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Executive Summary 

This report contains the proceedings from the First International Workshop on Reengineering 
Towards Product Lines (R2PL) 2005, which was held on November 10th, 2005 in Pittsburgh, 
Pennsylvania, USA and colocated with the Working Conference on Reverse Engineering 
(WCRE) 2005 and WICSA 2005�the Working Institute of Electrical and Electronics Engi-
neers/International Federation for Information Processing (IEEE/IFIP) Conference on Soft-
ware Architecture. This report consists of an overview of an invited presentation, a set of po-
sition papers, and details of the workshop�s outcomes. 
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Abstract 

This report contains the proceedings from the First International Workshop on Reengineering 
Towards Product Lines (R2PL) 2005, which was held on November 10th, 2005 in Pittsburgh, 
Pennsylvania, USA and colocated with the Working Conference on Reverse Engineering 
(WCRE) 2005 and WICSA 2005�the Working Institute of Electrical and Electronics Engi-
neers/International Federation for Information Processing (IEEE/IFIP) Conference on Soft-
ware Architecture. This report consists of an overview of an invited presentation, a set of po-
sition papers, and details of the workshop�s outcomes. 
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1 Background 

Today, software-intensive systems are developed more and more using product line ap-
proaches. These approaches require the definition of a product line architecture that implicitly 
or explicitly specifies some degree of variability. This variability is used to instantiate con-
crete software product instances. A product line approach not only implies reuse of architec-
ture-level design knowledge, it also facilitates reuse of implementation-level artifacts, such as 
source code and executable components. The use of software product lines can reduce the 
cost of developing new products significantly. 

In practice, software products are usually not developed from scratch. Software product lines 
are typically introduced following an evolutionary approach. First, a product line architecture 
is defined based on an initial set of products. Then, the scope of the product line is gradually 
extended by incorporating more existing and new products. Before a product line is extended, 
its suitability for incorporating more products needs to be evaluated, as well as the extent to 
which the new and currently included products conform to the product line architecture. 

For companies adopting a product line approach for their software development, the problem 
remains of how to reuse as much as possible of the existing legacy development artifacts. 
Reuse can be applied to the definition and implementation of a product line architecture and 
to the specifications and implementation of concrete product instances based on (legacy) 
software development artifacts. In this workshop [Graaf 05, R2PL 05], we discuss the use of 
reverse engineering and reengineering technology to solve the problems described above.  

The papers included in this report appear exactly as they did in the original presentations; 
they have not been edited further (aside from adjusting their section numbers for the new lay-
out in this report). 
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3 Invited Talk: Consolidating Software 
Variants into Software Product Lines—A 
Research Outline 

Rainer Koschke 
University of Bremen 

Germany 

Abstract 
Software product lines often arise from a set of variants of a common code basis that have 
been individually adapted to a particular requirement variability. This ad-hoc and unplanned 
approach causes serious maintenance problems. Migrating such variants into an organized 
software product line promises better maintainability. 

In this talk, I shall outline our 3-year research program aiming at consolidating software vari-
ants into software product lines. We are tackling the problem both at the source code level 
and architectural level. We are adapting and extending techniques, such as clone detection, 
feature location, protocol recovery, and reflexion-based reconstruction that we have so far 
applied only to individual systems.  
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4 Quality-Driven Conformance Checking in 
Product Line Architectures 

Femi G. Olumofin  
Vojislav B. Mi�ić 

University of Manitoba, Winnipeg,  
Manitoba, Canada

Abstract 

Software product lines are often devel-
oped through reengineering existing prod-
ucts and legacy applications. In such cases 
it is not uncommon for the behavioural 
and quality characteristics of individual 
product architectures to be inconsistent 
with those of the common architecture. 
Successful development of product lines 
dictate that those inconsistencies be re-
solved. The resolution process involves 
bringing the product architecture into 
structural, semantic and quality attribute-
related congruence with the common ar-
chitecture. Additional steps must be taken 
to ensure their continued conformance in 
order to facilitate subsequent maintenance 
and evolution activities. In this paper, we 
describe a simple design-time technique 
that aims to ensure that quality attribute 
responses of individual product architec-
tures are in conformance with those of the 
common architecture. The technique is 
based on the concept of variation points. 

4.1 Introduction 
For more than a decade, software architec-
ture has been steadily gaining importance 
as the most effective vehicle for the de-
velopment of complex software intensive 
systems. Architecture-based design offers 

unmatched flexibility and allows crucial 
insights to be obtained very early in the 
design cycle. Architectural abstraction 
avoids complex code level details while 
making component structures and interre-
lationships explicit. In this manner, the use 
of architecture facilitates human under-
standing of the system as well as reason-
ing about quality characteristics and at-
tributes. It should come as no surprise, 
then, that the reengineering of existing 
systems and legacy applications�
recovering their structure in order to de-
velop new, functionally equivalent but 
improved systems�often focuses on re-
covering or reconstructing the architecture 
in the form of a product. Most such efforts 
are motivated by changes in quality attrib-
utes, such as extendibility and maintain-
ability, rather than by the need for func-
tional changes and enhancements [3, 10]. 
For example, consider a system that has 
undergone several maintenance cycles 
which included functionality enhance-
ments. While the system itself may be in 
working order, the documentation com-
plexity and, possibly, inconsistency make 
further maintenance difficult. The first 
thought would be to leave the system as it 
is and reconstruct the documentation only; 
but a better way is to disregard the docu-
mentation and recover the system archi-
tecture from the system itself. Oftentimes, 
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architecture recovery is the first step to-
wards reengineering the entire system. 

All of the aforementioned advantages are 
even more important in the case of soft-
ware product families or product lines [5]: 
sets of related yet distinct software inten-
sive systems developed from the same 
base architecture. In the product line ap-
proach, requirements or features common 
to all the products are used as the basis for 
the so-called core architecture, or CA. 
Requirements which are specific to some 
of the products only, but not all of them, 
are represented as variation points in the 
CA. (It is common to refer to the two sets 
of requirements as commonality, or com-
monalities, and variability, respectively.) 
Individual products are then developed to 
address the specific sets of requirements. 
In one approach, individual products are 
directly developed from the CA by replac-
ing the variation points with product-
specific component instances, called vari-
ants. This approach is often used in sim-
pler cases�i.e., when the number of indi-
vidual products and/or variation points is 
not high. 

In an alternative approach, the CA is used 
to instantiate a number of separate product 
architectures or PAs, which correspond to 
individual products. The PA is created 
from the CA by exercising the built-in 
variation points. The actual products are 
then developed from the corresponding 
PAs. This dual form of representation of 
the architecture (i.e., CA and PA) is typi-
cal of the software product lines [5, 6].  

Yet more problems arise when the product 
line development path involves the reuse 
of existing products. In most cases, exist-
ing products and legacy systems were 

built with little care (or none at all) for 
consistency and quality, thus encumbering 
the identification of commonalities and 
variability required for the product line 
approach. Once identified and specified, 
the CA and the individual PAs may differ 
significantly, in particular with regard to 
consistency and prioritization of quality 
attributes. Any inconsistencies and differ-
ences in the architectures recovered from 
the existing system must be resolved in 
the product line architectures�successful 
development of the reengineered system is 
contingent upon the design of both CA 
and PAs being quality attribute-driven and 
conflict-free. 

In this paper, we present a design-time 
technique for maintaining conformance 
between the reengineered and evolving 
CA and individual product architectures. 
The technique is based on the concept of 
variation points, which are exploited in a 
systematic fashion in order to constrain 
the individual PAs to be consistent with 
the CA. While the approach described is 
particularly suited to reengineering prod-
uct lines, its generality makes it also ap-
plicable for validation of product line ar-
chitectures developed �from scratch� as 
well as those developed using the revolu-
tionary approach [2]. The paper is organ-
ized as follows. In Section 4.2, we briefly 
describe the challenges of ensuring quality 
conformance between the CA and the PAs, 
and discuss some earlier work that touches 
this issue. Section 4.3 introduces our tech-
nique based on variation points, together 
with a small example that illustrates the 
use of the technique. Finally, Section 4.4 
summarizes the paper and highlights some 
open issues for further work. 
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4.2 Challenges and Related 
Work 

As noted above, the product line architec-
ture consists of a core architecture (CA) 
which is used as the basis for developing a 
number of individual product architectures 
(PAs). The CA is necessarily underspeci-
fied, while the individual PAs must be 
fully specified since the actual products 
will be derived from them. However, the 
set of quality attributes for a given PA may 
significantly differ from that of the under-
lying CA, and even priorities of different 
attributes may differ. To consider the in-
terplay between the quality attributes of 
individual PAs and those of the CA, we 
need to start by considering the CA. The 
quality attribute goals in the CA are ad-
dressed through the so-called sensitivity 
and tradeoff points [1, 4]. A sensitivity 
point is an area of the architecture which 
determines the responses of at least one 
quality attributes. A tradeoff point is an 
area of the architecture which determines 
the responses of two or more quality at-
tributes, usually in opposing ways. (Note 
that each tradeoff point is a sensitivity 
point by default.) 

The problem lies, of course, in that the 
individual PAs have quality attributes and 
priorities of their own. Satisfying those 
attributes may cause conflict with the de-
cisions made in the CA, thus compromis-
ing the quality attributes that should be 
common to both the CA and all PAs. 
Namely, the changes that fully specify an 
underspecified CA, and thus instantiate 
the particular PA, are made in an area with 
a variation point�the requirement spe-
cific to the PA but not present in the CA 
itself. If the variation point overlaps with a 
sensitivity point of the original CA, the 

corresponding quality attribute may be 
affected. If the variation point overlaps 
with a tradeoff point, several of the origi-
nal attributes will be affected. Now, each 
of the individual PAs instantiates a par-
ticular variation point from the underlying 
CA in its own fashion. As a result, con-
formance checking between the CA and 
individual PAs is a complex process, and 
the problem is not made any easier by the 
fact that there may be quite a few PAs de-
rived from a single CA. 

Several authors have identified this prob-
lem in the context of architecture reengi-
neering. In most cases, such reengineering 
is based on updating the �as designed� ar-
chitecture of a system from the �as-built� 
architecture reconstructed by reverse en-
gineering. Once the architectural descrip-
tion of the existing system is accurately 
specified, it can be modified in order to 
fulfill the emergent quality goals of the 
new target system. 

Bengtsson and Bosch present an iterative, 
scenario-based reengineering method for 
transforming software architectures to 
provide desired quality attributes re-
sponses [3]. 

