
R2PL 2005—Proceedings of
the First International
Workshop on Reengineering
Towards Product Lines

Bas Graaf
Liam O’Brien
Rafael Capilla

March 2006

SPECIAL REPORT
CMU/SEI-2006-SR-002

Pittsburgh, PA 15213-3890

R2PL 2005—Proceedings of
the First International
Workshop on Reengineering
Towards Product Lines

Bas Graaf
Liam O’Brien
Rafael Capilla

March 2006

CMU/SEI-2006-SR-002

Product Line Practice Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally funded re-
search and development center sponsored by the U.S. Department of Defense.

Copyright 2006 Carnegie Mellon University.

The following authors granted special permission to reproduce the following documents:
�Quality-Driven Conformance Checking in Product Line Architectures� by Femi G. Olumofin and Vojislav B. Mi�ić.
© 2005 by Femi G. Olumofin and Vojislav B. Mi�ić.

�Identification of Variation Points Using Dynamic Analysis� by Bas Graaf, Bas Cornelissen, and Leon Moonen.
© 2006 by Bas Graaf, Bas Cornelissen, and Leon Moonen.

�Identifying Domain-Specific Reusable Components from Existing OO Systems to Support Product Line Migration� by
Dharmalingam Ganesan and Jens Knodel.
© 2006 by Dharmalingam Ganesan, Jens Knodel.

�Analyzing the Product Line Adequacy of Existing Components� by Jens Knodel and Dirk Muthig.
© 2006 by Jens Knodel and Dirk Muthig.

 �Mining Existing Software Product Line Artifacts Using Polymorphic Dependency Relations� by Igor Ivkovic and Kostas
Kontogiannis.
© 2005 by Igor Ivkovic and Kostas Kontogiannis.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Table of Contents

Executive Summary .. vii

Abstract... ix

1 Background... 1

2 Workshop Organization ... 3

3 Invited Talk: Consolidating Software Variants into Software Product
Lines�A Research Outline.. 5

4 Quality-Driven Conformance Checking in Product Line Architectures....... 7
4.1 Introduction... 7
4.2 Challenges and Related Work .. 9
4.3 Variation Point Concepts Usage ... 10
4.4 Conclusion and Open Issues.. 13
4.5 References ... 14

5 Identification of Variation Points Using Dynamic Analysis........................ 17
5.1 Introduction... 17
5.2 Related Work .. 18
5.3 Tracing and Variation Points ... 18
5.4 Approach .. 20

5.4.1 Running example: Pacman... 20
5.4.2 Dynamic analysis using aspects ... 20
5.4.3 Determining variation points ... 20

5.5 Preliminary Results... 21
5.5.1 Generating traces ... 22
5.5.2 Branching behavior ... 23

5.6 Discussion and Future Work... 24
5.7 Acknowledgements... 25
5.8 References ... 25

CMU/SEI-2006-SR-002 i

6 Identifying Domain-Specific Reusable Components from Existing OO
Systems to Support Product Line Migration... 27
6.1 Introduction... 27
6.2 Approach .. 29

6.2.1 Terminology.. 29
6.2.2 Factors Affecting Reusability .. 29
6.2.3 Metrics for Measuring Costs, Usefulness and Quality 31

6.3 Process .. 33
6.4 Related work .. 35
6.5 Conclusion and Future Work .. 35
6.6 References ... 36

7 Analyzing the Product Line Adequacy of Existing Components 37
7.1 Introduction... 37
7.2 Context ... 38
7.3 Approach .. 38

7.3.1 PuLSE™-DSSA.. 38
7.3.2 ADORE™ ... 39

7.4 Analysis of Component Adequacy.. 41
7.4.1 Static Architecture Evaluation... 41
7.4.2 Variability Analysis.. 43
7.4.3 Clone Detection .. 43
7.4.4 Metric Hotspots... 44
7.4.5 Naming and Decomposition Analysis ... 44
7.4.6 Code Comments... 44

7.5 Summary .. 44
7.6 References ... 45

8 Mining Existing Software Product Line Artifacts using Polymorphic
Dependency Relations ... 47
8.1 Introduction... 47
8.2 Semantic Annotation of Software Artifacts.. 48
8.3 Defining the Mining Context ... 49
8.4 Conclusions and Future Research ... 52
8.5 Acknowledgements .. 52
8.6 References ... 52

9 Workshop Outcomes.. 55

References... 57

ii CMU/SEI-2006-SR-002

List of Figures

Figure 4-1: Example product line architecture adapted from [7] 11

Figure 5-1: Forks and merges in an execution trace.. 19

Figure 5-2: A fork and its context in the trace. ... 22

Figure 5-3: A merge and its context in the trace... 24

Figure 6-1: Process model for component extraction... 29

Figure 6-2: Factors affecting reusability [4] .. 30

Figure 6-3: Associating OO metrics with factors affecting reusability.................... 32

Figure 6-4: Different steps for component extraction ... 33

Figure 7-1: Overview PuLSE-DSSA and ADORE .. 40

Figure 7-2: Component Internal Layers.. 42

Figure 7-3: Frame Hierarchy .. 42

Figure 8-1: Annotation Context UML Profile... 49

Figure 8-2: Mining Context as a UML Profile.. 50

Figure 8-3: Attribute Association Rules for Mapping Heterogeneous Semantic
Values .. 51

CMU/SEI-2006-SR-002 iii

iv CMU/SEI-2006-SR-002

List of Tables

Table 6-1: Reusable Aspects of Software Projects ... 27

Table 6-2: Definition of Metrics .. 31

Table 6-3: Metrics with Lower and Upper Bound .. 33

CMU/SEI-2006-SR-002 v

vi CMU/SEI-2006-SR-002

Executive Summary

This report contains the proceedings from the First International Workshop on Reengineering
Towards Product Lines (R2PL) 2005, which was held on November 10th, 2005 in Pittsburgh,
Pennsylvania, USA and colocated with the Working Conference on Reverse Engineering
(WCRE) 2005 and WICSA 2005�the Working Institute of Electrical and Electronics Engi-
neers/International Federation for Information Processing (IEEE/IFIP) Conference on Soft-
ware Architecture. This report consists of an overview of an invited presentation, a set of po-
sition papers, and details of the workshop�s outcomes.

CMU/SEI-2006-SR-002 vii

viii CMU/SEI-2006-SR-002

Abstract

This report contains the proceedings from the First International Workshop on Reengineering
Towards Product Lines (R2PL) 2005, which was held on November 10th, 2005 in Pittsburgh,
Pennsylvania, USA and colocated with the Working Conference on Reverse Engineering
(WCRE) 2005 and WICSA 2005�the Working Institute of Electrical and Electronics Engi-
neers/International Federation for Information Processing (IEEE/IFIP) Conference on Soft-
ware Architecture. This report consists of an overview of an invited presentation, a set of po-
sition papers, and details of the workshop�s outcomes.

CMU/SEI-2006-SR-002 ix

x CMU/SEI-2006-SR-002

1 Background

Today, software-intensive systems are developed more and more using product line ap-
proaches. These approaches require the definition of a product line architecture that implicitly
or explicitly specifies some degree of variability. This variability is used to instantiate con-
crete software product instances. A product line approach not only implies reuse of architec-
ture-level design knowledge, it also facilitates reuse of implementation-level artifacts, such as
source code and executable components. The use of software product lines can reduce the
cost of developing new products significantly.

In practice, software products are usually not developed from scratch. Software product lines
are typically introduced following an evolutionary approach. First, a product line architecture
is defined based on an initial set of products. Then, the scope of the product line is gradually
extended by incorporating more existing and new products. Before a product line is extended,
its suitability for incorporating more products needs to be evaluated, as well as the extent to
which the new and currently included products conform to the product line architecture.

For companies adopting a product line approach for their software development, the problem
remains of how to reuse as much as possible of the existing legacy development artifacts.
Reuse can be applied to the definition and implementation of a product line architecture and
to the specifications and implementation of concrete product instances based on (legacy)
software development artifacts. In this workshop [Graaf 05, R2PL 05], we discuss the use of
reverse engineering and reengineering technology to solve the problems described above.

The papers included in this report appear exactly as they did in the original presentations;
they have not been edited further (aside from adjusting their section numbers for the new lay-
out in this report).

CMU/SEI-2006-SR-002 1

2 CMU/SEI-2006-SR-002

2 Workshop Organization

Organizers

Bas Graaf
Delft University of Technology
Delft, The Netherlands
b.s.graaf@ewi.tudelft.nl

Liam O�Brien
Software Engineering Institute
Pittsburgh, PA, USA
lob@sei.cmu.edu

Rafael Capilla
Universidad Rey Juan Carlos
Madrid, Spain
rafael.capilla@urjc.es

Program Committee

Liam O�Brien
Software Engineering Institute

Rafael Capilla
Universidad Rey Juan Carlos

Arie van Deursen
Delft University of Technology

Gerald C. Gannod
Arizona State University

Bas Graaf
Delft University of Technology

CMU/SEI-2006-SR-002 3

mailto:graaf@ewi.tudelft.nl
mailto:lob@sei.cmu.edu
mailto:capilla@urjc.es

4 CMU/SEI-2006-SR-002

3 Invited Talk: Consolidating Software
Variants into Software Product Lines—A
Research Outline

Rainer Koschke
University of Bremen

Germany

Abstract
Software product lines often arise from a set of variants of a common code basis that have
been individually adapted to a particular requirement variability. This ad-hoc and unplanned
approach causes serious maintenance problems. Migrating such variants into an organized
software product line promises better maintainability.

In this talk, I shall outline our 3-year research program aiming at consolidating software vari-
ants into software product lines. We are tackling the problem both at the source code level
and architectural level. We are adapting and extending techniques, such as clone detection,
feature location, protocol recovery, and reflexion-based reconstruction that we have so far
applied only to individual systems.

CMU/SEI-2006-SR-002 5

6 CMU/SEI-2006-SR-002

4 Quality-Driven Conformance Checking in
Product Line Architectures

Femi G. Olumofin
Vojislav B. Mi�ić

University of Manitoba, Winnipeg,
Manitoba, Canada

Abstract

Software product lines are often devel-
oped through reengineering existing prod-
ucts and legacy applications. In such cases
it is not uncommon for the behavioural
and quality characteristics of individual
product architectures to be inconsistent
with those of the common architecture.
Successful development of product lines
dictate that those inconsistencies be re-
solved. The resolution process involves
bringing the product architecture into
structural, semantic and quality attribute-
related congruence with the common ar-
chitecture. Additional steps must be taken
to ensure their continued conformance in
order to facilitate subsequent maintenance
and evolution activities. In this paper, we
describe a simple design-time technique
that aims to ensure that quality attribute
responses of individual product architec-
tures are in conformance with those of the
common architecture. The technique is
based on the concept of variation points.

4.1 Introduction
For more than a decade, software architec-
ture has been steadily gaining importance
as the most effective vehicle for the de-
velopment of complex software intensive
systems. Architecture-based design offers

unmatched flexibility and allows crucial
insights to be obtained very early in the
design cycle. Architectural abstraction
avoids complex code level details while
making component structures and interre-
lationships explicit. In this manner, the use
of architecture facilitates human under-
standing of the system as well as reason-
ing about quality characteristics and at-
tributes. It should come as no surprise,
then, that the reengineering of existing
systems and legacy applications�
recovering their structure in order to de-
velop new, functionally equivalent but
improved systems�often focuses on re-
covering or reconstructing the architecture
in the form of a product. Most such efforts
are motivated by changes in quality attrib-
utes, such as extendibility and maintain-
ability, rather than by the need for func-
tional changes and enhancements [3, 10].
For example, consider a system that has
undergone several maintenance cycles
which included functionality enhance-
ments. While the system itself may be in
working order, the documentation com-
plexity and, possibly, inconsistency make
further maintenance difficult. The first
thought would be to leave the system as it
is and reconstruct the documentation only;
but a better way is to disregard the docu-
mentation and recover the system archi-
tecture from the system itself. Oftentimes,

CMU/SEI-2006-SR-002 7

architecture recovery is the first step to-
wards reengineering the entire system.

