building 225/Room B266
Gaithersburg, MD 20899

(301) 975-3340
wallace@swe.ncsl.nist.gov

FAX: (301) 590-0932

Chris Walter

Allied-Signal

9140 Old Annapolis Road
Columbia, MD 21045-1998
chris@batc.allied.com

T.L. Wang

AT&T Bell Laboratories
363 Schuman Blvd.
Room 1U102
Naperville, IL 60566
(708) 713-4004
attma-hiexist!tlw

FAX: (708) 713-5398

Peter Wegner

Professor

Brown University

Department of Computer Science
Box 1910

Providence, Rl 02912

(401) 734-3387
pw@cs.brown.edu

FAX: (401) 863-7657

Charles B. Weinstock

Senior Member of the Technical Staff
Software Engineering Institute
Technology Division

Carnegie Mellon University
Pittsburgh, PA 15213-3890

(412) 268-7719
weinstock@sei.cmu.edu

FAX: (412) 268-5758

30

CMU/SEI-93-SR-4



UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE
N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
CMU/SEI-93-SR-04

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Software Engineering Institute

6b. OFFICE SYMBOL
(if applicable)

SEI

7a. NAME OF MONITORING ORGANIZATION
SEI Joint Program Office

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

8a. NAME OFFUNDING/SPONSORING
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESC/ENS

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
F1962890C0003

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT
ELEMENT NO NO.

63756E N/A

TASK
NO
N/A

WORK UNIT
NO.

N/A

11. TITLE (Include Security Classification)
Dependable Software Technology Exchange

12. PERSONAL AUTHOR(S)
Charles B. Weinstock and Fred B. Scheneider

13a. TYPE OF REPORT
Final

13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)
June 1993

15. PAGE COUNT

30 pp.

16. SUPPLEMENTARY NOTATION

17. COSATI CODES
FIELD GROUP

18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

dependable real-time software
Dependable Software Technology Exchange

19. ABSTRACT (continue on reverse if necessary and

dentify by block number)

On March 18 and 19, 1993, the Dependable Real-Time Software Project hosted a Dependable Soft-
ware Technology Exchange. The exchange, sponsored by the Air Force Space and Missile Systems
Center and the Office of Naval Research, brought together researchers and system developers, pro-
viding an opportunity for the researchers to learn the needs of the developers and for the developers
to learn about techniques being investigated by the researchers. This report summarizes what tran-

spired at the meeting.

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED . SAME AS RP'ID DTIC USERS.

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL
Thomas R. Miller, Lt Col, USAF

DD FORM 1473, 83 APR

EDITION of 1 JAN 73 IS OBSOLETE

22b. TELEPHONE NUMBER (include area code)
(412) 268-7631

22c. OFFICE SYMBOL
ESC/ENS (SEI)

UNLIMITED, UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS



IABSTRACT — continued from page one, block 19




	1 Introduction
	Industry
	Academia
	Government
	Other

	2 Formal Methods and Verification
	2.1 Technology Lecture: Dr. John Rushby
	2.2 Application Lecture: Dr. David L. Parnas
	2.3 Panel Discussion

	3 Requirements
	3.1 Application Lecture: Prof. John A. McDermid
	3.2 Application Lecture: Mr. Gerry E. Pasek
	3.3 Panel Discussion

	4 Operating System Support
	4.1 Technology Lecture: Dr. Keith Marzullo
	4.2 Application Lecture: Dr. Doug Jewett
	4.3 Panel Discussion

	5 Object-Oriented Programming and Design
	5.1 Technology Lecture: Dr. Gul Agha
	5.2 Application Lecture: Dr. T. L. Wang
	5.3 Panel Discussion

	6 Participants’ Comments
	Appendix A List of Participants