QADSAR [13] is a quality attributes sce-
nario driven reverse engineering method 
for architectures of existing systems, 
whose tool support is the ARMIN. The 
goal of a QADSAR reconstruction is to 
provide architectural description and in-
formation on architectural drivers to en-
able qualitative architectural analysis. 

Stoermer et al. [12] provides a codifica-
tion of six practice patterns for architec-
tural reverse engineering. These patterns 
are described with a name, context of ap-
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plication, concise statement of problem in 
the context, an example illustration in an 
industrial context, and the expected solu-
tion/delivery from applying the pattern. 
The paper also describes some common 
approaches to reverse engineering, includ-
ing tool supported approaches. The suit-
ability of different approaches (and the 
accompanying tools) for use in the prac-
tice patterns is also discussed. The result 
of the analysis revealed the lack of ade-
quate coverage for the practice pattern by 
the existing approaches. 

Finally, Tahvildari et al. [14] proposed a 
quality-driven software reengineering 
framework similar to that of Bengtsson 
and Bosch [3]. This framework is based 
on the use of desirable target-system 
qualities to define and guide the reengi-
neering. According to the Stoermer�s prac-
tice pattern catalogue [12], this framework 
may be categorized into the quality attrib-
ute changes practice pattern. In this pat-
tern, legacy systems are reengineered to 
improve some desired quality attributes 
responses, such as performance or main-
tainability. 

4.3 Variation Point Concepts 
Usage 

In order to ensure quality congruence be-
tween the common architecture and indi-
vidual product architectures, both the ex-
isting and the emerging ones, we make use 
of the concept of variation points. Varia-
tion points are architectural placeholders 
for augmenting the CA with behavioural 
extensions. They are instantiated as con-
crete variants in individual product archi-
tectures. The sensitivity points are those 
architectural decisions that affect one or 
more quality goals [8]. For example, the 

encryption of sensitive message exchange 
between two components may improve 
the security quality of a software-intensive 
system. The architectural decision to in-
troduce cryptographic components be-
tween the two communicating compo-
nents is a sensitivity point intended to 
implement security insofar as message 
exchange between the two components is 
concerned. 

Architectural decisions made in the proc-
ess of defining the CA, and subsequently 
found to be sensitivity points to one or 
more quality attributes, continue to remain 
valid for individual product architectures. 
A possible exception would be the case in 
which the creation of a PA involves the 
addition of component variants to those 
parts of the architecture which interact 
with the sensitivity points. In the example 
given above, consider adding a third com-
ponent to periodically receive exception 
messages from both components. If such 
notification messages to this third compo-
nent are not similarly encrypted, the secu-
rity of the system may be jeopardized. 

An area of the architecture, which is a 
sensitivity point and which contains at 
least one variation point, will be referred 
to as an evolvability point. Such varia-
tion/evolvability points deserve special 
treatment, as they have the potential to 
alter (and, possibly, damage) the quality of 
the architecture(s). In order to defuse that 
potential, each evolvability point in the 
CA is accompanied by suitable guidelines 
to constrain or guide subsequent PA de-
sign decisions and conformance checking. 
Thus, the developers are warned against 
making design decisions in a PA that 
could invalidate the quality goals already 
identified in the CA.

10  CMU/SEI-2006-SR-002 



 

Figure 4-1: Example product line architecture adapted from [7] 

(Unshaded boxes represent mandatory components; vertically striped boxes represent alternative com-
ponents; shaded boxes represent optional components.) 

As the CA changes, the evolvability con-
straints (or quality attributes conformance 
constraints) are updated accordingly to 
guide future design of the PAs. The 
evolvability points also help simplify 
maintenance because the architects would 
be rightly guided to those critical design 
decisions that control quality attribute re-
sponses. 

As an example, consider the architecture 
shown in Figure 4-1, which is made up of 
three complex (or composite) components 
CC1, CC2, and CC3. Each of these com-
ponents is in turn made up of a number of 
primitive components. In the product line 
approach, those primitive components can 
be identified as mandatory (or common), 
optional, or alternative. Mandatory com-
ponents, by definition, are fully specified 
in the CA and are always present in any 
PA. Optional components are underspeci-
fied as variation points in the CA; they 
can become fully specified as components 
(or variants) in a given PA, or they will 
not be present at all. Finally, alternative 
components are underspecified as varia-
tion points in the CA but must become 

fully specified into some component (or 
variant) in the PA. 

In the definition of this architecture, de-
sign decisions that interact with one or 
more quality attributes (i.e., sensitivity 
points) are assumed to be located in some 
of the components. Let�s assume that per-
formance and availability are the two 
quality attribute goals of the highest prior-
ity. We shall consider two scenarios in 
relation to the architecture illustrated in 
Figure 4-1: in the first scenario, the architec-
ture is taken to be a product architecture 
(PA), while in the second, it is taken to be 
the core architecture (CA). 

Scenario 1: architecture is a PA 
If the architecture in Figure 4-1 is a prod-
uct architecture, then the shaded and un-
shaded boxes are fully specified architec-
tural components (i.e., primitive 
components). In this scenario, we will 
consider two possibilities concerning the 
nature of the sensitivity points. 

In one case, let the sensitivity points be 
located in the mandatory components 
whose design decisions are preset in the 
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CA. For example, the sensitivity interact-
ing with performance is localized in PC23, 
while that of availability is localized in 
PC24. Since both sensitivity points are 
localized in mandatory components, each 
individual PA inherits those sensitivity 
points intact. With them, performance and 
availability qualities are inherited from the 
CA. As a result, the availability and per-
formance quality will always be met in 
this PA. In fact, every product built from 
that CA is guaranteed to provide the preset 
quality responses for performance and 
availability. 

Alternatively, one or both quality attrib-
utes may be localized in an optional or 
alternative component. Let us assume that 
the performance quality of this PA is de-
termined through the appropriate design 
decisions of CC2. Further, assume those 
design decisions are jointly localized in 
components PC24 (mandatory) and PC21 
(alternative). The design decisions of 
PC24 are determined during the CA defi-
nition, while those of PC21 are deter-
mined in this particular PA definition. If 
the correct guarantees for performance are 
provided through PC24, but not through 
PC21, the desired performance response 
may not be guaranteed. To avoid this, the 
PA must correctly specialize PC21 from 
its variation point definition in the CA; to 
this end, relevant design decisions need to 
be guided or constrained in an appropriate 
way, as described below. 

Scenario 2: architecture is the CA 
In this second scenario, let us assume that 
the architecture in Figure 4-1 is the CA, in 
which case only the white boxes are fully 
specified, while the shaded and striped 
ones correspond to variation points of ei-

ther optional or alternative type. As in the 
previous scenario, there are two possible 
cases to consider. 

If all the sensitivity points in this architec-
ture are located in mandatory components 
(which should be the goal of every prod-
uct line design), then the CA design deci-
sions will address the common quality of 
all products. 

However, the above case is not always 
what is obtained in reality. Oftentimes, 
there are two or more sensitivity point 
localized in both areas that has been fully 
are not fully specified (variation point). 
The architects specified (e.g., mandatory 
components) and areas that can only de-
sign to fulfill the quality goal of the man-
datory component and expect product ar-
chitects to fulfill their part in designing the 
variants for the appropriate quality re-
sponse. If the teams are different, this may 
be hard to do without duplication of ef-
forts. 

To ensure conformance of the PA design 
decisions to those of the CA, in order to 
fulfill a common quality goal, an evolva-
bility point and evolvability constraint pair 
are needed. It is not every variation point 
in the CA that is an evolvability point, but 
only those that interact with the sensitivity 
point. The designers of the CA will ac-
company such evolvability points with 
constraints/guidelines to help product ar-
chitects in their work. 

Evolvability constraint is a statement 
about an evolvability point that guides 
product architecture creation in order to 
fulfill desired quality goals. Just like every 
other form of constraints, it may be de-
scribed using the syntax and semantics of 
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an ADL or other constraint language. The 
constraint may restrict variant components 
in their interaction protocol, internal 
states, architectural styles, implementation 
or usage [9] in order to fulfill some quality 
goals. 

The combined use of evolvability point 
and evolvability constraints ensures that 
PAs remains in conformance with the CA. 
The following is a description of an 
evolvability point (EP) and its correspond-
ing evolvability constraint (EC), as de-
fined in a recent case study of a product 
line called btLine, in the domain of mobile 
and electronic payment systems. 

EP: The response time of the btLine prod-
uct to tasks delegated to it is dependent on 
whether it is interfaced directly to the leg-
acy and back office systems of its host 
organisation or not. The fact that design 
decision on product integration varies 
from product to product makes it an 
evolvability point. 

EC: To enhance response time for transac-
tion involving a product, external data 
request from within the product (e.g., bal-
ance of a customer account in the host 
banking system) must not involve compli-
cated and time-consuming queries. Alter-
natively, an external integration mecha-
nism may be deployed to synchronize 
account details between the bank systems 
and their local btLine product; of course 
with guidance from the btLine team. Bet-
ter still, outbound request from a btLine 
product to external systems may be routed 
to a low-traffic data source or business 
component for improved response time. 

4.4 Conclusion and Open Is-
sues 

We highlight the problem context and the 
challenges of ensuring quality attributes 
conformance between a product line 
common CA and its product PAs. Subse-
quently, we described a technique for im-
plementing this form of conformance dur-
ing product development and 
maintenance. The technique focuses on 
identifying variation points that interact 
with sensitivity points. Those points, re-
ferred to as evolvability points, are ac-
companied with suitable guidelines and/or 
constraints. The constraints inhibit any PA 
design decisions from degrading the preset 
quality attributes� responses of the CA. 
Adhering to the constraints and guidelines 
would ensure that the quality attributes of 
the PA are in conformance with those of 
the CA. 

The main contributions of this approach 
include its architecture-centric focus for 
reasoning about quality attributes confor-
mance of the product architectures to the 
CA and systematic use of variation points 
to constrain product architectures from 
deviating from the preset qualities of the 
CA. Both of these should facilitate under-
standing of the interactions, conflicts, and 
tradeoffs between quality attributes of dif-
ferent forms of architecture encountered in 
product line development. 

Much of the issues relating to quality at-
tributes conformance between the CA and 
the PAs are still open. First and foremost, 
considerable advances have been made 
regarding architecture recovery from ex-
isting systems�but extraction of CA and 
PAs from such systems is still an open 
area for research. 
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Second, there is need for characterizing 
those areas of the CA that do not feature 
any variation points, but that have the po-
tential of determining qualities both in the 
CA and the PAs. 