All of the aforementioned advantages are
even more important in the case of soft-
ware product families or product lines [5]:
sets of related yet distinct software inten-
sive systems developed from the same
base architecture. In the product line ap-
proach, requirements or features common
to all the products are used as the basis for
the so-called core architecture, or CA.
Requirements which are specific to some
of the products only, but not all of them,
are represented as variation points in the
CA. (It is common to refer to the two sets
of requirements as commonality, or com-
monalities, and variability, respectively.)
Individual products are then developed to
address the specific sets of requirements.
In one approach, individual products are
directly developed from the CA by replac-
ing the variation points with product-
specific component instances, called vari-
ants. This approach is often used in sim-
pler cases�i.e., when the number of indi-
vidual products and/or variation points is
not high.

In an alternative approach, the CA is used
to instantiate a number of separate product
architectures or PAs, which correspond to
individual products. The PA is created
from the CA by exercising the built-in
variation points. The actual products are
then developed from the corresponding
PAs. This dual form of representation of
the architecture (i.e., CA and PA) is typi-
cal of the software product lines [5, 6].

Yet more problems arise when the product
line development path involves the reuse
of existing products. In most cases, exist-
ing products and legacy systems were

built with little care (or none at all) for
consistency and quality, thus encumbering
the identification of commonalities and
variability required for the product line
approach. Once identified and specified,
the CA and the individual PAs may differ
significantly, in particular with regard to
consistency and prioritization of quality
attributes. Any inconsistencies and differ-
ences in the architectures recovered from
the existing system must be resolved in
the product line architectures�successful
development of the reengineered system is
contingent upon the design of both CA
and PAs being quality attribute-driven and
conflict-free.

In this paper, we present a design-time
technique for maintaining conformance
between the reengineered and evolving
CA and individual product architectures.
The technique is based on the concept of
variation points, which are exploited in a
systematic fashion in order to constrain
the individual PAs to be consistent with
the CA. While the approach described is
particularly suited to reengineering prod-
uct lines, its generality makes it also ap-
plicable for validation of product line ar-
chitectures developed �from scratch� as
well as those developed using the revolu-
tionary approach [2]. The paper is organ-
ized as follows. In Section 4.2, we briefly
describe the challenges of ensuring quality
conformance between the CA and the PAs,
and discuss some earlier work that touches
this issue. Section 4.3 introduces our tech-
nique based on variation points, together
with a small example that illustrates the
use of the technique. Finally, Section 4.4
summarizes the paper and highlights some
open issues for further work.

8 CMU/SEI-2006-SR-002

4.2 Challenges and Related
Work

As noted above, the product line architec-
ture consists of a core architecture (CA)
which is used as the basis for developing a
number of individual product architectures
(PAs). The CA is necessarily underspeci-
fied, while the individual PAs must be
fully specified since the actual products
will be derived from them. However, the
set of quality attributes for a given PA may
significantly differ from that of the under-
lying CA, and even priorities of different
attributes may differ. To consider the in-
terplay between the quality attributes of
individual PAs and those of the CA, we
need to start by considering the CA. The
quality attribute goals in the CA are ad-
dressed through the so-called sensitivity
and tradeoff points [1, 4]. A sensitivity
point is an area of the architecture which
determines the responses of at least one
quality attributes. A tradeoff point is an
area of the architecture which determines
the responses of two or more quality at-
tributes, usually in opposing ways. (Note
that each tradeoff point is a sensitivity
point by default.)

The problem lies, of course, in that the
individual PAs have quality attributes and
priorities of their own. Satisfying those
attributes may cause conflict with the de-
cisions made in the CA, thus compromis-
ing the quality attributes that should be
common to both the CA and all PAs.
Namely, the changes that fully specify an
underspecified CA, and thus instantiate
the particular PA, are made in an area with
a variation point�the requirement spe-
cific to the PA but not present in the CA
itself. If the variation point overlaps with a
sensitivity point of the original CA, the

corresponding quality attribute may be
affected. If the variation point overlaps
with a tradeoff point, several of the origi-
nal attributes will be affected. Now, each
of the individual PAs instantiates a par-
ticular variation point from the underlying
CA in its own fashion. As a result, con-
formance checking between the CA and
individual PAs is a complex process, and
the problem is not made any easier by the
fact that there may be quite a few PAs de-
rived from a single CA.

Several authors have identified this prob-
lem in the context of architecture reengi-
neering. In most cases, such reengineering
is based on updating the �as designed� ar-
chitecture of a system from the �as-built�
architecture reconstructed by reverse en-
gineering. Once the architectural descrip-
tion of the existing system is accurately
specified, it can be modified in order to
fulfill the emergent quality goals of the
new target system.

Bengtsson and Bosch present an iterative,
scenario-based reengineering method for
transforming software architectures to
provide desired quality attributes re-
sponses [3].

QADSAR [13] is a quality attributes sce-
nario driven reverse engineering method
for architectures of existing systems,
whose tool support is the ARMIN. The
goal of a QADSAR reconstruction is to
provide architectural description and in-
formation on architectural drivers to en-
able qualitative architectural analysis.

Stoermer et al. [12] provides a codifica-
tion of six practice patterns for architec-
tural reverse engineering. These patterns
are described with a name, context of ap-

CMU/SEI-2006-SR-002 9

plication, concise statement of problem in
the context, an example illustration in an
industrial context, and the expected solu-
tion/delivery from applying the pattern.
The paper also describes some common
approaches to reverse engineering, includ-
ing tool supported approaches. The suit-
ability of different approaches (and the
accompanying tools) for use in the prac-
tice patterns is also discussed. The result
of the analysis revealed the lack of ade-
quate coverage for the practice pattern by
the existing approaches.

Finally, Tahvildari et al. [14] proposed a
quality-driven software reengineering
framework similar to that of Bengtsson
and Bosch [3]. This framework is based
on the use of desirable target-system
qualities to define and guide the reengi-
neering. According to the Stoermer�s prac-
tice pattern catalogue [12], this framework
may be categorized into the quality attrib-
ute changes practice pattern. In this pat-
tern, legacy systems are reengineered to
improve some desired quality attributes
responses, such as performance or main-
tainability.

4.3 Variation Point Concepts
Usage

In order to ensure quality congruence be-
tween the common architecture and indi-
vidual product architectures, both the ex-
isting and the emerging ones, we make use
of the concept of variation points. Varia-
tion points are architectural placeholders
for augmenting the CA with behavioural
extensions. They are instantiated as con-
crete variants in individual product archi-
tectures. The sensitivity points are those
architectural decisions that affect one or
more quality goals [8]. For example, the

encryption of sensitive message exchange
between two components may improve
the security quality of a software-intensive
system. The architectural decision to in-
troduce cryptographic components be-
tween the two communicating compo-
nents is a sensitivity point intended to
implement security insofar as message
exchange between the two components is
concerned.

Architectural decisions made in the proc-
ess of defining the CA, and subsequently
found to be sensitivity points to one or
more quality attributes, continue to remain
valid for individual product architectures.
A possible exception would be the case in
which the creation of a PA involves the
addition of component variants to those
parts of the architecture which interact
with the sensitivity points. In the example
given above, consider adding a third com-
ponent to periodically receive exception
messages from both components. If such
notification messages to this third compo-
nent are not similarly encrypted, the secu-
rity of the system may be jeopardized.

An area of the architecture, which is a
sensitivity point and which contains at
least one variation point, will be referred
to as an evolvability point. Such varia-
tion/evolvability points deserve special
treatment, as they have the potential to
alter (and, possibly, damage) the quality of
the architecture(s). In order to defuse that
potential, each evolvability point in the
CA is accompanied by suitable guidelines
to constrain or guide subsequent PA de-
sign decisions and conformance checking.
Thus, the developers are warned against
making design decisions in a PA that
could invalidate the quality goals already
identified in the CA.

10 CMU/SEI-2006-SR-002

Figure 4-1: Example product line architecture adapted from [7]

(Unshaded boxes represent mandatory components; vertically striped boxes represent alternative com-
ponents; shaded boxes represent optional components.)

As the CA changes, the evolvability con-
straints (or quality attributes conformance
constraints) are updated accordingly to
guide future design of the PAs. The
evolvability points also help simplify
maintenance because the architects would
be rightly guided to those critical design
decisions that control quality attribute re-
sponses.

As an example, consider the architecture
shown in Figure 4-1, which is made up of
three complex (or composite) components
CC1, CC2, and CC3. Each of these com-
ponents is in turn made up of a number of
primitive components. In the product line
approach, those primitive components can
be identified as mandatory (or common),
optional, or alternative. Mandatory com-
ponents, by definition, are fully specified
in the CA and are always present in any
PA. Optional components are underspeci-
fied as variation points in the CA; they
can become fully specified as components
(or variants) in a given PA, or they will
not be present at all. Finally, alternative
components are underspecified as varia-
tion points in the CA but must become

fully specified into some component (or
variant) in the PA.

In the definition of this architecture, de-
sign decisions that interact with one or
more quality attributes (i.e., sensitivity
points) are assumed to be located in some
of the components. Let�s assume that per-
formance and availability are the two
quality attribute goals of the highest prior-
ity. We shall consider two scenarios in
relation to the architecture illustrated in
Figure 4-1: in the first scenario, the architec-
ture is taken to be a product architecture
(PA), while in the second, it is taken to be
the core architecture (CA).

Scenario 1: architecture is a PA
If the architecture in Figure 4-1 is a prod-
uct architecture, then the shaded and un-
shaded boxes are fully specified architec-
tural components (i.e., primitive
components). In this scenario, we will
consider two possibilities concerning the
nature of the sensitivity points.

In one case, let the sensitivity points be
located in the mandatory components
whose design decisions are preset in the

CMU/SEI-2006-SR-002 11

CA. For example, the sensitivity interact-
ing with performance is localized in PC23,
while that of availability is localized in
PC24. Since both sensitivity points are
localized in mandatory components, each
individual PA inherits those sensitivity
points intact. With them, performance and
availability qualities are inherited from the
CA. As a result, the availability and per-
formance quality will always be met in
this PA. In fact, every product built from
that CA is guaranteed to provide the preset
quality responses for performance and
availability.

Alternatively, one or both quality attrib-
utes may be localized in an optional or
alternative component. Let us assume that
the performance quality of this PA is de-
termined through the appropriate design
decisions of CC2. Further, assume those
design decisions are jointly localized in
components PC24 (mandatory) and PC21
(alternative). The design decisions of
PC24 are determined during the CA defi-
nition, while those of PC21 are deter-
mined in this particular PA definition. If
the correct guarantees for performance are
provided through PC24, but not through
PC21, the desired performance response
may not be guaranteed. To avoid this, the
PA must correctly specialize PC21 from
its variation point definition in the CA; to
this end, relevant design decisions need to
be guided or constrained in an appropriate
way, as described below.

Scenario 2: architecture is the CA
In this second scenario, let us assume that
the architecture in Figure 4-1 is the CA, in
which case only the white boxes are fully
specified, while the shaded and striped
ones correspond to variation points of ei-

ther optional or alternative type. As in the
previous scenario, there are two possible
cases to consider.

If all the sensitivity points in this architec-
ture are located in mandatory components
(which should be the goal of every prod-
uct line design), then the CA design deci-
sions will address the common quality of
all products.