Other open questions include: What ap-
proach can be used to resolve quality at-
tributes conflicts between the CA and PA? 
How responsive is the current result to 
product line development in the evolu-
tionary approach involving reverse engi-
neering or reengineering? What is the im-
pact of the CA evolving in terms of 
functionality and quality on the quality 
responses of the product architectures? 
How can software product line specialists 
utilize the result of the characterizations of 
conformance checks between a product 
line�s CA and PAs for checking confor-
mance of the code-dependent (as-built) 
architecture to the documented (as-
designed) PAs? Finally, while tool support 
is always a plus, the exact details of sup-
port for quality conformance checking and 
traceability in a product line context have 
yet to be worked out. 

Some of these issues will be addressed in 
our future research. 
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Abstract 
In this position paper we investigate the 
use of dynamic analysis to determine 
commonalities and variation points as a 
first step to the migration of similar but 
separate versions of a software system 
into an integrated product line. The ap-
proach detects forks and merges in differ-
ent execution traces as an indication of 
variation points. It is illustrated by a sim-
ple implementation, which is applied to an 
academic example. Finally we formulate a 
number of research issues that need to be 
investigated further. 

5.1 Introduction 
Already many successes have been re-
ported with respect to the use of product 
line approaches in software development 
organizations [1]. A company that mi-
grates to a product line approach must 
define a product line architecture that in-
corporates the design decisions common 
to all product line members. Additionally, 
the variability between the different prod-
uct line members is to be made as explicit 
as possible. 

In practice, the idea of following a product 
line approach can be applied in various 
levels of detail. For example, one can de-

fine a reference architecture which speci-
fies all commonalities between products 
but does not make the variation points 
explicit. As such, we can distinguish be-
tween various maturity levels in a product 
line deployment [2]. This is also illus-
trated in an industrial example discussed 
by Graaf et al. [3]. 

A typical situation in which the adoption 
of more product line concepts, and thereby 
raising the maturity level, is beneficial, is 
when a company has developed several 
versions of a product for different custom-
ers. All these versions are extended in one 
or more ways with respect to some origi-
nal system that was initially developed. At 
some point a customer comes along that 
requires some of the extensions that were 
already implemented, but for different 
versions of the product, and thus their im-
plementations reside in different develop-
ment branches. As more versions are be-
ing developed, such a situation becomes 
more and more likely. At that point these 
extensions should be reengineered into 
clearly defined, configurable features by 
making variation points explicit, ideally 
enabling late binding. Domain and appli-
cation engineering methods have been 
proposed to solve this problem. Typically 
these approaches are applied in a context 
where a product line is developed from 
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scratch, and do not take existing source 
code into account. However, new product 
lines are typically not developed from 
scratch, but evolve from a set of similar, 
traditionally developed products. Fur-
thermore, often many design decisions are 
only explicit in the source code. In this 
paper we consider the problem of detect-
ing forks and merges in the execution 
traces generated by different versions of a 
system so as to identify its variation 
points. The remainder of this paper is or-
ganized as follows. Section 5.2 discusses 
some related work. In Section 5.3 the ba-
sic idea of how execution traces can help 
in identifying variation points is pre-
sented. Section 5.4 explains a simple im-
plementation of this idea that detects forks 
and merges in execution traces. This im-
plementation is applied to a simple exam-
ple in Section 5.5. The paper is concluded 
with some discussions and directions for 
future work in Section 5.6. 

5.2  Related Work 
Van Gurp et al. [4] provide an excellent 
introduction to the concepts of variability 
in software product lines and discuss how 
variability can be documented using fea-
ture graphs. However, they do not discuss 
in much detail how commonalities and 
variation points can be discovered. 

Approaches for domain engineering aim at 
identifying commonalities and variabili-
ties for the definition of product line archi-
tectures. Scope, variability, and common-
ality (SCV) analysis discussed by Coplien 
et al. [5] provides a systematic way of 
thinking about commonality and variabil-
ity. The same work also introduces FAST, 
an approach for domain engineering based 
on SCV-thinking. Other domain engineer-

ing approaches are FODA [6] and FORM 
[7]. Typically these approaches are based 
on the analysis of high-level information, 
such as requirements to identify variabili-
ties and commonalities. 

Execution traces have been used for many 
purposes in the program analysis commu-
nity. However, in only a few cases traces 
from different programs were compared to 
each other. Much of the work is concerned 
with identifying which components are 
required for a specific feature or set of 
features. 

The software reconnaissance technique 
proposed by Wilde and Scully [8] com-
pares execution traces of different sets of 
scenarios to identify which components 
are required for a specific feature. 

Eisenbarth et al. [9] apply formal concept 
analysis to execution traces that each ex-
hibit a different feature, so as to identify 
feature-component relations. As such they 
also investigate the commonalities and 
variabilities between different features in 
terms of the components required to im-
plement them. 

These approaches compare different exe-
cution traces of the same program. There-
fore, they rely on the assumption that the 
exhibition of a certain feature can be con-
trolled by the user, which is not always the 
case. 

5.3 Tracing and Variation 
Points 

Suppose we have two branches of a soft-
ware system, one being the base system 
and the other a variant with one or more 
additional features. Detection of variation 
points using execution traces is based on 

18  CMU/SEI-2006-SR-002 



the idea illustrated by Figure 5-1. In this 
graph, we have projected one trace on top 
of the other. Each node in the graph de-
notes the usage of a component for the 
execution of a scenario. The arcs indicate 
the order in which the components were 
used. The fork in Figure 5-1 can be con-
sidered the variation point. All behavior 
executed up to the split is common behav-
ior and the components that are used after 
the split are feature-specific. 

The components considered in an execu-
tion trace are units of source code. Differ-
ent levels of granularity are possible: 
statement, method, class, package or other 
abstractions. 

Execution traces are obtained by execut-
ing some scenario. Comparison of execu-
tion traces is only meaningful when the 
corresponding scenarios are either the 
same or very similar. In this context a sce-

nario is defined by the input offered to the 
system. We do not consider the system�s 
response as part of the scenario, as the 
intention is to execute scenarios on differ-
ent systems that yield different responses. 

For the localization of variation points in 
the implementation that correspond with 
the specific features, we need two execu-
tion traces: one in which the extension is 
exhibited and one in which it is not. De-
pending on the feature, it may or may not 
be possible for the two scenarios that gen-
erate these traces to be identical. In case 
the exhibition of a certain feature depends 
on the input, different scenarios are 
needed. This can be the case, for example, 
when the feature is only activated when a 
user clicks a certain GUI button. If activa-
tion does not depend on the scenario, we 
compare execution traces generated by 
various versions of a system. 

 

Figure 5-1: Forks and merges in an execution trace 

The underlying assumption in our ap-
proach is that both execution traces will 
largely resemble each other and the asso-
ciated graphs will have most nodes in 

common, up to the point where the addi-
tional feature is exhibited (Figure 5-1). 
Automatic detection of such a fork is triv-
ial: we take the node before the first de-
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viation in the two execution traces. The 
detection of a merge, however, is more 
involved. Simply detecting the first pair of 
nodes that are identical after the fork 
might not be meaningful. Usage of a spe-
cific component in both traces does not 
necessarily imply that the same behavior 
was demonstrated from a user�s perspec-
tive. The next section will describe a solu-
tion to this issue using an evolving com-
parison window. 

The generation of traces that can be com-
pared meaningfully is even more compli-
cated if non-deterministic behavior is con-
sidered (e.g., in games). 

5.4 Approach 
In this section, we first present the running 
example that is used in the remainder of 
this paper to illustrate our approach for the 
identification of variation points using 
execution traces. Next, we explain how 
we obtain those traces and finally how 
they are processed. 

5.4.1 Running example: Pacman 
The system we use as a running example 
in this paper is a java-based game called 
Pacman. With a little imagination, we can 
regard Pacman as a simple example of a 
software product line. 

Pacman is a modest software system con-
sisting of 20 java classes and approxi-
mately 1000 lines of code. Like in a soft-
ware product line there exist several 
variants of this system, each with distinct 
added features. 

For example, in the reference system there 
is one hardcoded map being loaded when-
ever a game is played. In another version, 
which can be considered a member in our 

product line, functionality has been added 
(in a separate class) to read user-defined 
maps from a file. Yet another version of 
the system features an additional type of 
entities on the map with which the player 
and the monsters can interact. 

5.4.2 Dynamic analysis using as-
pects 

We obtain execution traces by instrument-
ing the system with trace statements. We 
add these trace statements by means of 
aspect-oriented programming. Aspect-
oriented programming is extremely suit-
able for implementing a crosscutting con-
cern such as tracing since it allows us to 
add code at various program locations 
with limited effort. We use AspectJ to 
weave additional code in the system such 
that, whenever a method is called, a mes-
sage is printed to a log file. This message 
contains both the method being called and 
the class to which this method belongs.  

Now, we can generate traces containing 
the methods called during execution. De-
pending on the desired level of granularity 
of variation point detection, we may need 
to further process this trace, e.g. to gener-
ate a trace on the class level. 

Alternatively, one could use the Java Vir-
tual Machine Profiler Interface (JVMPI) 
to collect traces from a system, as is done, 
for example, by Reiss and Renieris [10]. 

5.4.3 Determining variation points 
When dealing with software product lines, 
each of the product line members gener-
ally contains a set of features. Typically, 
the members have some of these features 
in common whereas others are product-
specific. If an architect is to combine two 
or more products, the components respon-
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sible for the latter type of features�the 
variation points�must be determined. 

5. If the checksums still do not match, 
shift the reference window down one 
method. Repeat the previous step, but 
repeat the current step a maximum of 
M times. 

We propose a method in which we com-
pare the traces generated by two versions 
of a similar system to discover variation 
points. On the one hand we have a trace 
generated by the reference system, called 
the reference trace, and on the other hand 
a trace generated by an extended version, 
called the feature trace. These traces are 
to be obtained by running both systems 
using similar scenarios: ideally, the latter 
differs from the former only in that the 
specific extension is exhibited. 

6. If there is still no match, either M is 
too small or the branches never 
merge, i.e. the systems never again 
exhibit the same behavior at the 
method level. 

The values for N and M are variable and 
depend on several factors. In assigning 
suitable values to these variables, impor-
tant factors include the size of the system 
and the predicted impact (in terms of the 
amount of associated method calls) of the 
feature at hand. We expect the architect to 
have sufficient knowledge of the system at 
hand to choose appropriate values for M 
and N. 

As mentioned in Section 5.3, branches are 
not necessarily considered merged as soon 
as the two traces once again have one 
method in common. For this reason, we 
require the traces to have multiple con-
secutive methods in common. 

The algorithm being applied reads as fol-
lows: The branching behavior derived by the 

algorithm can be visualized by presenting 
contexts (of predefined sizes) of all fork-
ing and merging points in the traces to the 
user. By visualizing and inspecting the 
branching behavior, the architect has a 
way of identifying which methods and 
classes account for member-specific fea-
tures. Having approximated these varia-
tion points, it takes much less effort to 
merge the two versions than if the entire 
systems had required close inspection. 

1. Compare the traces of the reference 
system and the product line member 
line by line. 

2. If the two methods at hand differ, the 
traces have split into branches. Cre-
ate an N-size checksum of the current 
reference method and the next N-1 
methods (henceforth, we will call this 
the reference window). 

3. Next, create a checksum of the up-
coming N methods in the feature 
trace, thus creating the feature win-
dow. 

5.5 Preliminary Results 
To illustrate the method presented in the 
previous section we have conducted some 
experiments on the Pacman system de-
scribed earlier. 

4. If the checksums are equal, the 
branches are considered to have 
merged. If they do not match, shift 
the feature window down one 
method, thus creating a new feature 
checksum. Repeat this step a maxi-
mum of M times. 

In this section, we will highlight the ex-
periment involving Pacman�s reference 
system and the modified version featuring 
separate map handling. 
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Figure 5-2:  A fork and its context in the trace.

5.5.1 Generating traces 
Choosing appropriate scenarios is rela-
tively easy in this case, as loading maps is 
part of the initialization phase and there-
fore not subject to human intervention. It 
is simply a matter of running both pro-
grams and exiting without actually having 
played game. 

Part of a method trace as generated by use 
of the aspect mentioned in Section 5.2 is 
depicted in Listing 5-1.  

Incorporation of the actual stack depths is 
not part of the results discussed here and 
is subject to future research. 
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Listing 5-1: Part of a method trace

5.5.2 Branching behavior 
We are now ready to compare the traces 
by using the algorithm described in Sec-
tion 5.4.3. However, we need to define 
some parameters first. 

Since we are considering a small system 
and a not so complicated feature, we do 
not expect branches to be very long, e.g. 
perhaps tens of methods at most. For the 
same reason we will set the checksum size 
at a relatively small value, e.g., 5 methods. 
Finally, the size of the context being pre-
sented to the user is set to 7. 

The results can be viewed in Figure 5-2 
and Figure 5-3. Figure 5-2 depicts the 
context of the point where the feature 
trace started deviating from the reference 

trace. One can easily see that whereas in 
the original version a local method is in-
voked to get a map, the other version in-
stantiates a whole new class that deals 
with the map handling. 

Figure 5-3 illustrates that not many meth-
ods calls later, the branches have merged. 
From here on, the traces are apparently 
similar.  

Judging by the visualizations�if pre-
sented at the correct part and, if desired, 
migrate the components associated ab-
straction level�an architect can easily 
isolate the feature specific with this varia-
tion point towards other existing product 
line members. 
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Figure 5-3: A merge and its context in the trace.

5.6 Discussion and Future 
Work 

Effort. To repeat our experiment on a dif-
ferent subject system, one can apply the 
following process: 

1. Perform a quick (1-hour) exploration 
of the system to gain some insight in 
its structure. This provides an initial 
estimate for the values of the M and 
N parameters. 

2. Determine appropriate scenario(s) 
that exercise the desired features. 

3. Add tracing instrumentation to the 
system, e.g. by weaving aspects. 

4. Collect execution traces for given 
scenarios and (automatically) com-
pare them to find variation points. 

5. If desired, repeat step 4 using alterna-
tive values for M and N to fine-tune 
the results. 

Precision. In the current implementation 
we more or less assume that a merge point 
is not located arbitrarily far from a fork. 
Hence, we introduced the M-parameter in 
our detection algorithm. This assumption 
is valid because we require that one ver-
sion is a strict extension over the other. 

If we abandon this requirement, we would 
have to search both execution traces all 
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the way to the end to find potential 
merges. The complexity of this search is 
O(n2), which could be problematic for sys-
tems of realistic size, involving traces 
consisting of millions of components. This 
is why we advocate a sensible value for 
M: a value defined by the architect, based 
on how much impact he expects the par-
ticular feature to have on the given trace 
granularity level (method level in the case 
presented here). In the future we may be 
able to automatically determine optimal 
values for specific systems. 

Future work. To render identification of 
variation points feasible in the case of 
complex systems, we need more refined 
techniques. One approach is to take into 
account not only the methods being called 
but also their actual parameters. This 
would require a straightforward extension 
of the tracing instrumentation. 

Another option is to also look at the stack 
depth or maybe even the complete stack 
whenever a method is called. Both these 
extensions to our technique potentially 
allow for the detection of extra forks, and 
increase the probability that an identical 
entry in the two call traces indeed implies 
that the two versions were again exhibit-
ing common behavior, from a user�s per-
spective. Probably this also means that the 
N-parameter can be smaller, which in turn 
reduces the cost of the checksum calcula-
tions. 

An alternative approach in dealing with 
systems of realistic size would be to not 
directly analyze the method trace, but to 
first lift its elements to higher levels of 
abstraction, e.g., from methods to classes 
or packages. To this end, we would first 
have to extract information with respect to 

the structural decomposition of the sys-
tem. 

Finally, once a feature is localized a next 
step is to modularize the code that imple-
ments it. To provide guidelines for this 
step we will investigate whether the num-
ber of times two traces intersect (in terms 
of identical methods being called) before 
the same behavior is exhibited (as defined 
by the N-parameter) could be a measure 
for the degree of �crosscuttingness� of a 
feature, and hence for the effort required 
to reengineer such a feature into a reusable 
component. 
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Abstract 
Domain-specific reuse is seen as a promis-
ing way to increase the value of reuse. 
This paper reports our ongoing work 
aimed at identifying domain-specific 
software components from an existing 
system to achieve large-scale reuse. The 
fundamental motivation of the proposed 
method is to reduce the amount of source 
code the human-expert has to explore in 
order to identify domain-specific candi-
dates. The basic premise assumed by this 
method is that reusable components have 
certain quality attributes like functional 
usefulness, readability, testability, etc., and 
which can be measured to certain extent 
with help of metrics. 

                                                 

1 This work is partially funded by German ministry under EUREKA 2023/ITEA-ip00009 ’FAct 
based Maturity through Institutionalization Lessons-learned an Involved Exploitation of 
System- family engineering’ (FAMILIES). 

Keywords: domain engineering, reuse, 
reverse engineering, metrics, software 
product lines 

6.1 Introduction 
Software reuse is considered as a promis-
ing way of developing systems. It helps an 
organization to improve their productivity 
and the quality. Software reuse can be ap-
plied to any life cycle product, not only to 
source code. Jones [10] identifies ten po-
tentially reusable aspects of software pro-
jects as shown in Table 6-1. (Ordering of 
aspects in Table 6-2 is not with respect to 
priority.) 

1.  architecture 6.   estimates 

2.  source code 7.   human interfaces 

3.  data 8.   plans 

4.  design 9.   requirements 

5.  documentation 10. test cases 

Table 6-1: Reusable Aspects of Software 
Projects 

However, in practice, granularity of reuse 
is small. That is, very often, utility librar-
ies (for e.g., string, math libraries) are re-
used across products. Value of such a re-
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use is quite limited [8]. In a mature do-
main, most of the required solutions al-
ready exist in current implementations. It 
has been argued in [13] that there are three 
categories of software that make up a sys-
tem: 

• Utility components contribute to 20%  
of whole application size. 

• Domain-specific components con-
tribute to 65% of whole application 
size. 

• Application-specific components 
contribute to 15% of whole applica-
tion size. 

The distribution shows that reuse of do-
main-specific components from an exist-
ing system has the most potential in reduc-
ing the development cost and maintenance 
effort [1]. The identification of domain-
specific components is not an obvious task 
since systems are typically developed for 
a single customer. Designers and engi-
neers thereby do not distinguish between 
domain-specific and application-specific 
components [9] as it is explicitly done in 
product line engineering. So these compo-
nents are not organized separately. Hence, 
expert effort has to be spent to make these 
components apparent. 

We believe that reverse engineering can 
help to identify domain-specific compo-
nents and therefore to support the reuse 
activities by reducing the expert effort in 

searching for component candidates, 
which is a problem especially for large 
systems. Our approach helps experts to 
semi-automatically identify domain-
specific components. From here onwards, 
we limit our discussions only to object-
oriented (OO) systems. And consequently, 
the term component refers to the collec-
tion of functionally related classes with 
specification of required and provided 
interfaces. 

The fundamental motivation of the pro-
posed approach is to reduce the amount of 
data the human expert has to review in 
order to identify domain-specific classes. 
The basic premise assumed by this 
method is that reusable classes have cer-
tain quality attributes like functional use-
fulness, readability, testability, etc. These 
quality attributes are mapped on metrics 
(e.g., by using the GQM method). The 
method classifies the domain-specific 
classes based on the metrics derived. The 
expert has to validate only a few number 
of proposed candidates, which, if ac-
cepted, become then the foundation of 
reusable components (see Figure 6-1). 

The remainder of the paper is organized as 
follows: Section 6-2 explains the factors 
affecting reusability. Section 6-3 presents 
component extraction method. Section 6-4 
presents the related work, while Section 6-
5 concludes this work.
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Figure 6-1: Process model for component extraction

6.2 Approach 
6.2.1 Terminology 
Forward Engineer: An engineer who 
wants to reuse existing components of the 
same or similar domains to reduce devel-
opment effort. 

Domain Expert: A specialist with de-
tailed knowledge of the domain who is 
also familiar with the architecture of the 
system where the existing components 
reside. 

Reverse Engineer: A person having un-
derstanding of OO metrics and being ca-
pable to analyze an existing system (no 
need to have expertise in the domain). 

6.2.2 Factors Affecting Reusability 
Figure 6-2 shows a �fishbone diagram� 
that represents the factors affecting reus-
ability. It can be observed from this figure 
that reusability depends on Usefulness, 
Costs and Quality. Each of these factors is 
explained below. 

Usefulness 
To be reused, a prerequisite is that the 
component implements functionality that 
is useful for the new system. It is ex-
tremely hard to decide in an automated 
way whether or not a component will be 
useful in a new system, since this decision 
is based on domain knowledge and the 
requirements of the new system. However, 
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an indirect automatable measure of use-
fulness was developed to measure the re-
usability of the existing component within 
the analyzed system itself (i.e., its origin). 
The assumption is that the highly used 
components within a system are a good 
candidate for reuse in a new context. 