However, the above case is not always
what is obtained in reality. Oftentimes,
there are two or more sensitivity point
localized in both areas that has been fully
are not fully specified (variation point).
The architects specified (e.g., mandatory
components) and areas that can only de-
sign to fulfill the quality goal of the man-
datory component and expect product ar-
chitects to fulfill their part in designing the
variants for the appropriate quality re-
sponse. If the teams are different, this may
be hard to do without duplication of ef-
forts.

To ensure conformance of the PA design
decisions to those of the CA, in order to
fulfill a common quality goal, an evolva-
bility point and evolvability constraint pair
are needed. It is not every variation point
in the CA that is an evolvability point, but
only those that interact with the sensitivity
point. The designers of the CA will ac-
company such evolvability points with
constraints/guidelines to help product ar-
chitects in their work.

Evolvability constraint is a statement
about an evolvability point that guides
product architecture creation in order to
fulfill desired quality goals. Just like every
other form of constraints, it may be de-
scribed using the syntax and semantics of

12 CMU/SEI-2006-SR-002

an ADL or other constraint language. The
constraint may restrict variant components
in their interaction protocol, internal
states, architectural styles, implementation
or usage [9] in order to fulfill some quality
goals.

The combined use of evolvability point
and evolvability constraints ensures that
PAs remains in conformance with the CA.
The following is a description of an
evolvability point (EP) and its correspond-
ing evolvability constraint (EC), as de-
fined in a recent case study of a product
line called btLine, in the domain of mobile
and electronic payment systems.

EP: The response time of the btLine prod-
uct to tasks delegated to it is dependent on
whether it is interfaced directly to the leg-
acy and back office systems of its host
organisation or not. The fact that design
decision on product integration varies
from product to product makes it an
evolvability point.

EC: To enhance response time for transac-
tion involving a product, external data
request from within the product (e.g., bal-
ance of a customer account in the host
banking system) must not involve compli-
cated and time-consuming queries. Alter-
natively, an external integration mecha-
nism may be deployed to synchronize
account details between the bank systems
and their local btLine product; of course
with guidance from the btLine team. Bet-
ter still, outbound request from a btLine
product to external systems may be routed
to a low-traffic data source or business
component for improved response time.

4.4 Conclusion and Open Is-
sues

We highlight the problem context and the
challenges of ensuring quality attributes
conformance between a product line
common CA and its product PAs. Subse-
quently, we described a technique for im-
plementing this form of conformance dur-
ing product development and
maintenance. The technique focuses on
identifying variation points that interact
with sensitivity points. Those points, re-
ferred to as evolvability points, are ac-
companied with suitable guidelines and/or
constraints. The constraints inhibit any PA
design decisions from degrading the preset
quality attributes� responses of the CA.
Adhering to the constraints and guidelines
would ensure that the quality attributes of
the PA are in conformance with those of
the CA.

The main contributions of this approach
include its architecture-centric focus for
reasoning about quality attributes confor-
mance of the product architectures to the
CA and systematic use of variation points
to constrain product architectures from
deviating from the preset qualities of the
CA. Both of these should facilitate under-
standing of the interactions, conflicts, and
tradeoffs between quality attributes of dif-
ferent forms of architecture encountered in
product line development.

Much of the issues relating to quality at-
tributes conformance between the CA and
the PAs are still open. First and foremost,
considerable advances have been made
regarding architecture recovery from ex-
isting systems�but extraction of CA and
PAs from such systems is still an open
area for research.

CMU/SEI-2006-SR-002 13

Second, there is need for characterizing
those areas of the CA that do not feature
any variation points, but that have the po-
tential of determining qualities both in the
CA and the PAs.

Other open questions include: What ap-
proach can be used to resolve quality at-
tributes conflicts between the CA and PA?
How responsive is the current result to
product line development in the evolu-
tionary approach involving reverse engi-
neering or reengineering? What is the im-
pact of the CA evolving in terms of
functionality and quality on the quality
responses of the product architectures?
How can software product line specialists
utilize the result of the characterizations of
conformance checks between a product
line�s CA and PAs for checking confor-
mance of the code-dependent (as-built)
architecture to the documented (as-
designed) PAs? Finally, while tool support
is always a plus, the exact details of sup-
port for quality conformance checking and
traceability in a product line context have
yet to be worked out.

Some of these issues will be addressed in
our future research.

4.5 References
[1] L. Bass, P. Clements, and R. Kazman.
Software Architecture in Practice. Addi-
son-Wesley, Reading, MA, 2nd edition,
2002.

[2] J. Bosch. Design & Use of Software
Architectures. Addison-Wesley, Harlow,
England, 2000.

[3] P. Bengtsson and J. Bosch. Scenario-
based software architecture reengineering.

ICSR ’98, p. 308,Washington, DC, USA,
1998.

[4] P. Clements, R. Kazman, and M.
Klein. Evaluating Software Architec-
tures—Methods and Case Studies. Addi-
son-Wesley, Reading, MA, 2002.

[5] P. Clements and L. Northrop. Software
Product Lines. Addison-Wesley, Reading,
MA, 2002.

[6] P. Clements and L. Northrop. A
Framework for Software Product Line
Practice Version 4.2. Software Engineer-
ing Institute, 2005.

[7] E. Dincel, N. Medvidovic`, and A. van
der Hoek. Measuring product line archi-
tectures. In PFE ’01: Revised Papers from
the 4th International Workshop on Soft-
ware Product-Family Engineering, pages
346�352, London, UK, 2002.

[8] R. Kazman, M. Klein, and P.
Clements. ATAM: Method for architecture
evaluation. CMU SEI Technical Note
CMU/SEI-2000-TR-004, ADA382629,
Software Engineering Institute, Pittsburgh,
PA, 2000.
http://www.sei.cmu.edu/publications
/documents/00.reports/00tr004.html

[9] N. Medvidovic and R. N. Taylor. A
framework for classifying and comparing
architecture description languages.
ESEC’97/FSE-5, pp. 60�76, Zurich, Swit-
zerland, 1997.

[10] D. E. Perry and A. L. Wolf. Founda-
tions for the study of software architec-
ture. SIGSOFT Software. Eng. Notes,
17(4):40�52, 1992.

14 CMU/SEI-2006-SR-002

http://www.sei.cmu.edu/publications

[11] M. Shaw and D. Garlan. Software
Architecture: Perspectives on an Emerg-
ing Discipline. Prentice Hall, Englewood
Cliffs, NJ, 1996.

[12] C. Stoermer, L. O�Brien, and C. Ver-
hoef. Practice patterns for architecture
reconstruction. WCRE ’02, p. 151, Wash-
ington, DC, USA, 2002.

[13] C. Stoermer, L. O�Brien, and C. Ver-
hoef. Moving towards quality attribute
driven software architecture reconstruc-
tion. WCRE ’03, p. 46, Washington, DC,
USA, 2003.

[14] L. Tahvildari, K. Kontogiannis, and J.
Mylopoulos. Quality-driven software re-
engineering. J. Syst. Software., 66(3):225�
239, 2003.

CMU/SEI-2006-SR-002 15

16 CMU/SEI-2006-SR-002

5 Identification Of Variation Points Using
Dynamic Analysis

Bas Cornelissen
Delft University of Technology

The Netherlands
s.g.m.cornelissen@ewi.tudelft.nl

Bas Graaf
Delft University of

Technology
The Netherlands

b.s.graaf@ewi.tudelft.nl

Leon Moonen
Delft University of Technology

and CWI
The Netherlands

Leon.Moonen@computer.org

Abstract
In this position paper we investigate the
use of dynamic analysis to determine
commonalities and variation points as a
first step to the migration of similar but
separate versions of a software system
into an integrated product line. The ap-
proach detects forks and merges in differ-
ent execution traces as an indication of
variation points. It is illustrated by a sim-
ple implementation, which is applied to an
academic example. Finally we formulate a
number of research issues that need to be
investigated further.

5.1 Introduction
Already many successes have been re-
ported with respect to the use of product
line approaches in software development
organizations [1]. A company that mi-
grates to a product line approach must
define a product line architecture that in-
corporates the design decisions common
to all product line members. Additionally,
the variability between the different prod-
uct line members is to be made as explicit
as possible.

In practice, the idea of following a product
line approach can be applied in various
levels of detail. For example, one can de-

fine a reference architecture which speci-
fies all commonalities between products
but does not make the variation points
explicit. As such, we can distinguish be-
tween various maturity levels in a product
line deployment [2]. This is also illus-
trated in an industrial example discussed
by Graaf et al. [3].

A typical situation in which the adoption
of more product line concepts, and thereby
raising the maturity level, is beneficial, is
when a company has developed several
versions of a product for different custom-
ers. All these versions are extended in one
or more ways with respect to some origi-
nal system that was initially developed. At
some point a customer comes along that
requires some of the extensions that were
already implemented, but for different
versions of the product, and thus their im-
plementations reside in different develop-
ment branches. As more versions are be-
ing developed, such a situation becomes
more and more likely. At that point these
extensions should be reengineered into
clearly defined, configurable features by
making variation points explicit, ideally
enabling late binding. Domain and appli-
cation engineering methods have been
proposed to solve this problem. Typically
these approaches are applied in a context
where a product line is developed from

CMU/SEI-2006-SR-002 17

mailto:cornelissen@ewi.tudelft.nl
mailto:graaf@ewi.tudelft.nl
mailto:Moonen@computer.org

scratch, and do not take existing source
code into account. However, new product
lines are typically not developed from
scratch, but evolve from a set of similar,
traditionally developed products. Fur-
thermore, often many design decisions are
only explicit in the source code. In this
paper we consider the problem of detect-
ing forks and merges in the execution
traces generated by different versions of a
system so as to identify its variation
points. The remainder of this paper is or-
ganized as follows. Section 5.2 discusses
some related work. In Section 5.3 the ba-
sic idea of how execution traces can help
in identifying variation points is pre-
sented. Section 5.4 explains a simple im-
plementation of this idea that detects forks
and merges in execution traces. This im-
plementation is applied to a simple exam-
ple in Section 5.5. The paper is concluded
with some discussions and directions for
future work in Section 5.6.

5.2 Related Work
Van Gurp et al. [4] provide an excellent
introduction to the concepts of variability
in software product lines and discuss how
variability can be documented using fea-
ture graphs. However, they do not discuss
in much detail how commonalities and
variation points can be discovered.

Approaches for domain engineering aim at
identifying commonalities and variabili-
ties for the definition of product line archi-
tectures. Scope, variability, and common-
ality (SCV) analysis discussed by Coplien
et al. [5] provides a systematic way of
thinking about commonality and variabil-
ity. The same work also introduces FAST,
an approach for domain engineering based
on SCV-thinking. Other domain engineer-

ing approaches are FODA [6] and FORM
[7]. Typically these approaches are based
on the analysis of high-level information,
such as requirements to identify variabili-
ties and commonalities.

Execution traces have been used for many
purposes in the program analysis commu-
nity. However, in only a few cases traces
from different programs were compared to
each other. Much of the work is concerned
with identifying which components are
required for a specific feature or set of
features.

The software reconnaissance technique
proposed by Wilde and Scully [8] com-
pares execution traces of different sets of
scenarios to identify which components
are required for a specific feature.

Eisenbarth et al. [9] apply formal concept
analysis to execution traces that each ex-
hibit a different feature, so as to identify
feature-component relations. As such they
also investigate the commonalities and
variabilities between different features in
terms of the components required to im-
plement them.

These approaches compare different exe-
cution traces of the same program. There-
fore, they rely on the assumption that the
exhibition of a certain feature can be con-
trolled by the user, which is not always the
case.