There is also a limitation because of our 
assumption: We tend to exclude those do-
main-specific components that are not 
frequently used in the existing system. It 
is important to note that the domain expert 
is crucial to decide about the usefulness of 
a component candidate.

 

Figure 6-2: Factors affecting reusability [4]

Cost 
Reuse cost includes cost of identifying a 
component from the existing system, 
modifying and integrating them into a new 
system. Measures of size and complexity 
of a component provide a partial indica-
tion of difficulty in adapting it to reuse in 
a new system. The cost to reuse the com-
ponent is influenced by the readability of 
its code, a characteristics that can again be 
partially evaluated using size and com-
plexity measures. That is, small and sim-
ple code fragments are usually easier to 

read and adapt than larger and complex 
fragments. 

Quality 
The quality of the component is important 
in order to succeed in reuse-driven devel-
opment. Several qualities that are impor-
tant for component reuse are correctness, 
readability, testability, ease of modifica-
tion, and performance, but most of them 
are not directly measurable. Measures of 
size and complexity of a component how-
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ever provide a partial indication of the 
presence of these qualities in it. 

6.2.3 Metrics for Measuring 
Costs, Usefulness and 
Quality 

Table 6-2 contains definitions of the met-
rics used for measuring costs, usefulness, 
and quality. A complete discussion about 
these metrics can be found in [5]. Our mo-
tivation is to come up with a reusability 
model, which contains metrics and the 
suitable upper and lower bounds to sup-
port identify reusable classes. 

Metric Definition 

NMPUB The number of public methods imple-
mented by a class. 

WMC Cyclomatic complexity of a class. 

NOC The number of children/grandchildren of a 
class. 

DIT The level a class is located from the root in 
the inheritance hierarchy. 

OCAEC The number of times a class has been 
used as an attribute in other classes. 

CALLS_IN The total number of times the methods of a 
class was called by other classes. 

LCOM Cohesion�The number of sets of methods 
that access the same attributes. 

Table 6-2:  Definition of Metrics 

Measuring Usefulness 
We measured the functional usefulness 
using the assumption: a class that is used 
frequently within a system is a good can-
didate for reuse in a new system in similar 
domain. In OO systems, a class A can use 
another class B in the following ways: 

• Methods of A invokes the methods of 
B 

• A contains an instance of B as its at-
tribute 

• A inherits from B 

• A can read/write attributes of B 

Hence, we have chosen the metrics 
namely NOC, OCAEC, CALL_IN and 
DIT to measure the usefulness within the 
existing system itself. 

If a class has many children/  
grandchildren, then it is likely that it im-
plements certain generic functionality. 
Hence we need to take only the lower 
bound for NOC because the more the 
number of children/grandchildren, the 
higher is its assumed genericity. 

The reason for choosing DIT metric is that 
if a class occurs near the leaf of the inheri-
tance tree then, in most cases, it imple-
ments probably certain specialized func-
tionality. For reuse candidate�s 
identification, specialized functionality is 
obviously not the first priority. That is, we 
should not go too deep in the inheritance 
hierarchy. Hence we need to take only the 
upper bound for DIT metric. 

In many applications, classes are not al-
ways in the inheritance tree. That is, there 
are classes that don�t have either a parent 
or children and such classes might also be 
good candidates for reuse. In order to in-
clude such classes for potential reuse, we 
have chosen CALL_IN and OCAEC. 
CALL_IN metric is used to identify those 
classes that are used heavily by methods 
of other classes. The more the value of 
CALL_IN, the higher is its usefulness 
within the system. If the value of 
CALL_IN is below a certain value, it is 
likely that its services are not important 
that to the system. Hence we need to take 
only the lower bound for CALL_IN. 
OCAEC can be used to measure how use-
ful the class is in building the other 
classes. That is, if a class has higher 
OCAEC then it is used an attribute in 
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many other classes. Similar to CALL_IN, 
we need to select only the lower bounds 
for OCAEC. 

Measuring Cost 
We can measure the reuse costs using the 
metrics NMPUB and WMC. If NMPUB 
and WMC are high then it might take 
more effort to understand, modify and in-
tegrate them into a new system. On the 
other hand, if both NMPUB and WMC are 
too low, it is very likely that there is noth-
ing interesting in it. So it is better not to 
exceed both the bounds. 

Measuring Quality 
We can measure quality using NMPUB, 
WMC and LCOM. If a class has high 
NMPUB then it is likely to have impact 
on correctness, readability. Testability can 
be partially predicted with help of WMC 
[3]. Higher the WMC, lower is the test-
ability of a class. If cohesion metric 
LCOM is high, it is very likely to reduce 
the understandability and readability of 
the class because of the variety of func-
tionality implemented in it. Hence, only 
the upper bound is necessary for LCOM. 

 

 

Figure 6-3:  Associating OO metrics with factors affecting reusability
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6.3 Process 
We introduce an approach for the extrac-
tion of domain-specific components from 
an existing system, where reverse engi-
neers, forward engineers, and the domain 
experts work closely together. Figure 6-4 
depicts the 10 steps of our approach in the 
pseudo-code format. 

Step 1: Goal Description: In this step, the 
forward engineer formulates the goal and 
explains it to the reverse engineer. The 
forward engineer can describe the kind of 
components he wants to reuse from the 
existing system. For instance, let us as-
sume that the forward engineer wants to 
build an IDE for modeling software archi-
tectures by reusing an existing IDE for 
Java. The forward engineer then explains 
the need for components implementing 
functionality related to workspace, pro-
jects, package hierarchy, and file man-
agement. 

Step 1: The forward engineer describes the 
goal to the reverse engineer. 

Step 2: The reverse engineer sets up the fact 
base. 

Step 3: The reverse engineer selects metrics 
and choose its bounds. 

Step 4: The reverse engineer identifies candi-
date classes which satisfied the criteria de-
fined in step 3. 

Step 5: A “lightweight” review on the classes 
from step 4 is done by reverse engineer. If he 
is not satisfied then he goes back to step 3. 
Otherwise, he passes the candidates to step 6. 

Step 6: The domain-expert reviews the candi-
dates and classifies them. 

Step 7: The reverse engineer analyses the 
classification made by the domain-expert. 

Step 8: Both the engineers start building com-
ponents from the key classes of step 6. 

Step 9: Interface analysis is done by the re-

verse engineer to know the dependency be-
tween the components from step 8 and the 
rest of the existing system. 

Step 10: The forward engineer makes the final 
decision about the reuse of the components 
using the output of step 9. 

Figure 6-4: Different steps for component ex-
traction 

Step 2: Setting up the fact base: The re-
verse engineer parses the source code of 
an existing system and builds an initial 
model of source code. The initial model 
could be, for example, an RSF representa-
tion of the source code. In addition, for 
each class in the source model, he com-
putes the metrics defined in Table 6-2. 

Step 3: Select metrics and choose its 
bounds: In this step, the reverse engineer 
chooses bounds for the metrics defined in 
Table 6-2. But the problem is a lack of an 
analytical method that a reverse engineer 
can use to choose the bounds for these 
metrics. In the first iteration, in order to 
choose bound(s) for a metric, he computes 
the average of the metric values. This 
seems to be like a trial and error but it is 
nevertheless a meaningful starting point. 

Metric Minimum Maximum 
NMPUB X X 

WMC X X 

LCOM  X 

CALLS_IN X  

DIT  X 

NOC X  

OCAEC X  

Table 6-3: Metrics with Lower and Upper 
Bound 

Step 4: Identify candidates: In this step, 
the reverse engineer applies the metric 
criteria developed in step 3 to all the 
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classes in the fact base. Classes which sat-
isfied the criteria will be passed to the step 
5. 

Step 5: Lightweight review: One of the 
major problems is that reverse engineers 
usually don�t have expertise in the appli-
cation domain. Therefore he cannot re-
view the candidates identified in step 4 for 
its usefulness in a new system. But the 
reverse engineer can do a lightweight re-
view to help the forward engineer. For 
example, if the number of candidates iden-
tified in step 4 is too high then he rede-
fines the criteria defined in step 3. The 
reverse engineer also uses the goal de-
scription during the light-weight review of 
the identified candidates. 

Step 6: Review by the domain expert: In 
this step, the domain expert reviews the 
classes identified in step 5 (based on the 
goal description of step 1). The main focus 
of the domain-expert in this review is to 
decide about the functional usefulness of 
the candidates. Domain expert classify 
each of the classes given by reverse engi-
neer as follows: 

• Utility – Classes which implement 
general utility (for example, math rou-
tines). 

• Application-specific – Those classes 
that implement functionality specific 
to single instance of a product line. 

• Domain-specific – Those classes that 
contain generic functionality needed 
for all instances of a product line. 

Step 7: Analyze classification: It is im-
portant to keep in mind that domain-
experts are usually busy. Therefore, the 
reverse engineer must minimize the 
amount of the candidates the expert has to 

review but at the same time maximize the 
domain-specific candidates. To achieve 
this goal, the reverse engineer has to ana-
lyze the classification of the candidates by 
the domain-expert. In order to provide the 
domain-expert with many domain-specific 
applies a filtering strategy. Filtering is 
used to reduce the search-space for do-
main-specific classes. That is, certain 
classes that are most likely not to be do-
main-specific, are ignored: 

• If the root of inheritance tree is not 
domain-specific then it is likely that 
the complete inheritance tree is not 
domain-specific. So, we can filter all 
the classes involved in such trees. 
However, this strategy needs to be ap-
plied carefully: For example, in Java, 
the class �Object� is the root class of 
all classes, but we can develop new 
applications based on the existing 
Java classes. 

• If a class C is an application-specific/ 
utility class, then all the classes that 
are dominated by C are likely to be 
application/utility class. Domination is 
defined using the dominance tree 
where the nodes are classes and the 
edge is the call relation between the 
classes. Note that this assumption is 
not always true; there could cases 
where the application class uses a do-
main class. Nevertheless, we try to re-
duce the search-space by making such 
kind of assumptions.  

• If a class C, which satisfied the 
bounds of the metric OCAEC, is ap-
plication-specific/utility then all the 
classes that are used as attributes 
within the class C are likely to be ap-
plication specific. 
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• One obvious filtering strategy is filter-
ing those classes which were already 
reviewed by the expert. Before he ap-
plies the criteria defined in step 3, 
these reviewed classes can be filtered 
out. 

Step 8: Component building: In this step 
both forward and reverse engineer works 
together to build components from the key 
classes that are identified by step 6. From 
the key classes, all the required dependen-
cies have to be extracted so that compo-
nents can be built. This requires analyses 
of interfaces of the key classes. 

Step 9: Interface Analysis: In this step, 
the reverse engineer analyzes the depend-
ency between the components from step 8 
and the rest of the system [11]. By using 
the factbase, interface analysis identifies 
all the required interfaces that are neces-
sary for the execution of a component in a 
new system. 

Step 10: Final decision and code analy-
sis: In this step, using the output of the 
interface analysis, the forward engineer 
decides whether to reuse the component or 
not. His decision is influenced as well by 
factors such as performance. 

6.4 Related Work 
Basili and Rombach [2] describe a com-
prehensive framework of models, model-
based characterization schemes, and sup-
port mechanisms for better understanding, 
evaluating, planning and supporting all 
aspects of reuse. We follow their reuse-
oriented software environment model to 
set up a component repository for product 
line migration. 

Caldiera and Basili [4] describe Care that 
helps identifying reusable component us-
ing a user-defined �reusability attribute 
model� based on software metrics. We 
customized this approach to object-
oriented paradigm to support the product 
line migration activities in the presence of 
existing systems. 

Dunn and Knight [6] describe a model 
based on an expert-system for the identifi-
cation of reusable components from exist-
ing systems. Suitability of this expert-
system to object-oriented paradigm needs 
further research. 

Diaz and Freeman [12] describe a scheme 
to classify software for reusability. Their 
premise is that reuse can happen only 
when there is an automatic way of retriev-
ing the required software components 
from the repository. Introducing such a 
classification scheme is a part of our fu-
ture work. 

Etzkorn and Davis [7] describe an ap-
proach for automatically identifying reus-
able classes from object-oriented system. 
Their PATRicia system uses reusability 
metrics and a quality model defined by 
user to identify reusable classes. Their 
CHRis tool uses natural-language tech-
niques to help expert deciding whether a 
class implements certain useful function-
ality. 

6.5 Conclusion and Future 
Work 

In this position paper, we described our 
ongoing work aimed to identify domain-
specific reusable components. The funda-
mental motivation of the proposed method 
is to reduce the effort spent by the human-
expert to identify domain-specific compo-
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nent candidates. The basic premise as-
sumed by this approach is that reusable 
components have certain quality attributes 
like functional usefulness, readability, 
testability, etc. that can be broken down 
(at least indirectly) into are measurable 
items. 

Our immediate next step is to apply the 
proposed approach on large-scale systems 
to identify the benefits and limitations and 
to base the default boundary values for the 
metrics on the experiences we will make. 
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Abstract 
In most cases, adaptation is required to 
make existing components suitable to the 
context defined by a product line architec-
ture. This paper presents experience on 
analyzing the product line adequacy of an 
existing component in an industrial con-
text. Product line adequacy is based on the 
results of the application of diverse re-
verse engineering techniques (architecture 
evaluation, clone detection, code metrics, 
and source code analysis). The paper pre-
sents these activities, their results, and the 
action items derived to integrate the com-
ponent into the product line context. 

Keywords: ADORE, product line archi-
tecture PuLSE-DSSA, reengineering, re-
verse engineering. 

7.1 Introduction 
Product lines are sets of software-
intensive systems sharing a set of features 
and are derived from a common set of re-
usable assets [6]. Central artifacts of prod-
uct lines are their architectures, which 
embrace decisions and principles valid for 
each derived variant. Hence, architecture 
development must ensure the achievement 

of organizational and business goals, func-
tional and quality requirements. 

Components as part of product line archi-
tectures are explicitly developed for sys-
tematic reuse. That is, they must support 
the scope of variability required and be 
flexible towards the anticipated changes. 
Migrating existing components into prod-
uct line components thus means (in addi-
tion to resolving potential architectural 
mismatches and improving the internal 
quality) injecting the required variability 
support. Existing components therefore 
require a certain amount of adaptations to 
achieve sufficient product line adequacy. 
Product line architects face difficult deci-
sions whether to invest in the migration of 
existing components or to construct new 
product line components from scratch. 
Hence, they pass on requests to reverse 
engineering to analyze the product line 
adequacy of the existing components. If 
decided to adapt it, reengineering activi-
ties eventually are conducted to prepare 
the existing component for its use in a 
product line context. 

In this paper, we present a particular case 
of such a decision by reporting on the 
analysis of an existing component in an 
industrial context, where we applied 
Fraunhofer PuLSE� (Product Line Soft-
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ware Engineering)1 [2] and Fraunhofer 
ADORE� (Architecture- and Domain-
Oriented Reengineering).2

The paper is structured as follows: Section 
7.2 gives context information on the case 
study, while Section 7.3 presents the ap-
plied approach. Section 7.4 reports on 
results of the applied techniques; Section 
7.5 concludes the paper. 

7.2 Context 
The case study was conducted in a large 
organization migrating towards product 
line engineering following the PuLSE 
method. The organization defined a prod-
uct line architecture for a family of multi-
media systems in the automotive domain. 
The products consist of two major parts: a 
panel (mainly used for user interaction) 
and the back-end system (mainly used for 
computation, network functionality, and 
external media). 

The subject component of our case study 
is one of the key components of the panel. 
This Graphics component is responsible 
for the complete interaction between 
backend and panel, as well as composition 
and visualization of the exchanged ele-
ments. The user interface is based on pre-
defined masks. A mask is thereby defined 
as a collection of graphical elements and 
positioning information (e.g., text fields, 
bitmaps, buttons, lists, labels). The 

                                                 
1  PuLSE is a registered trademark of 

Fraunhofer Institute for Experimental 
Software Engineering (IESE), Kaiserslau-
tern, Germany. 

2  ADORE is a registered trademark of 
Fraunhofer Institute for Experimental 
Software Engineering (IESE), Kaiserslau-
tern, Germany. 

 

graphical elements contributing to a mask 
are divided into static information relevant 
for the panel only and dynamic sequence 
control information coming from the 
back-end system. The main architectural 
driver is the minimization of the data flow 
between the two parts. 

7.3 Approach 
The case study combined two Fraunhofer 
methods: PuLSE, in particular its architec-
tural component PuLSE-DSSA (Domain-
Specific Software Architecture), and 
ADORE. 

7.3.1 PuLSE™-DSSA 
PuLSE-DSSA deals with product line ac-
tivities at the architectural level. Since 
greenfield scenarios [6] are found only 
rarely in industrial contexts, it is designed 
to smoothly integrate reverse engineering 
activities into the process of developing a 
product line architecture. The main under-
lying concepts of the PuLSE-DSSA are: 

• Scenario-based development in itera-
tions that explicitly addresses the 
stakeholders� needs. 

• Incremental development, which suc-
cessively prioritizes requirements and 
realizes them. 

• Direct integration of reengineering 
activities into the development proc-
ess on demand. 

• View-based documentation to support 
the communication of different stake-
holders. 

The main process loop of PuLSE-DSSA 
consists of four major steps (see Figure 7-
1). 
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Planning: The planning step defines the 
contents of the current iteration and de-
lineates the scope of the current iteration. 
This includes the selection of a limited set 
of scenarios that are addressed in the cur-
rent iteration, the identification of the 
relevant stakeholders and roles, the selec-
tion and definition of the views, as well as 
defining whether or not an architecture 
assessment is included at the end of the 
iteration. 

Assessment: The goal of the assessment 
step is to analyze and evaluate the result-
ing architecture with respect to functional 
and quality requirements and the 
achievement of business goals. In an in-
termediate state of the architecture, this 
step might be skipped and the next itera-
tion is started. 

PuLSE-DSSA results in product line ar-
chitectures documented in a selection of 
architectural views. 

Realization: In the realization step, solu-
tions are selected and design decisions 
taken in order to fulfill the requirements 
given by the scenarios. When selecting 
and applying the selected solutions, an 
implicit assessment regarding the suitabil-
ity of the solutions for the given require-
ments and their compatibility with design 
decisions of earlier iterations is made. A 
catalog of means and patterns is used in 
this phase. Means are principles, tech-
niques, or mechanisms that facilitate the 
achievement of certain qualities in an ar-
chitecture whereas patterns are concrete 
solutions for recurring problems in the 
design of architectures. 

7.3.2 ADORE™ 
The architecture development yields 
product line components that have to be 
engineered. Different components can be 
engineered concurrently since the product 
line architecture has defined the compo-
nent communication, specified the re-
quired interfaces, and distributed the re-
sponsibilities among the components. In a 
migration context from single system de-
velopment, this allows the identification 
of existing components in the domain that 
already fulfill the functional requirements 
completely or at least partially achieve 
them. 

Documentation: This step documents 
architectures by using the organizational-
specific set of views as defined in the 
planning step. It thereby relies on standard 
views as, for example, defined by Kruch-
ten [8] or Hofmeister [7], and customizes 
or complements them by additional views. 

To decide about reusing such existing 
components, the component�s internal 
quality and suitability for the product line 
have to be evaluated. It has to be ensured 
that the component is able to serve the 
product line needs.
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Figure 7-1: Overview PuLSE-DSSA and ADORE

ADORE� (Architecture- and Domain-
Oriented Reengineering) is a request-
driven reengineering approach that evalu-
ates existing components with respect to 
their adequacy and, potentially, integrates 
such components into the product line: 

• First, existing components are identi-
fied and reverse engineered [4] to as-
sess their adequacy; this activity is ini-
tiated by requests coming directly 
from the product line architects. 

• Second, based on the analysis results, 
the product line architects decide 
whether the existing component is re-
used or a new product line component 
is developed from scratch. 

• Finally, when reusing the component, 
necessary renovation and extension 
activities are kicked off to adapt the 
component for its use within the prod-
uct line. 

ADORE is mainly instantiated in step 2 of 
PuLSE-DSSA (realization), when the ar-
chitects reason about whether or not to 
reuse existing components. The architec-
tural needs drive the selection of appropri-
ate reverse engineering analyses. Analyses 
and, potentially, renovation activities are 
conducted asynchronously to the PuLSE-
DSSA iterations. That is, the current itera-
tion of the architecture development may 
proceed even if the ADORE activities are 
delayed. The advantage of such a demand-
driven approach is that investment is kept 
as small as possible: only reverse engi-
neering activities are performed, renova-
tions are conducted only after the decision 
to include the component in the product 
line. 

To enable stakeholder reasoning about 
such a decision to be made, certain aspects 
of the component have to be lifted to a 
higher level of abstraction. Existing com-
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ponent artifacts (e.g., source code, docu-
mentation, configuration files) are there-
fore exploited and the information ex-
tracted is aggregated in a repository. Since 
the repository usually has a lot of content, 
relevant information is often hidden in 
overcrowded low-level models. Thus, fur-
ther analysis activities process the infor-
mation and aim at creating meaningful 
views on the existing component. 