5.3 Tracing and Variation
Points

Suppose we have two branches of a soft-
ware system, one being the base system
and the other a variant with one or more
additional features. Detection of variation
points using execution traces is based on

18 CMU/SEI-2006-SR-002

the idea illustrated by Figure 5-1. In this
graph, we have projected one trace on top
of the other. Each node in the graph de-
notes the usage of a component for the
execution of a scenario. The arcs indicate
the order in which the components were
used. The fork in Figure 5-1 can be con-
sidered the variation point. All behavior
executed up to the split is common behav-
ior and the components that are used after
the split are feature-specific.

The components considered in an execu-
tion trace are units of source code. Differ-
ent levels of granularity are possible:
statement, method, class, package or other
abstractions.

Execution traces are obtained by execut-
ing some scenario. Comparison of execu-
tion traces is only meaningful when the
corresponding scenarios are either the
same or very similar. In this context a sce-

nario is defined by the input offered to the
system. We do not consider the system�s
response as part of the scenario, as the
intention is to execute scenarios on differ-
ent systems that yield different responses.

For the localization of variation points in
the implementation that correspond with
the specific features, we need two execu-
tion traces: one in which the extension is
exhibited and one in which it is not. De-
pending on the feature, it may or may not
be possible for the two scenarios that gen-
erate these traces to be identical. In case
the exhibition of a certain feature depends
on the input, different scenarios are
needed. This can be the case, for example,
when the feature is only activated when a
user clicks a certain GUI button. If activa-
tion does not depend on the scenario, we
compare execution traces generated by
various versions of a system.

Figure 5-1: Forks and merges in an execution trace

The underlying assumption in our ap-
proach is that both execution traces will
largely resemble each other and the asso-
ciated graphs will have most nodes in

common, up to the point where the addi-
tional feature is exhibited (Figure 5-1).
Automatic detection of such a fork is triv-
ial: we take the node before the first de-

CMU/SEI-2006-SR-002 19

viation in the two execution traces. The
detection of a merge, however, is more
involved. Simply detecting the first pair of
nodes that are identical after the fork
might not be meaningful. Usage of a spe-
cific component in both traces does not
necessarily imply that the same behavior
was demonstrated from a user�s perspec-
tive. The next section will describe a solu-
tion to this issue using an evolving com-
parison window.

The generation of traces that can be com-
pared meaningfully is even more compli-
cated if non-deterministic behavior is con-
sidered (e.g., in games).

5.4 Approach
In this section, we first present the running
example that is used in the remainder of
this paper to illustrate our approach for the
identification of variation points using
execution traces. Next, we explain how
we obtain those traces and finally how
they are processed.

5.4.1 Running example: Pacman
The system we use as a running example
in this paper is a java-based game called
Pacman. With a little imagination, we can
regard Pacman as a simple example of a
software product line.

Pacman is a modest software system con-
sisting of 20 java classes and approxi-
mately 1000 lines of code. Like in a soft-
ware product line there exist several
variants of this system, each with distinct
added features.

For example, in the reference system there
is one hardcoded map being loaded when-
ever a game is played. In another version,
which can be considered a member in our

product line, functionality has been added
(in a separate class) to read user-defined
maps from a file. Yet another version of
the system features an additional type of
entities on the map with which the player
and the monsters can interact.

5.4.2 Dynamic analysis using as-
pects

We obtain execution traces by instrument-
ing the system with trace statements. We
add these trace statements by means of
aspect-oriented programming. Aspect-
oriented programming is extremely suit-
able for implementing a crosscutting con-
cern such as tracing since it allows us to
add code at various program locations
with limited effort. We use AspectJ to
weave additional code in the system such
that, whenever a method is called, a mes-
sage is printed to a log file. This message
contains both the method being called and
the class to which this method belongs.

Now, we can generate traces containing
the methods called during execution. De-
pending on the desired level of granularity
of variation point detection, we may need
to further process this trace, e.g. to gener-
ate a trace on the class level.

Alternatively, one could use the Java Vir-
tual Machine Profiler Interface (JVMPI)
to collect traces from a system, as is done,
for example, by Reiss and Renieris [10].

5.4.3 Determining variation points
When dealing with software product lines,
each of the product line members gener-
ally contains a set of features. Typically,
the members have some of these features
in common whereas others are product-
specific. If an architect is to combine two
or more products, the components respon-

20 CMU/SEI-2006-SR-002

sible for the latter type of features�the
variation points�must be determined.

5. If the checksums still do not match,
shift the reference window down one
method. Repeat the previous step, but
repeat the current step a maximum of
M times.

We propose a method in which we com-
pare the traces generated by two versions
of a similar system to discover variation
points. On the one hand we have a trace
generated by the reference system, called
the reference trace, and on the other hand
a trace generated by an extended version,
called the feature trace. These traces are
to be obtained by running both systems
using similar scenarios: ideally, the latter
differs from the former only in that the
specific extension is exhibited.

6. If there is still no match, either M is
too small or the branches never
merge, i.e. the systems never again
exhibit the same behavior at the
method level.

The values for N and M are variable and
depend on several factors. In assigning
suitable values to these variables, impor-
tant factors include the size of the system
and the predicted impact (in terms of the
amount of associated method calls) of the
feature at hand. We expect the architect to
have sufficient knowledge of the system at
hand to choose appropriate values for M
and N.

As mentioned in Section 5.3, branches are
not necessarily considered merged as soon
as the two traces once again have one
method in common. For this reason, we
require the traces to have multiple con-
secutive methods in common.

The algorithm being applied reads as fol-
lows: The branching behavior derived by the

algorithm can be visualized by presenting
contexts (of predefined sizes) of all fork-
ing and merging points in the traces to the
user. By visualizing and inspecting the
branching behavior, the architect has a
way of identifying which methods and
classes account for member-specific fea-
tures. Having approximated these varia-
tion points, it takes much less effort to
merge the two versions than if the entire
systems had required close inspection.

1. Compare the traces of the reference
system and the product line member
line by line.

2. If the two methods at hand differ, the
traces have split into branches. Cre-
ate an N-size checksum of the current
reference method and the next N-1
methods (henceforth, we will call this
the reference window).

3. Next, create a checksum of the up-
coming N methods in the feature
trace, thus creating the feature win-
dow.

5.5 Preliminary Results
To illustrate the method presented in the
previous section we have conducted some
experiments on the Pacman system de-
scribed earlier.

4. If the checksums are equal, the
branches are considered to have
merged. If they do not match, shift
the feature window down one
method, thus creating a new feature
checksum. Repeat this step a maxi-
mum of M times.

In this section, we will highlight the ex-
periment involving Pacman�s reference
system and the modified version featuring
separate map handling.

CMU/SEI-2006-SR-002 21

Figure 5-2: A fork and its context in the trace.

5.5.1 Generating traces
Choosing appropriate scenarios is rela-
tively easy in this case, as loading maps is
part of the initialization phase and there-
fore not subject to human intervention. It
is simply a matter of running both pro-
grams and exiting without actually having
played game.

Part of a method trace as generated by use
of the aspect mentioned in Section 5.2 is
depicted in Listing 5-1.

Incorporation of the actual stack depths is
not part of the results discussed here and
is subject to future research.

22 CMU/SEI-2006-SR-002

Listing 5-1: Part of a method trace

5.5.2 Branching behavior
We are now ready to compare the traces
by using the algorithm described in Sec-
tion 5.4.3. However, we need to define
some parameters first.

Since we are considering a small system
and a not so complicated feature, we do
not expect branches to be very long, e.g.
perhaps tens of methods at most. For the
same reason we will set the checksum size
at a relatively small value, e.g., 5 methods.
Finally, the size of the context being pre-
sented to the user is set to 7.

The results can be viewed in Figure 5-2
and Figure 5-3. Figure 5-2 depicts the
context of the point where the feature
trace started deviating from the reference

trace. One can easily see that whereas in
the original version a local method is in-
voked to get a map, the other version in-
stantiates a whole new class that deals
with the map handling.

Figure 5-3 illustrates that not many meth-
ods calls later, the branches have merged.
From here on, the traces are apparently
similar.

Judging by the visualizations�if pre-
sented at the correct part and, if desired,
migrate the components associated ab-
straction level�an architect can easily
isolate the feature specific with this varia-
tion point towards other existing product
line members.

CMU/SEI-2006-SR-002 23

Figure 5-3: A merge and its context in the trace.

5.6 Discussion and Future
Work

Effort. To repeat our experiment on a dif-
ferent subject system, one can apply the
following process:

1. Perform a quick (1-hour) exploration
of the system to gain some insight in
its structure. This provides an initial
estimate for the values of the M and
N parameters.

2. Determine appropriate scenario(s)
that exercise the desired features.

3. Add tracing instrumentation to the
system, e.g. by weaving aspects.

4. Collect execution traces for given
scenarios and (automatically) com-
pare them to find variation points.

5. If desired, repeat step 4 using alterna-
tive values for M and N to fine-tune
the results.

Precision. In the current implementation
we more or less assume that a merge point
is not located arbitrarily far from a fork.
Hence, we introduced the M-parameter in
our detection algorithm. This assumption
is valid because we require that one ver-
sion is a strict extension over the other.

If we abandon this requirement, we would
have to search both execution traces all

24 CMU/SEI-2006-SR-002

the way to the end to find potential
merges. The complexity of this search is
O(n2), which could be problematic for sys-
tems of realistic size, involving traces
consisting of millions of components. This
is why we advocate a sensible value for
M: a value defined by the architect, based
on how much impact he expects the par-
ticular feature to have on the given trace
granularity level (method level in the case
presented here). In the future we may be
able to automatically determine optimal
values for specific systems.

Future work. To render identification of
variation points feasible in the case of
complex systems, we need more refined
techniques. One approach is to take into
account not only the methods being called
but also their actual parameters. This
would require a straightforward extension
of the tracing instrumentation.

Another option is to also look at the stack
depth or maybe even the complete stack
whenever a method is called. Both these
extensions to our technique potentially
allow for the detection of extra forks, and
increase the probability that an identical
entry in the two call traces indeed implies
that the two versions were again exhibit-
ing common behavior, from a user�s per-
spective. Probably this also means that the
N-parameter can be smaller, which in turn
reduces the cost of the checksum calcula-
tions.

An alternative approach in dealing with
systems of realistic size would be to not
directly analyze the method trace, but to
first lift its elements to higher levels of
abstraction, e.g., from methods to classes
or packages. To this end, we would first
have to extract information with respect to

the structural decomposition of the sys-
tem.

Finally, once a feature is localized a next
step is to modularize the code that imple-
ments it. To provide guidelines for this
step we will investigate whether the num-
ber of times two traces intersect (in terms
of identical methods being called) before
the same behavior is exhibited (as defined
by the N-parameter) could be a measure
for the degree of �crosscuttingness� of a
feature, and hence for the effort required
to reengineer such a feature into a reusable
component.

5.7 Acknowledgements
This work was partially supported by
NWO Jacquard project Reconstructor.

5.8 References
[1] Software Engineering Institute. Prod-
uct Line Hall of Fame.
http://www.sei.cmu.edu/productlines
/plp_hof.html, 2005.

[2] Jan Bosch. Maturity and evolution in
software product lines: Approaches, arti-
facts and organization. In Proceedings of
the Second International Conference on
Software Product Lines (SPLC 2).
Springer-Verlag, August 2002.

[3] Bas Graaf, Hylke van Dijk, and Arie
van Deursen. Evaluating an embedded
software reference architecture � indus-
trial experience report. In Proceedings of
the 9th European Conference on Software
Maintenance and Reengineering (CSMR),
Manchester, UK, March 21-23 2005.
IEEE Computer Society.

[4] Jiles van Gurp, Jan Bosch, and Mikael
Svahnberg. On the notion of variability in

CMU/SEI-2006-SR-002 25

http://www.sei.cmu.edu/productlines

software product lines. In Proceedings of
the Working IEEE/IFIP Conference on
Software Architecture(WICSA’01). IEEE
Computer Society, August 2001.