Typical goals of the reverse engineering 
part in ADORE address the evaluation of 
the internal quality of a component, the 
degree of variability support, the provided 
flexibility towards anticipated changes, 
the compliance of a component to the 
product line architecture, or in case there 
are several similar implementations of a 
component, the identification of common-
alities among them. 

7.4 Analysis of Component 
Adequacy 

An existing implementation of the Graph-
ics component was identified (written in 
C++, approximately 180 KLOC) in the 
domain of the multimedia system. At the 
time of the analysis, the component had to 
be adapted to deal with a new hardware 
technology, so the source code was not yet 
fully available due to this technology 
change. The product line architects were 
doubtful whether the existing Graphics 
component was adequate for the product 
line and suitable to the architecture de-
signed with PuLSE-DSSA. Therefore, we 
instantiated the ADORE approach and 
reverse engineered the Graphics compo-
nent to the answer the following ques-
tions: 

• Was the component implemented ac-
cordingly to its documentation, how 
consistent is the documentation and 
can it integrated seamlessly into the 

product line architecture? To answer 
these questions we applied static ar-
chitecture evaluations. 

• To which degree contains the subject 
component already existing variabil-
ity? Is it possible to relate these code-
level variations to higher levels (in 
best case to the product map coming 
from scoping activities)? To address 
this request, we conducted a variabil-
ity analysis and refactored prototypi-
cally some variability by means of a 
frame processor. 

• What are maintenance risks of the 
current implementation? This request 
triggered a set of reverse engineering 
activities: source code analysis includ-
ing clone detection, the metric com-
putation, a naming and decomposi-
tion analysis. 

• Another request of the architects was 
concerned with the potential evolution 
of the algorithms and implementation 
decision made so far. We conducted a 
review of code comments to address 
this aspect. 

7.4.1 Static Architecture Evalua-
tion 

The consistency of the component to its 
documentation was statically evaluated 
with the help of the SAVE tool (see [9], 
based on the idea of Reflexion models 
[10]). The component engineering models 
decomposed the subject into the three in-
ternal layers and provided a mapping to 
the source code files. Figure 7-2 depicts 
the results of the evaluation. The evalua-
tion shows a high degree of consistency so 
far since there are almost no violations to 
the documented component engineering 
model (Layer-1 uses Layer-2, grey arrow, 
cardinality 1149); there are only two ex-
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ceptions: the divergences form Layer-2 to 
Layer-1 (blue arrow, cardinality 2) and the 
absence from Layer-2 to Layer-3). The 
reason for the latter is that the component 
is currently still under development (the 
layer was only realized in stubs). The 
evaluation showed that the implementa-
tion so far did follow the intended design 
decisions, although detailed analysis of 
the layers gave pointers for improvement. 

The challenge for the development or-
ganization is now to ensure this over time. 
The component�s evolution has to be 
monitored when new variants are created 
based on this first product line component. 
To keep the quality and to avoid degenera-
tion, we recommended quality assurance 
activities including the repetition of static 
architectural evaluations at defined check-
points. 

 

Figure 7-2: Component Internal Layers 

 

Figure 7-3: Frame Hierarchy 
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7.4.2 Variability Analysis 
Conditional compilation with macros is a 
common means to realize variants in the 
source code. Optional or variable code 
parts or alternative implementations can 
be implemented in a common source code 
base (with preprocessor commands #if, 
#ifdef, etc.), and the resolution of the vari-
ants is taken over by the preprocessor. The 
variability analysis checked to which ex-
tent the macros and compile switches real-
ize variability with respect to the product 
map. Identified variability was docu-
mented to make the variation points ex-
plicit and derive a decision model that 
relates the macros to the different mem-
bers of the product line. 

Furthermore, we exemplified how to ex-
tract and to migrate the current variabili-
ties into more advanced tools like frame 
processors. A frame processor is a tool 
supporting frame technology [1], a tech-
nique to support reuse in practice. In 
frame technology, the implementation 
units, called frames, have the same ap-
pearance as those in any major program-
ming language. They form a group of 
symbols (e.g., source code or frame code) 
that can be consistently referenced. 
Frames contain both source code and 
frame-specific code providing adaptation, 
which enables reuse. Frame-specific code 
consists of frame commands and frame 
variables in order to make variation points 
explicit by distinguishing between com-
mon and variable text. Frames can be ar-
ranged in hierarchies and will be resolved 
at compile time by the frame processor, an 
advanced preprocessor. 

The frame processor processes the frame 
hierarchy and generates finally pure 

source code. In product family engineer-
ing, this technique is used to produce dif-
ferent product instances from a family by 
explicit variation points in one common 
code base. Figure 7-3 depicts the frame 
hierarchy operating system dependent 
thread handling for two system variants: 
the target variant and a simulation variant 
running on Windows. Frames positioned 
high in the frame hierarchy can adapt 
lower frames (by an ADAPT statement in 
the frame), on the lowest level there are 
the frames containing the commonalities 
among both variants (simulation and tar-
get), and they have explicit variation 
points. These variation points are adapted 
by higher level frames, for instance a VP 
filename.cpp_1 is replaced in the 
adapt_1.frame with �#include Win-
dows.h�. The frame hierarchy was ex-
tracted automatically from the source code 
(leading to non meaningful names for the 
variation points and the lower level 
�adapt_*� frames). 

The frame processor enables the explicit 
management of the frames, the hierarchy 
support and the automatic resolution of 
the variants. Adding a new variant in-
volves only the creation of the respective 
frames. In the example, another OS vari-
ant would lead to the respective OS frame 
and an additional adapt frame. All vari-
ability and resolution is localized in these 
frames, and the developers work only with 
the two frames, and they have not to mod-
ify several files widespread in the imple-
mentation. 

7.4.3 Clone Detection 
A code clone is a code fragment that oc-
curs in more than one place. One duplicate 
is usually the master, and the other one 
(i.e., the cloned one) is produced by copy-
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ing the master (sometimes containing mi-
nor modifications). Code clones are a 
threat to the evolution code size, higher 
effort for maintenance (when there is the 
need for a change, all duplicates have to 
be addressed), reduced code readability, 
increased risk because an error can be 
propagated to several places in the source 
code which leads to high effort for the 
removal of such an error. 

We analyzed the source code with a clone 
detection tool based on text pattern match-
ing for two objectives. First, we aimed at 
detecting internal clones (duplicated code 
lines found in a single file), and second 
external clones (clones found in different 
files). The analysis identified a number of 
code clones with a size greater than 20 
lines to be reviewed by the developers). 

7.4.4 Metric Hotspots 
Source code metrics are an objective 
means to learn about potentially problem-
atic areas in the source code. By measur-
ing coupling, size and complexity metrics 
and analyzing the outliers, unanticipated 
values, problematic areas and hotspots in 
the source code can be identified. In par-
ticular, we had significant outliers for the 
following metrics: cyclomatic complexity 
(for methods and class averages), CBO 
(coupling between object classes), NOC 
(number of derived children), and function 
size in terms of LOC (lines of code). The 
identified source code items have been 
triggered for code reviews, since such 
elements are error-prone, bring along the 
risk of unwanted side effects, and are dif-
ficult to understand. To avoid potential 
maintenance problems, these items are 
reviewed carefully.  

7.4.5 Naming and Decomposition 
Analysis 

When conducting a detailed source code 
analysis, a number of issues arose that 
became additional action items: 

• File system representation: the folder 
structure and the code files did not re-
flect the decomposition as it was 
documented. 

• Empty files: a couple of empty (or 
almost empty) files were identified 
(less than 20 LOC). The files are re-
viewed whether it is reasonable to 
merge them with other files or they 
can be eliminated from the code. 

• Inconsistent naming conventions: al-
though there were naming conven-
tions in the code, they were not used 
consistently throughout the compo-
nent. 

7.4.6 Code Comments 
 A major issue was the ratio of commented 
lines to source code lines, which was be-
low 10 percent. The developers agreed on 
improving this to facilitate the reading of 
the source code and to not run into prob-
lems when evolving the components fur-
ther. 

7.5 Summary 
The reverse engineering results revealed 
that the Graphics component has a suffi-
cient adequacy for the emerging product 
line and the product line architects de-
cided to reuse the existing component. 
However, the results made the need for 
renovations and extensions obvious to 
fully address the product line require-
ments. An action list (improvement of the 
internal quality, assurance of consistency 
to the documentation and the intended 
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design, refactoring of variabilities, re-
moval of architectural mismatches, and 
the integration of the component) and 
items for a detailed analysis (code reviews 
and inspections) were derived directly 
from the reverse engineering results. For 
the final acceptance of the Graphics com-
ponent as a product line component, these 
issues should be revisited. 

The well-invested effort for reverse engi-
neering lead to an architectural reuse deci-
sion that was well-grounded and sound, 
based on the reverse engineering results. 
Since the component was not yet fully 
implemented, the developers were able to 
address most of the suggested renovation 
items promptly in the ongoing develop-
ment. 

In summary, this experience report pre-
sents a typical industrial case where 
Fraunhofer PuLSE� and ADORE� are 
applied in combination. As it was in this 
case, there is generally a need for adapta-
tion when components developed for sin-
gle systems should become part of a prod-
uct line infrastructure. In our experience 
so far, as-is reuse mostly does not work 
since there is always a need for adaptation 
to make the existing component suitable 
for the product line. 

Hence, there is a strong need for efficient 
and focused reverse engineering analyses 
that support the reuse decision making, in 
this case by analyzing the adequacy of the 
existing components. In addition, it is im-
portant to identify and estimate the degree 
of required adaptation base the product 
line architects reuse decision on a well-
grounded fundament. 
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Abstract 
Development of a product line architec-
ture involves mining existing software 
assets, from architecture-level design 
knowledge to implementation-level arti-
facts. Each mining effort is generally as-
sociated with an appropriate mining con-
text, through which the criteria for 
component identification and selection are 
defined. The crux of the matter is variabil-
ity, where a mining context has to be spe-
cific, to allow for precise component que-
rying, but it also has to be adaptable and 
extensible, to accommodate the needs of 
different software product line instances. 
In this paper, we introduce a framework 
for annotating and querying heterogene-
ous software artifacts using polymorphic 
dependency relations in software product 
line reengineering. The dependency rela-
tions are defined based on the theory of 
semantic values, where an association rule 
is represented as a combination of differ-
ent semantic properties and values (se-
mantic contexts), such as features and 
constraints defined at the model or meta-

model level. The chosen association rules 
denoted through a mining context are used 
to query individual component annota-
tions. 