[5] James Coplien, Daniel Hoffman, and
David Weiss. Commonality and variability
in software engineering. IEEE Software,
15(6):37�45, November 1998.

[6] Kyo C. Kang, Sholom G. Cohen,
James A. Hess, William E. Novak, and A.
Spencer Peterson. Feature-oriented do-
main analysis (FODA) feasibility study.
Technical Report CMU/SEI-90-TR-021,
Software Engineering Institute, 1990.
http://www.sei.cmu.edu/publications
/documents/90.reports/90.tr.021.html

[7] Kyo C. Kang, Sajoong Kim, Jaejoon
Lee, Kijoo Kim, Euiseob Shin, and
Moonhang Huh. FORM: A feature-
oriented reuse method with domain-
specific reference architectures. Annals of
Software Engineering, 5:143�168, January
1998.

[8] N. Wilde and M.C. Scully. Software
reconnaissance: Mapping program fea-
tures to code. Journal on Software Main-
tenance: Research and Practice, 7(1):49�
62, January 1995.

[9] Thomas Eisenbarth, Rainer Koschke,
and Daniel Simon. Feature-driven pro-
gram understanding using concept analy-
sis of execution traces. In Proceedings of
the Ninth International Workshop on Pro-
gram Comprehension (IWPC’01). IEEE
Computer Society, May 2001.

[10] Steven P. Reiss and Manos Renieris.
Generating Java trace data. In Proceedings
of the ACM 2000 conference on Java

Grande. ACM Press, 2000. ISBN 1-
58113-288-3.

26 CMU/SEI-2006-SR-002

http://www.sei.cmu.edu/publications

6 Identifying Domain-Specific Reusable
Components from Existing OO Systems
to Support Product line Migration1

Dharmalingam Ganesan, Jens Knodel
Fraunhofer Institute for Experimental Software Engineering (IESE),

Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
{ganesan, knodel}@iese.fraunhofer.de

Abstract
Domain-specific reuse is seen as a promis-
ing way to increase the value of reuse.
This paper reports our ongoing work
aimed at identifying domain-specific
software components from an existing
system to achieve large-scale reuse. The
fundamental motivation of the proposed
method is to reduce the amount of source
code the human-expert has to explore in
order to identify domain-specific candi-
dates. The basic premise assumed by this
method is that reusable components have
certain quality attributes like functional
usefulness, readability, testability, etc., and
which can be measured to certain extent
with help of metrics.

1 This work is partially funded by German ministry under EUREKA 2023/ITEA-ip00009 ’FAct
based Maturity through Institutionalization Lessons-learned an Involved Exploitation of
System- family engineering’ (FAMILIES).

Keywords: domain engineering, reuse,
reverse engineering, metrics, software
product lines

6.1 Introduction
Software reuse is considered as a promis-
ing way of developing systems. It helps an
organization to improve their productivity
and the quality. Software reuse can be ap-
plied to any life cycle product, not only to
source code. Jones [10] identifies ten po-
tentially reusable aspects of software pro-
jects as shown in Table 6-1. (Ordering of
aspects in Table 6-2 is not with respect to
priority.)

1. architecture 6. estimates

2. source code 7. human interfaces

3. data 8. plans

4. design 9. requirements

5. documentation 10. test cases

Table 6-1: Reusable Aspects of Software
Projects

However, in practice, granularity of reuse
is small. That is, very often, utility librar-
ies (for e.g., string, math libraries) are re-
used across products. Value of such a re-

CMU/SEI-2006-SR-002 27

use is quite limited [8]. In a mature do-
main, most of the required solutions al-
ready exist in current implementations. It
has been argued in [13] that there are three
categories of software that make up a sys-
tem:

• Utility components contribute to 20%
of whole application size.

• Domain-specific components con-
tribute to 65% of whole application
size.

• Application-specific components
contribute to 15% of whole applica-
tion size.

The distribution shows that reuse of do-
main-specific components from an exist-
ing system has the most potential in reduc-
ing the development cost and maintenance
effort [1]. The identification of domain-
specific components is not an obvious task
since systems are typically developed for
a single customer. Designers and engi-
neers thereby do not distinguish between
domain-specific and application-specific
components [9] as it is explicitly done in
product line engineering. So these compo-
nents are not organized separately. Hence,
expert effort has to be spent to make these
components apparent.

We believe that reverse engineering can
help to identify domain-specific compo-
nents and therefore to support the reuse
activities by reducing the expert effort in

searching for component candidates,
which is a problem especially for large
systems. Our approach helps experts to
semi-automatically identify domain-
specific components. From here onwards,
we limit our discussions only to object-
oriented (OO) systems. And consequently,
the term component refers to the collec-
tion of functionally related classes with
specification of required and provided
interfaces.

The fundamental motivation of the pro-
posed approach is to reduce the amount of
data the human expert has to review in
order to identify domain-specific classes.
The basic premise assumed by this
method is that reusable classes have cer-
tain quality attributes like functional use-
fulness, readability, testability, etc. These
quality attributes are mapped on metrics
(e.g., by using the GQM method). The
method classifies the domain-specific
classes based on the metrics derived. The
expert has to validate only a few number
of proposed candidates, which, if ac-
cepted, become then the foundation of
reusable components (see Figure 6-1).

The remainder of the paper is organized as
follows: Section 6-2 explains the factors
affecting reusability. Section 6-3 presents
component extraction method. Section 6-4
presents the related work, while Section 6-
5 concludes this work.

28 CMU/SEI-2006-SR-002

Figure 6-1: Process model for component extraction

6.2 Approach
6.2.1 Terminology
Forward Engineer: An engineer who
wants to reuse existing components of the
same or similar domains to reduce devel-
opment effort.

Domain Expert: A specialist with de-
tailed knowledge of the domain who is
also familiar with the architecture of the
system where the existing components
reside.

Reverse Engineer: A person having un-
derstanding of OO metrics and being ca-
pable to analyze an existing system (no
need to have expertise in the domain).

6.2.2 Factors Affecting Reusability
Figure 6-2 shows a �fishbone diagram�
that represents the factors affecting reus-
ability. It can be observed from this figure
that reusability depends on Usefulness,
Costs and Quality. Each of these factors is
explained below.

Usefulness
To be reused, a prerequisite is that the
component implements functionality that
is useful for the new system. It is ex-
tremely hard to decide in an automated
way whether or not a component will be
useful in a new system, since this decision
is based on domain knowledge and the
requirements of the new system. However,

CMU/SEI-2006-SR-002 29

an indirect automatable measure of use-
fulness was developed to measure the re-
usability of the existing component within
the analyzed system itself (i.e., its origin).
The assumption is that the highly used
components within a system are a good
candidate for reuse in a new context.

There is also a limitation because of our
assumption: We tend to exclude those do-
main-specific components that are not
frequently used in the existing system. It
is important to note that the domain expert
is crucial to decide about the usefulness of
a component candidate.

Figure 6-2: Factors affecting reusability [4]

Cost
Reuse cost includes cost of identifying a
component from the existing system,
modifying and integrating them into a new
system. Measures of size and complexity
of a component provide a partial indica-
tion of difficulty in adapting it to reuse in
a new system. The cost to reuse the com-
ponent is influenced by the readability of
its code, a characteristics that can again be
partially evaluated using size and com-
plexity measures. That is, small and sim-
ple code fragments are usually easier to

read and adapt than larger and complex
fragments.

Quality
The quality of the component is important
in order to succeed in reuse-driven devel-
opment. Several qualities that are impor-
tant for component reuse are correctness,
readability, testability, ease of modifica-
tion, and performance, but most of them
are not directly measurable. Measures of
size and complexity of a component how-

30 CMU/SEI-2006-SR-002

ever provide a partial indication of the
presence of these qualities in it.

6.2.3 Metrics for Measuring
Costs, Usefulness and
Quality

Table 6-2 contains definitions of the met-
rics used for measuring costs, usefulness,
and quality. A complete discussion about
these metrics can be found in [5]. Our mo-
tivation is to come up with a reusability
model, which contains metrics and the
suitable upper and lower bounds to sup-
port identify reusable classes.

Metric Definition

NMPUB The number of public methods imple-
mented by a class.

WMC Cyclomatic complexity of a class.

NOC The number of children/grandchildren of a
class.

DIT The level a class is located from the root in
the inheritance hierarchy.

OCAEC The number of times a class has been
used as an attribute in other classes.

CALLS_IN The total number of times the methods of a
class was called by other classes.

LCOM Cohesion�The number of sets of methods
that access the same attributes.

Table 6-2: Definition of Metrics

Measuring Usefulness
We measured the functional usefulness
using the assumption: a class that is used
frequently within a system is a good can-
didate for reuse in a new system in similar
domain. In OO systems, a class A can use
another class B in the following ways:

• Methods of A invokes the methods of
B

• A contains an instance of B as its at-
tribute

• A inherits from B

• A can read/write attributes of B

Hence, we have chosen the metrics
namely NOC, OCAEC, CALL_IN and
DIT to measure the usefulness within the
existing system itself.

If a class has many children/
grandchildren, then it is likely that it im-
plements certain generic functionality.
Hence we need to take only the lower
bound for NOC because the more the
number of children/grandchildren, the
higher is its assumed genericity.

The reason for choosing DIT metric is that
if a class occurs near the leaf of the inheri-
tance tree then, in most cases, it imple-
ments probably certain specialized func-
tionality. For reuse candidate�s
identification, specialized functionality is
obviously not the first priority. That is, we
should not go too deep in the inheritance
hierarchy. Hence we need to take only the
upper bound for DIT metric.

In many applications, classes are not al-
ways in the inheritance tree. That is, there
are classes that don�t have either a parent
or children and such classes might also be
good candidates for reuse. In order to in-
clude such classes for potential reuse, we
have chosen CALL_IN and OCAEC.
CALL_IN metric is used to identify those
classes that are used heavily by methods
of other classes. The more the value of
CALL_IN, the higher is its usefulness
within the system. If the value of
CALL_IN is below a certain value, it is
likely that its services are not important
that to the system. Hence we need to take
only the lower bound for CALL_IN.
OCAEC can be used to measure how use-
ful the class is in building the other
classes. That is, if a class has higher
OCAEC then it is used an attribute in

CMU/SEI-2006-SR-002 31

many other classes. Similar to CALL_IN,
we need to select only the lower bounds
for OCAEC.

Measuring Cost
We can measure the reuse costs using the
metrics NMPUB and WMC. If NMPUB
and WMC are high then it might take
more effort to understand, modify and in-
tegrate them into a new system. On the
other hand, if both NMPUB and WMC are
too low, it is very likely that there is noth-
ing interesting in it. So it is better not to
exceed both the bounds.

Measuring Quality
We can measure quality using NMPUB,
WMC and LCOM. If a class has high
NMPUB then it is likely to have impact
on correctness, readability. Testability can
be partially predicted with help of WMC
[3]. Higher the WMC, lower is the test-
ability of a class. If cohesion metric
LCOM is high, it is very likely to reduce
the understandability and readability of
the class because of the variety of func-
tionality implemented in it. Hence, only
the upper bound is necessary for LCOM.

Figure 6-3: Associating OO metrics with factors affecting reusability

32 CMU/SEI-2006-SR-002

6.3 Process
We introduce an approach for the extrac-
tion of domain-specific components from
an existing system, where reverse engi-
neers, forward engineers, and the domain
experts work closely together. Figure 6-4
depicts the 10 steps of our approach in the
pseudo-code format.

Step 1: Goal Description: In this step, the
forward engineer formulates the goal and
explains it to the reverse engineer. The
forward engineer can describe the kind of
components he wants to reuse from the
existing system. For instance, let us as-
sume that the forward engineer wants to
build an IDE for modeling software archi-
tectures by reusing an existing IDE for
Java. The forward engineer then explains
the need for components implementing
functionality related to workspace, pro-
jects, package hierarchy, and file man-
agement.