Keywords: software reengineering, soft-
ware product lines, mining existing assets, 
semantic value theory, polymorphic de-
pendency relations 

8.1 Introduction 
In model-driven software evolution, soft-
ware artifact models are changed at differ-
ent levels of abstraction. For instance, use 
case models are used to apply change at 
the requirements specification level while 
deployment diagrams are used to manifest 
change at the deployment and integration 
levels. A mutation of an artifact model at 
one level may affect models at the same or 
at different levels of abstraction and detail. 
For example, a change in a design model 
could directly affect architectural models 
at the higher-level, and implementation 
models at the lower-level of abstraction. 

To enable impact analysis and propagation 
of changes that may arise due to evolu-

                                                 

1 This work is funded in part by the IBM Canada Ltd. Laboratory, Center for Advanced Studies 
(CAS) in Toronto. 
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tion, it is necessary to establish and main-
tain associations among related models 
and their elements. In previous research 
[3, 4], we have introduced an approach for 
the identification and encoding of depend-
ency relations among heterogeneous soft-
ware artifacts using formal concept analy-
sis (FCA). As part of the approach, each 
software model that is MOF compliant [6] 
is represented in terms of its objects and 
attributes. Objects that share common at-
tributes are considered dependent, and are 
identified using a FCA algorithm [2]. To 
match attributes of heterogeneous con-
texts, we have introduced the notion at-
tribute association rules. At the domain 
model or metamodel levels, attribute asso-
ciations represent the functions for map-
ping compatible types and relations, while 
at the model level, they are used to map 
attributes, features, and annotations of 
individual model elements. The approach 
was applied to establish dependency rela-
tions between business process models 
and enacting Java source code by mining 
information flow models using business 
workflow patterns. 

In this paper, we extend our FCA-based 
approach by defining dependency rela-
tions using the theory of semantic values 
[8]. Each dependency relation represents a 
composition of individual semantic val-
ues. The meaning of a relation is indicated 
by an association context, which repre-
sents a set of semantic properties and val-
ues. For example, semantic values 
Class(Language=�UML�(Represents=�Obj
ects�)) and 
class(Language=�Java�(Represents=�Obje
cts�)) are associated based on the context 
{Represents=�Objects�}, but in contrast, 
are not associated based on the context 
{Language=�UML�}. We treat each asso-

ciation context as a polymorphic type, for 
which we can derive a subtype by extend-
ing the association context (i.e., reduce its 
scope), or a supertype by reducing the as-
sociation context (i.e., extend its scope). 

In the context of software product line 
reengineering, the polymorphic types are 
first used to annotate existing software 
assets. Then, a mining context is defined 
as a combination of different association 
contexts, for example, with different con-
texts for different types of artifacts. Using 
the mining context as basis, candidate 
components are mined, and the most suit-
able selected for reuse in product line de-
velopment. 

The remaining content of this paper is or-
ganized as follows: Section 8.2 explains 
semantic annotations of existing assets 
using semantic heads. Section 8.3 de-
scribes the structure of the mining context 
and explains how the mining context is 
used to query candidate components. Fi-
nally, Section 8.4 provides our conclu-
sions and directions for future research. 

8.2 Semantic Annotation of 
Software Artifacts 

The Options Analysis for Reengineering 
(OAR) approach [1] prescribes that after 
creating a mining context, it is necessary 
to inventorize available components, and 
identify their functionality, language, in-
frastructure support, and interfaces. Based 
on this inventory, candidate components 
can be selected as the ones that match the 
criteria of the mining context. However, 
the OAR description does not provide a 
formalism for specification of component 
properties, nor does it provide an algo-
rithm for matching the criteria of the min-
ing context and individual components. 
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Figure 8-1: Annotation Context UML Profile

 

We propose to define a systematic ap-
proach to annotation of existing software 
assets by associating each available com-
ponent with a corresponding semantic 
head. Each semantic head represents a set 
of semantic values, defined according to 
the theory of semantic values as described 
above [8]. As part of our view of software 
artifacts as MOF-compliant models, we 
use UML 2.0 metamodel [7] as the basis 
for representation. Hence, as shown in 
Figure 8-1, we define <<semanticHead>> 
stereotype as part of the Annotation Con-
text UML profile. Each semantic head is 
associated with one model element, and it 
contains zero or more semantic values. 
The elements of the semantic head are 
created as part of the component inven-
tory, and they may include implemented 
features such as (Fea-
ture=�DatabaseAccess�, Limita-

tion=�DataManipulation�), interface prop-
erties such as (Inter-
faceType=�Proxy�(Protocol=�HTTP�)), 
language properties such as (Implementa-
tionLanguage=� Java�(Dialect=�Enterprise 
Java Beans�)), and environment con-
straints such as (PlatformIndependence=� 
Yes�(OperatingSystem=�Windows�)). 

8.3 Defining the Mining Context 
Once we have annotated components with 
specific semantic properties, we can query 
them to identify those of specific interest 
and suitability for reuse in reengineering 
towards product lines. 
As shown in Figure 8-2, we create the 
mining context as the collection of spe-
cific association rules. We represent each 
rule as a collection of semantic properties 
and values that are used to query individ-
ual component annotations. For instance, 
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to find all components that use HTTP pro-
tocol for communication, we could use 
{Protocol=�HTTP�} as the association con-
text. We can also have different associa-

tion contexts for different component 
types, for example, for areas such as data-
base access, role-based access control, and 
user interfaces.

 

 
Figure 8-2: Mining Context as a UML Profile 
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Figure 8-3: Attribute Association Rules for Mapping Heterogeneous Semantic Values 

 

For compatible properties that are at dif-
ferent levels of granularity or scale, con-
version functions may be used. For in-
stance, contexts 
(ImplementationLanguage=�Java�) and 
(ImplementationLan-
guage=�ObjectOriented�) can be mapped 
using cvtImplementationLanguage to rep-
resent Java at a higher level of granularity 
as an object-oriented language. Also, se-
mantic value 30(Metric=� AccessPerfor-
mance�, MetricScale=�miliseconds�) can 
be converted into 
0.3(Metric=�AccessPerformance�, Metric-
Scale=� seconds�) by using the scaling 

function cvtMetricScale with the scaling 
factor 100. 

For incompatible properties, such as prop-
erties from different domains as shown in 
Figure 8-3, conversion may be performed 
using attribute association rules including: 

• Feature hierarchies, where contexts 
are matched if they related to a se-
lected feature or one of its sub-
features. 

• Lexicographical matching, where con-
texts are matched as text using various 
information retrieval techniques such 
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as n-gram matching, word-matrix 
matching, or latent-semantic indexing. 

• Spatial matching, where contexts are 
matched based on their relation to a 
specific data flow. 

8.4 Conclusions and Future 
Research 

In this paper, we have presented a frame-
work for defining the mining context for 
mining existing software assets using the 
theory of semantic values. We have pre-
sented an approach for annotating avail-
able components with corresponding se-
mantic properties and values. We have 
also discussed the creation of the mining 
context using association rules, and use of 
the defined association rules to query and 
select suitable components. 

In future research, we aim to extend the 
approach by more formally specifying the 
annotations and annotation categories. We 
also intend to adapt the approach to other 
mining steps as described in the OAR ap-
proach, such as component refactoring, 
and relate it to more recent reengineering 
methods such as the Service-Oriented Mi-
gration and Reuse Technique (SMART) 
[5]. 
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9 Workshop Outcomes 
The results of this workshop consist of the papers presented during it (included in Sections  
4-8), the outcomes of discussions triggered by those papers, and some agreements related to 
the organization and continuation of this workshop and research topic. 

The papers that were presented could roughly be said to address two main issues: 

1. variation points (papers by Olumofin and Cornelissen) 

2. identification of product line assets (papers by Ganesan, Knodel, and Ivkovic) 

Part of the research is focused on the application and extension of existing reverse and reen-
gineering techniques to a product line context. The problem that needs to be solved is how to 
use these techniques (that were previously applied only to individual systems) to handle mul-
tiple software variants. 

For instance, in the case of dynamic analysis, the use of reverse and reengineering techniques 
implies additional difficulties with respect to the determination of useful scenarios to obtain 
traces from different variants of a software system. Cornelissen used this approach for the 
detection of potential variation points in a product line architecture. 

Interestingly, the technique presented by Olumofin requires exactly that information about 
variation points. When combined with knowledge on sensitivity points (which can be discov-
ered using the SEI Architecture Tradeoff Analysis Method® [ATAM®] developed by the Car-
negie Mellon® Software Engineering Institute [SEI]) evolvability points can be identified that 
deserve special attention during software evolution to ensure the architectural conformance of 
the product line architecture and product family members. 

Most approaches, however, focused on the use of static information. Two approaches were 
presented to find the software components that should be considered reusable assets for a 
product line. The approach by Ganesan and Knodel is based on metrics, while the approach 
proposed by Ivkovic uses semantic annotations to find the components in which there is in-
terest. Finally an approach was presented that combines several techniques, such as metrics 
and clone detection, to assess the extent to which an existing software component is suitable 
for reuse in a product line environment. 

Various problems involving the introduction of software product lines in software develop-
ment organizations were covered in this workshop. The focus was on the 

• detection of variability and how to use this information to ensure successful software 
evolution 

                                                 
®  Architecture Tradeoff Analysis Method, ATAM, and Carnegie Mellon are registered in the U.S. 

Patent and Trademark Office by Carnegie Mellon University. 
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• identification of components that are amenable to become product line assets 

• determination of the extent to which these components are suited to be product line assets 
as is 

 

Other issues that still need to be investigated in the future include 

• the derivation of a complete product line architecture (instead of focusing on identifying 
individual components) 

• combinations of different approaches, such as dynamic analysis and metrics or other 
static approaches 

• the process steps involved in the migration towards a product line approach 

• the scalability of the proposed approaches and potential tool support for them, as product 
line architectures typically concern large systems  

• the reusability of other artifacts after migration to a product line approach, such as test 
cases and architectural views 

• traceability from legacy to product line artifacts 
 

One more important issue came up: participants found it difficult to find suitable case studies 
for applying their techniques. Such case studies should consider not only the availability of a 
complete product line example system but also a set of existing software variants that can be 
migrated to a software product line. 

As a follow-up of this workshop, a mailing list was set up (r2pl@st.ewi.tudelft.nl) and the 
need for a successor workshop in 2006 was confirmed. 
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