Step 1: The forward engineer describes the
goal to the reverse engineer.

Step 2: The reverse engineer sets up the fact
base.

Step 3: The reverse engineer selects metrics
and choose its bounds.

Step 4: The reverse engineer identifies candi-
date classes which satisfied the criteria de-
fined in step 3.

Step 5: A “lightweight” review on the classes
from step 4 is done by reverse engineer. If he
is not satisfied then he goes back to step 3.
Otherwise, he passes the candidates to step 6.

Step 6: The domain-expert reviews the candi-
dates and classifies them.

Step 7: The reverse engineer analyses the
classification made by the domain-expert.

Step 8: Both the engineers start building com-
ponents from the key classes of step 6.

Step 9: Interface analysis is done by the re-

verse engineer to know the dependency be-
tween the components from step 8 and the
rest of the existing system.

Step 10: The forward engineer makes the final
decision about the reuse of the components
using the output of step 9.

Figure 6-4: Different steps for component ex-
traction

Step 2: Setting up the fact base: The re-
verse engineer parses the source code of
an existing system and builds an initial
model of source code. The initial model
could be, for example, an RSF representa-
tion of the source code. In addition, for
each class in the source model, he com-
putes the metrics defined in Table 6-2.

Step 3: Select metrics and choose its
bounds: In this step, the reverse engineer
chooses bounds for the metrics defined in
Table 6-2. But the problem is a lack of an
analytical method that a reverse engineer
can use to choose the bounds for these
metrics. In the first iteration, in order to
choose bound(s) for a metric, he computes
the average of the metric values. This
seems to be like a trial and error but it is
nevertheless a meaningful starting point.

Metric Minimum Maximum
NMPUB X X

WMC X X

LCOM X

CALLS_IN X

DIT X

NOC X

OCAEC X

Table 6-3: Metrics with Lower and Upper
Bound

Step 4: Identify candidates: In this step,
the reverse engineer applies the metric
criteria developed in step 3 to all the

CMU/SEI-2006-SR-002 33

classes in the fact base. Classes which sat-
isfied the criteria will be passed to the step
5.

Step 5: Lightweight review: One of the
major problems is that reverse engineers
usually don�t have expertise in the appli-
cation domain. Therefore he cannot re-
view the candidates identified in step 4 for
its usefulness in a new system. But the
reverse engineer can do a lightweight re-
view to help the forward engineer. For
example, if the number of candidates iden-
tified in step 4 is too high then he rede-
fines the criteria defined in step 3. The
reverse engineer also uses the goal de-
scription during the light-weight review of
the identified candidates.

Step 6: Review by the domain expert: In
this step, the domain expert reviews the
classes identified in step 5 (based on the
goal description of step 1). The main focus
of the domain-expert in this review is to
decide about the functional usefulness of
the candidates. Domain expert classify
each of the classes given by reverse engi-
neer as follows:

• Utility – Classes which implement
general utility (for example, math rou-
tines).

• Application-specific – Those classes
that implement functionality specific
to single instance of a product line.

• Domain-specific – Those classes that
contain generic functionality needed
for all instances of a product line.

Step 7: Analyze classification: It is im-
portant to keep in mind that domain-
experts are usually busy. Therefore, the
reverse engineer must minimize the
amount of the candidates the expert has to

review but at the same time maximize the
domain-specific candidates. To achieve
this goal, the reverse engineer has to ana-
lyze the classification of the candidates by
the domain-expert. In order to provide the
domain-expert with many domain-specific
applies a filtering strategy. Filtering is
used to reduce the search-space for do-
main-specific classes. That is, certain
classes that are most likely not to be do-
main-specific, are ignored:

• If the root of inheritance tree is not
domain-specific then it is likely that
the complete inheritance tree is not
domain-specific. So, we can filter all
the classes involved in such trees.
However, this strategy needs to be ap-
plied carefully: For example, in Java,
the class �Object� is the root class of
all classes, but we can develop new
applications based on the existing
Java classes.

• If a class C is an application-specific/
utility class, then all the classes that
are dominated by C are likely to be
application/utility class. Domination is
defined using the dominance tree
where the nodes are classes and the
edge is the call relation between the
classes. Note that this assumption is
not always true; there could cases
where the application class uses a do-
main class. Nevertheless, we try to re-
duce the search-space by making such
kind of assumptions.

• If a class C, which satisfied the
bounds of the metric OCAEC, is ap-
plication-specific/utility then all the
classes that are used as attributes
within the class C are likely to be ap-
plication specific.

34 CMU/SEI-2006-SR-002

• One obvious filtering strategy is filter-
ing those classes which were already
reviewed by the expert. Before he ap-
plies the criteria defined in step 3,
these reviewed classes can be filtered
out.

Step 8: Component building: In this step
both forward and reverse engineer works
together to build components from the key
classes that are identified by step 6. From
the key classes, all the required dependen-
cies have to be extracted so that compo-
nents can be built. This requires analyses
of interfaces of the key classes.

Step 9: Interface Analysis: In this step,
the reverse engineer analyzes the depend-
ency between the components from step 8
and the rest of the system [11]. By using
the factbase, interface analysis identifies
all the required interfaces that are neces-
sary for the execution of a component in a
new system.

Step 10: Final decision and code analy-
sis: In this step, using the output of the
interface analysis, the forward engineer
decides whether to reuse the component or
not. His decision is influenced as well by
factors such as performance.

6.4 Related Work
Basili and Rombach [2] describe a com-
prehensive framework of models, model-
based characterization schemes, and sup-
port mechanisms for better understanding,
evaluating, planning and supporting all
aspects of reuse. We follow their reuse-
oriented software environment model to
set up a component repository for product
line migration.

Caldiera and Basili [4] describe Care that
helps identifying reusable component us-
ing a user-defined �reusability attribute
model� based on software metrics. We
customized this approach to object-
oriented paradigm to support the product
line migration activities in the presence of
existing systems.

Dunn and Knight [6] describe a model
based on an expert-system for the identifi-
cation of reusable components from exist-
ing systems. Suitability of this expert-
system to object-oriented paradigm needs
further research.

Diaz and Freeman [12] describe a scheme
to classify software for reusability. Their
premise is that reuse can happen only
when there is an automatic way of retriev-
ing the required software components
from the repository. Introducing such a
classification scheme is a part of our fu-
ture work.

Etzkorn and Davis [7] describe an ap-
proach for automatically identifying reus-
able classes from object-oriented system.
Their PATRicia system uses reusability
metrics and a quality model defined by
user to identify reusable classes. Their
CHRis tool uses natural-language tech-
niques to help expert deciding whether a
class implements certain useful function-
ality.

6.5 Conclusion and Future
Work

In this position paper, we described our
ongoing work aimed to identify domain-
specific reusable components. The funda-
mental motivation of the proposed method
is to reduce the effort spent by the human-
expert to identify domain-specific compo-

CMU/SEI-2006-SR-002 35

nent candidates. The basic premise as-
sumed by this approach is that reusable
components have certain quality attributes
like functional usefulness, readability,
testability, etc. that can be broken down
(at least indirectly) into are measurable
items.

Our immediate next step is to apply the
proposed approach on large-scale systems
to identify the benefits and limitations and
to base the default boundary values for the
metrics on the experiences we will make.

6.6 References
[1] J. Bayer et. al. PuLSE: A Methodology
to Develop Software Product Lines, in
Proc. of the Fifth ACM SIGSOFT Sympo-
sium on Software Reusability (SSR'99),
ACM, Los Angeles, CA, USA, May 1999.

[2] V.R. Basili and H.D. Rombach. Sup-
port for comprehensive reuse. Software
Engineering Journal, September 1991.

 [3] M. Bruntink and A. van Deursen. Pre-
dicting Class Testability Using Object-
Oriented Metrics. In Proc. of The Fourth
IEEE International Workshop on Source
Code Analysis and Manipulation; (SCAM
2004), pages 136-145, 2004.

[4] G. Caldiera and V.R. Basili. Identifying
and Qualifying Reusable Software Com-
ponents. IEEE Computer, 61-70, February
1991.

[5] S.R .Chidamber and C.F. Kemerer. A
metrics suite for object-oriented design.
IEEE Trans. Software Engineering, 20(6),
476-493, June 1994.

[6] M.F. Dunn and J.C. Knight. Automat-
ing the Detection of Reusable Parts in Ex-

isting Software. Proc. of ICSE, 381-390,
1993.

[7] L.H. Etzkorn and C.G. Davis. Auto-
mated object-oriented reusable component
identification. Journal of Knowledge-
Based systems, 9:517-524, 1996.

[8] W. Frakes and C. Terry. Software Re-
use: Metrics and Models. ACM Comput-
ing Surveys, 28(2), 1996.

[9] B. Graaf, M. Lormans, and H.
Toetenel. Embedded Software Engineer-
ing: The State of the Practice. IEEE Soft-
ware, 20(6):61-69. November 2003.

[10] C. Jones. Software return on invest-
ment preliminary analysis. Software Pro-
ductivity Research, Inc., 1993.

[11] J. Knodel. On Analyzing the Inter-
faces of Components. Workshop in Soft-
ware Reengineering, Bad Honnef, Ger-
many, 2004.

[12] R. Prieto-Diaz and P. Freeman. Clas-
sifying Software for Reusability. IEEE
Software, January 1987.

[13] J.S. Poulin. Measuring Software Re-
use: Principles, Practices, and Economic
Models. Addison-Wesley (ISBN 0-201-
63413-9), Reading, MA, 1997.

36 CMU/SEI-2006-SR-002

7 Analyzing the Product Line Adequacy of
Existing Components

Jens Knodel
Dirk Muthig

Fraunhofer Institute for Experimental Software Engineering (IESE)
Fraunhofer-Platz 1, D-67663 Kaiserslautern, Germany

{knodel, muthig}@iese.fraunhofer.de

Abstract
In most cases, adaptation is required to
make existing components suitable to the
context defined by a product line architec-
ture. This paper presents experience on
analyzing the product line adequacy of an
existing component in an industrial con-
text. Product line adequacy is based on the
results of the application of diverse re-
verse engineering techniques (architecture
evaluation, clone detection, code metrics,
and source code analysis). The paper pre-
sents these activities, their results, and the
action items derived to integrate the com-
ponent into the product line context.

Keywords: ADORE, product line archi-
tecture PuLSE-DSSA, reengineering, re-
verse engineering.

7.1 Introduction
Product lines are sets of software-
intensive systems sharing a set of features
and are derived from a common set of re-
usable assets [6]. Central artifacts of prod-
uct lines are their architectures, which
embrace decisions and principles valid for
each derived variant. Hence, architecture
development must ensure the achievement

of organizational and business goals, func-
tional and quality requirements.

Components as part of product line archi-
tectures are explicitly developed for sys-
tematic reuse. That is, they must support
the scope of variability required and be
flexible towards the anticipated changes.
Migrating existing components into prod-
uct line components thus means (in addi-
tion to resolving potential architectural
mismatches and improving the internal
quality) injecting the required variability
support. Existing components therefore
require a certain amount of adaptations to
achieve sufficient product line adequacy.
Product line architects face difficult deci-
sions whether to invest in the migration of
existing components or to construct new
product line components from scratch.
Hence, they pass on requests to reverse
engineering to analyze the product line
adequacy of the existing components. If
decided to adapt it, reengineering activi-
ties eventually are conducted to prepare
the existing component for its use in a
product line context.

In this paper, we present a particular case
of such a decision by reporting on the
analysis of an existing component in an
industrial context, where we applied
Fraunhofer PuLSE� (Product Line Soft-

CMU/SEI-2006-SR-002 37

ware Engineering)1 [2] and Fraunhofer
ADORE� (Architecture- and Domain-
Oriented Reengineering).2

The paper is structured as follows: Section
7.2 gives context information on the case
study, while Section 7.3 presents the ap-
plied approach. Section 7.4 reports on
results of the applied techniques; Section
7.5 concludes the paper.

7.2 Context
The case study was conducted in a large
organization migrating towards product
line engineering following the PuLSE
method. The organization defined a prod-
uct line architecture for a family of multi-
media systems in the automotive domain.
The products consist of two major parts: a
panel (mainly used for user interaction)
and the back-end system (mainly used for
computation, network functionality, and
external media).

The subject component of our case study
is one of the key components of the panel.
This Graphics component is responsible
for the complete interaction between
backend and panel, as well as composition
and visualization of the exchanged ele-
ments. The user interface is based on pre-
defined masks. A mask is thereby defined
as a collection of graphical elements and
positioning information (e.g., text fields,
bitmaps, buttons, lists, labels). The

1 PuLSE is a registered trademark of

Fraunhofer Institute for Experimental
Software Engineering (IESE), Kaiserslau-
tern, Germany.

2 ADORE is a registered trademark of
Fraunhofer Institute for Experimental
Software Engineering (IESE), Kaiserslau-
tern, Germany.

graphical elements contributing to a mask
are divided into static information relevant
for the panel only and dynamic sequence
control information coming from the
back-end system. The main architectural
driver is the minimization of the data flow
between the two parts.

7.3 Approach
The case study combined two Fraunhofer
methods: PuLSE, in particular its architec-
tural component PuLSE-DSSA (Domain-
Specific Software Architecture), and
ADORE.

7.3.1 PuLSE™-DSSA
PuLSE-DSSA deals with product line ac-
tivities at the architectural level. Since
greenfield scenarios [6] are found only
rarely in industrial contexts, it is designed
to smoothly integrate reverse engineering
activities into the process of developing a
product line architecture. The main under-
lying concepts of the PuLSE-DSSA are:

• Scenario-based development in itera-
tions that explicitly addresses the
stakeholders� needs.

• Incremental development, which suc-
cessively prioritizes requirements and
realizes them.

• Direct integration of reengineering
activities into the development proc-
ess on demand.

• View-based documentation to support
the communication of different stake-
holders.

The main process loop of PuLSE-DSSA
consists of four major steps (see Figure 7-
1).

38 CMU/SEI-2006-SR-002

Planning: The planning step defines the
contents of the current iteration and de-
lineates the scope of the current iteration.
This includes the selection of a limited set
of scenarios that are addressed in the cur-
rent iteration, the identification of the
relevant stakeholders and roles, the selec-
tion and definition of the views, as well as
defining whether or not an architecture
assessment is included at the end of the
iteration.

Assessment: The goal of the assessment
step is to analyze and evaluate the result-
ing architecture with respect to functional
and quality requirements and the
achievement of business goals. In an in-
termediate state of the architecture, this
step might be skipped and the next itera-
tion is started.

PuLSE-DSSA results in product line ar-
chitectures documented in a selection of
architectural views.

Realization: In the realization step, solu-
tions are selected and design decisions
taken in order to fulfill the requirements
given by the scenarios. When selecting
and applying the selected solutions, an
implicit assessment regarding the suitabil-
ity of the solutions for the given require-
ments and their compatibility with design
decisions of earlier iterations is made. A
catalog of means and patterns is used in
this phase. Means are principles, tech-
niques, or mechanisms that facilitate the
achievement of certain qualities in an ar-
chitecture whereas patterns are concrete
solutions for recurring problems in the
design of architectures.

7.3.2 ADORE™
The architecture development yields
product line components that have to be
engineered. Different components can be
engineered concurrently since the product
line architecture has defined the compo-
nent communication, specified the re-
quired interfaces, and distributed the re-
sponsibilities among the components. In a
migration context from single system de-
velopment, this allows the identification
of existing components in the domain that
already fulfill the functional requirements
completely or at least partially achieve
them.

Documentation: This step documents
architectures by using the organizational-
specific set of views as defined in the
planning step. It thereby relies on standard
views as, for example, defined by Kruch-
ten [8] or Hofmeister [7], and customizes
or complements them by additional views.

To decide about reusing such existing
components, the component�s internal
quality and suitability for the product line
have to be evaluated. It has to be ensured
that the component is able to serve the
product line needs.

CMU/SEI-2006-SR-002 39

Figure 7-1: Overview PuLSE-DSSA and ADORE

ADORE� (Architecture- and Domain-
Oriented Reengineering) is a request-
driven reengineering approach that evalu-
ates existing components with respect to
their adequacy and, potentially, integrates
such components into the product line:

• First, existing components are identi-
fied and reverse engineered [4] to as-
sess their adequacy; this activity is ini-
tiated by requests coming directly
from the product line architects.

• Second, based on the analysis results,
the product line architects decide
whether the existing component is re-
used or a new product line component
is developed from scratch.

• Finally, when reusing the component,
necessary renovation and extension
activities are kicked off to adapt the
component for its use within the prod-
uct line.

ADORE is mainly instantiated in step 2 of
PuLSE-DSSA (realization), when the ar-
chitects reason about whether or not to
reuse existing components. The architec-
tural needs drive the selection of appropri-
ate reverse engineering analyses. Analyses
and, potentially, renovation activities are
conducted asynchronously to the PuLSE-
DSSA iterations. That is, the current itera-
tion of the architecture development may
proceed even if the ADORE activities are
delayed. The advantage of such a demand-
driven approach is that investment is kept
as small as possible: only reverse engi-
neering activities are performed, renova-
tions are conducted only after the decision
to include the component in the product
line.

To enable stakeholder reasoning about
such a decision to be made, certain aspects
of the component have to be lifted to a
higher level of abstraction. Existing com-

40 CMU/SEI-2006-SR-002

ponent artifacts (e.g., source code, docu-
mentation, configuration files) are there-
fore exploited and the information ex-
tracted is aggregated in a repository. Since
the repository usually has a lot of content,
relevant information is often hidden in
overcrowded low-level models. Thus, fur-
ther analysis activities process the infor-
mation and aim at creating meaningful
views on the existing component.

Typical goals of the reverse engineering
part in ADORE address the evaluation of
the internal quality of a component, the
degree of variability support, the provided
flexibility towards anticipated changes,
the compliance of a component to the
product line architecture, or in case there
are several similar implementations of a
component, the identification of common-
alities among them.

7.4 Analysis of Component
Adequacy

An existing implementation of the Graph-
ics component was identified (written in
C++, approximately 180 KLOC) in the
domain of the multimedia system. At the
time of the analysis, the component had to
be adapted to deal with a new hardware
technology, so the source code was not yet
fully available due to this technology
change. The product line architects were
doubtful whether the existing Graphics
component was adequate for the product
line and suitable to the architecture de-
signed with PuLSE-DSSA. Therefore, we
instantiated the ADORE approach and
reverse engineered the Graphics compo-
nent to the answer the following ques-
tions:

• Was the component implemented ac-
cordingly to its documentation, how
consistent is the documentation and
can it integrated seamlessly into the

product line architecture? To answer
these questions we applied static ar-
chitecture evaluations.

• To which degree contains the subject
component already existing variabil-
ity? Is it possible to relate these code-
level variations to higher levels (in
best case to the product map coming
from scoping activities)? To address
this request, we conducted a variabil-
ity analysis and refactored prototypi-
cally some variability by means of a
frame processor.

• What are maintenance risks of the
current implementation? This request
triggered a set of reverse engineering
activities: source code analysis includ-
ing clone detection, the metric com-
putation, a naming and decomposi-
tion analysis.

• Another request of the architects was
concerned with the potential evolution
of the algorithms and implementation
decision made so far. We conducted a
review of code comments to address
this aspect.

7.4.1 Static Architecture Evalua-
tion

The consistency of the component to its
documentation was statically evaluated
with the help of the SAVE tool (see [9],
based on the idea of Reflexion models
[10]). The component engineering models
decomposed the subject into the three in-
ternal layers and provided a mapping to
the source code files. Figure 7-2 depicts
the results of the evaluation. The evalua-
tion shows a high degree of consistency so
far since there are almost no violations to
the documented component engineering
model (Layer-1 uses Layer-2, grey arrow,
cardinality 1149); there are only two ex-

CMU/SEI-2006-SR-002 41

ceptions: the divergences form Layer-2 to
Layer-1 (blue arrow, cardinality 2) and the
absence from Layer-2 to Layer-3). The
reason for the latter is that the component
is currently still under development (the
layer was only realized in stubs). The
evaluation showed that the implementa-
tion so far did follow the intended design
decisions, although detailed analysis of
the layers gave pointers for improvement.

The challenge for the development or-
ganization is now to ensure this over time.
The component�s evolution has to be
monitored when new variants are created
based on this first product line component.
To keep the quality and to avoid degenera-
tion, we recommended quality assurance
activities including the repetition of static
architectural evaluations at defined check-
points.

Figure 7-2: Component Internal Layers

Figure 7-3: Frame Hierarchy

42 CMU/SEI-2006-SR-002

7.4.2 Variability Analysis
Conditional compilation with macros is a
common means to realize variants in the
source code. Optional or variable code
parts or alternative implementations can
be implemented in a common source code
base (with preprocessor commands #if,
#ifdef, etc.), and the resolution of the vari-
ants is taken over by the preprocessor. The
variability analysis checked to which ex-
tent the macros and compile switches real-
ize variability with respect to the product
map. Identified variability was docu-
mented to make the variation points ex-
plicit and derive a decision model that
relates the macros to the different mem-
bers of the product line.

Furthermore, we exemplified how to ex-
tract and to migrate the current variabili-
ties into more advanced tools like frame
processors. A frame processor is a tool
supporting frame technology [1], a tech-
nique to support reuse in practice. In
frame technology, the implementation
units, called frames, have the same ap-
pearance as those in any major program-
ming language. They form a group of
symbols (e.g., source code or frame code)
that can be consistently referenced.
Frames contain both source code and
frame-specific code providing adaptation,
which enables reuse. Frame-specific code
consists of frame commands and frame
variables in order to make variation points
explicit by distinguishing between com-
mon and variable text. Frames can be ar-
ranged in hierarchies and will be resolved
at compile time by the frame processor, an
advanced preprocessor.

The frame processor processes the frame
hierarchy and generates finally pure

source code. In product family engineer-
ing, this technique is used to produce dif-
ferent product instances from a family by
explicit variation points in one common
code base. Figure 7-3 depicts the frame
hierarchy operating system dependent
thread handling for two system variants:
the target variant and a simulation variant
running on Windows. Frames positioned
high in the frame hierarchy can adapt
lower frames (by an ADAPT statement in
the frame), on the lowest level there are
the frames containing the commonalities
among both variants (simulation and tar-
get), and they have explicit variation
points. These variation points are adapted
by higher level frames, for instance a VP
filename.cpp_1 is replaced in the
adapt_1.frame with �#include Win-
dows.h�. The frame hierarchy was ex-
tracted automatically from the source code
(leading to non meaningful names for the
variation points and the lower level
�adapt_*� frames).

The frame processor enables the explicit
management of the frames, the hierarchy
support and the automatic resolution of
the variants. Adding a new variant in-
volves only the creation of the respective
frames. In the example, another OS vari-
ant would lead to the respective OS frame
and an additional adapt frame. All vari-
ability and resolution is localized in these
frames, and the developers work only with
the two frames, and they have not to mod-
ify several files widespread in the imple-
mentation.

7.4.3 Clone Detection
A code clone is a code fragment that oc-
curs in more than one place. One duplicate
is usually the master, and the other one
(i.e., the cloned one) is produced by copy-

CMU/SEI-2006-SR-002 43

ing the master (sometimes containing mi-
nor modifications). Code clones are a
threat to the evolution code size, higher
effort for maintenance (when there is the
need for a change, all duplicates have to
be addressed), reduced code readability,
increased risk because an error can be
propagated to several places in the source
code which leads to high effort for the
removal of such an error.

We analyzed the source code with a clone
detection tool based on text pattern match-
ing for two objectives. First, we aimed at
detecting internal clones (duplicated code
lines found in a single file), and second
external clones (clones found in different
files). The analysis identified a number of
code clones with a size greater than 20
lines to be reviewed by the developers).

7.4.4 Metric Hotspots
Source code metrics are an objective
means to learn about potentially problem-
atic areas in the source code. By measur-
ing coupling, size and complexity metrics
and analyzing the outliers, unanticipated
values, problematic areas and hotspots in
the source code can be identified. In par-
ticular, we had significant outliers for the
following metrics: cyclomatic complexity
(for methods and class averages), CBO
(coupling between object classes), NOC
(number of derived children), and function
size in terms of LOC (lines of code). The
identified source code items have been
triggered for code reviews, since such
elements are error-prone, bring along the
risk of unwanted side effects, and are dif-
ficult to understand. To avoid potential
maintenance problems, these items are
reviewed carefully.

7.4.5 Naming and Decomposition
Analysis

When conducting a detailed source code
analysis, a number of issues arose that
became additional action items:

• File system representation: the folder
structure and the code files did not re-
flect the decomposition as it was
documented.

• Empty files: a couple of empty (or
almost empty) files were identified
(less than 20 LOC). The files are re-
viewed whether it is reasonable to
merge them with other files or they
can be eliminated from the code.

• Inconsistent naming conventions: al-
though there were naming conven-
tions in the code, they were not used
consistently throughout the compo-
nent.

7.4.6 Code Comments
 A major issue was the ratio of commented
lines to source code lines, which was be-
low 10 percent. The developers agreed on
improving this to facilitate the reading of
the source code and to not run into prob-
lems when evolving the components fur-
ther.

7.5 Summary
The reverse engineering results revealed
that the Graphics component has a suffi-
cient adequacy for the emerging product
line and the product line architects de-
cided to reuse the existing component.
However, the results made the need for
renovations and extensions obvious to
fully address the product line require-
ments. An action list (improvement of the
internal quality, assurance of consistency
to the documentation and the intended

44 CMU/SEI-2006-SR-002

design, refactoring of variabilities, re-
moval of architectural mismatches, and
the integration of the component) and
items for a detailed analysis (code reviews
and inspections) were derived directly
from the reverse engineering results. For
the final acceptance of the Graphics com-
ponent as a product line component, these
issues should be revisited.

The well-invested effort for reverse engi-
neering lead to an architectural reuse deci-
sion that was well-grounded and sound,
based on the reverse engineering results.
Since the component was not yet fully
implemented, the developers were able to
address most of the suggested renovation
items promptly in the ongoing develop-
ment.

In summary, this experience report pre-
sents a typical industrial case where
Fraunhofer PuLSE� and ADORE� are
applied in combination. As it was in this
case, there is generally a need for adapta-
tion when components developed for sin-
gle systems should become part of a prod-
uct line infrastructure. In our experience
so far, as-is reuse mostly does not work
since there is always a need for adaptation
to make the existing component suitable
for the product line.

Hence, there is a strong need for efficient
and focused reverse engineering analyses
that support the reuse decision making, in
this case by analyzing the adequacy of the
existing components. In addition, it is im-
portant to identify and estimate the degree
of required adaptation base the product
line architects reuse decision on a well-
grounded fundament.

7.6 References
[1] P. G. Basset, Framing Software Reuse:
Lessons From The Real World, Prentice-
Hall, 1996.

[2] J. Bayer et al.: �PuLSE: A Methodol-
ogy to Develop Software Product Lines,�
5th Symposium on Software Reusability
(SSR'99), 1999.

[3] J. Bayer et al: Definition of Reference
Architectures Based on Existing Systems,
(IESE-Report 034.04/E), 2004

[4] E. Chikofsky, J. H. Cross: Reverse
Engineering and Design Recovery: a Tax-
onomy, IEEE Software, 7(1):13-17, Janu-
ary 1990.

[5] P. Clements, R. Kazman, M. Klein:
Evaluating Software Architectures: Meth-
ods and Case Studies, Addison-Wesley,
2002.

[6] P. Clements, L. M. Northrop: Software
Product Lines: Practices and Patterns,
Addison-Wesley, 2001.

[7] C. Hofmeister, R. Nord, R., D. Soni:
Applied Software Architecture. Addison-
Wesley, 1999.

[8] P. Kruchten: The 4+1 View Model of
Architecture. IEEE Software, November
1995 12(6):42�50.

[9] P. Miodonski, T. Forster, J. Knodel, M.
Lindvall, D. Muthig: Evaluation of Soft-
ware Architectures with Eclipse, Kaiser-
slautern, 2004, (IESE-Report 107.04/E)

 [10] G. C. Murphy, D. Notkin, K. Sulli-
van: Software reflexion models: bridging
the gap between source and high-level
models, ACM Software Engineering
Notes, 1995.

CMU/SEI-2006-SR-002 45

46 CMU/SEI-2006-SR-002

8 Mining Existing Software Product Line
Artifacts using Polymorphic Dependency
Relations1

Igor Ivkovic and Kostas Kontogiannis
Dept. of Electrical and Computer Engineering

University of Waterloo
Waterloo, ON N2L3G1 Canada

{iivkovic, kostas}@swen.uwaterloo.ca

Abstract
Development of a product line architec-
ture involves mining existing software
assets, from architecture-level design
knowledge to implementation-level arti-
facts. Each mining effort is generally as-
sociated with an appropriate mining con-
text, through which the criteria for
component identification and selection are
defined. The crux of the matter is variabil-
ity, where a mining context has to be spe-
cific, to allow for precise component que-
rying, but it also has to be adaptable and
extensible, to accommodate the needs of
different software product line instances.
In this paper, we introduce a framework
for annotating and querying heterogene-
ous software artifacts using polymorphic
dependency relations in software product
line reengineering. The dependency rela-
tions are defined based on the theory of
semantic values, where an association rule
is represented as a combination of differ-
ent semantic properties and values (se-
mantic contexts), such as features and
constraints defined at the model or meta-

model level. The chosen association rules
denoted through a mining context are used
to query individual component annota-
tions.

Keywords: software reengineering, soft-
ware product lines, mining existing assets,
semantic value theory, polymorphic de-
pendency relations

8.1 Introduction
In model-driven software evolution, soft-
ware artifact models are changed at differ-
ent levels of abstraction. For instance, use
case models are used to apply change at
the requirements specification level while
deployment diagrams are used to manifest
change at the deployment and integration
levels. A mutation of an artifact model at
one level may affect models at the same or
at different levels of abstraction and detail.
For example, a change in a design model
could directly affect architectural models
at the higher-level, and implementation
models at the lower-level of abstraction.

To enable impact analysis and propagation
of changes that may arise due to evolu-

1 This work is funded in part by the IBM Canada Ltd. Laboratory, Center for Advanced Studies
(CAS) in Toronto.

CMU/SEI-2006-SR-002 47

tion, it is necessary to establish and main-
tain associations among related models
and their elements. In previous research
[3, 4], we have introduced an approach for
the identification and encoding of depend-
ency relations among heterogeneous soft-
ware artifacts using formal concept analy-
sis (FCA). As part of the approach, each
software model that is MOF compliant [6]
is represented in terms of its objects and
attributes. Objects that share common at-
tributes are considered dependent, and are
identified using a FCA algorithm [2]. To
match attributes of heterogeneous con-
texts, we have introduced the notion at-
tribute association rules. At the domain
model or metamodel levels, attribute asso-
ciations represent the functions for map-
ping compatible types and relations, while
at the model level, they are used to map
attributes, features, and annotations of
individual model elements. The approach
was applied to establish dependency rela-
tions between business process models
and enacting Java source code by mining
information flow models using business
workflow patterns.

In this paper, we extend our FCA-based
approach by defining dependency rela-
tions using the theory of semantic values
[8]. Each dependency relation represents a
composition of individual semantic val-
ues. The meaning of a relation is indicated
by an association context, which repre-
sents a set of semantic properties and val-
ues. For example, semantic values
Class(Language=�UML�(Represents=�Obj
ects�)) and
class(Language=�Java�(Represents=�Obje
cts�)) are associated based on the context
{Represents=�Objects�}, but in contrast,
are not associated based on the context
{Language=�UML�}. We treat each asso-

ciation context as a polymorphic type, for
which we can derive a subtype by extend-
ing the association context (i.e., reduce its
scope), or a supertype by reducing the as-
sociation context (i.e., extend its scope).

In the context of software product line
reengineering, the polymorphic types are
first used to annotate existing software
assets. Then, a mining context is defined
as a combination of different association
contexts, for example, with different con-
texts for different types of artifacts. Using
the mining context as basis, candidate
components are mined, and the most suit-
able selected for reuse in product line de-
velopment.

The remaining content of this paper is or-
ganized as follows: Section 8.2 explains
semantic annotations of existing assets
using semantic heads. Section 8.3 de-
scribes the structure of the mining context
and explains how the mining context is
used to query candidate components. Fi-
nally, Section 8.4 provides our conclu-
sions and directions for future research.

8.2 Semantic Annotation of
Software Artifacts

The Options Analysis for Reengineering
(OAR) approach [1] prescribes that after
creating a mining context, it is necessary
to inventorize available components, and
identify their functionality, language, in-
frastructure support, and interfaces. Based
on this inventory, candidate components
can be selected as the ones that match the
criteria of the mining context. However,
the OAR description does not provide a
formalism for specification of component
properties, nor does it provide an algo-
rithm for matching the criteria of the min-
ing context and individual components.

48 CMU/SEI-2006-SR-002

Figure 8-1: Annotation Context UML Profile

We propose to define a systematic ap-
proach to annotation of existing software
assets by associating each available com-
ponent with a corresponding semantic
head. Each semantic head represents a set
of semantic values, defined according to
the theory of semantic values as described
above [8]. As part of our view of software
artifacts as MOF-compliant models, we
use UML 2.0 metamodel [7] as the basis
for representation. Hence, as shown in
Figure 8-1, we define <<semanticHead>>
stereotype as part of the Annotation Con-
text UML profile. Each semantic head is
associated with one model element, and it
contains zero or more semantic values.
The elements of the semantic head are
created as part of the component inven-
tory, and they may include implemented
features such as (Fea-
ture=�DatabaseAccess�, Limita-

tion=�DataManipulation�), interface prop-
erties such as (Inter-
faceType=�Proxy�(Protocol=�HTTP�)),
language properties such as (Implementa-
tionLanguage=� Java�(Dialect=�Enterprise
Java Beans�)), and environment con-
straints such as (PlatformIndependence=�
Yes�(OperatingSystem=�Windows�)).

8.3 Defining the Mining Context
Once we have annotated components with
specific semantic properties, we can query
them to identify those of specific interest
and suitability for reuse in reengineering
towards product lines.
As shown in Figure 8-2, we create the
mining context as the collection of spe-
cific association rules. We represent each
rule as a collection of semantic properties
and values that are used to query individ-
ual component annotations. For instance,

CMU/SEI-2006-SR-002 49

to find all components that use HTTP pro-
tocol for communication, we could use
{Protocol=�HTTP�} as the association con-
text. We can also have different associa-

tion contexts for different component
types, for example, for areas such as data-
base access, role-based access control, and
user interfaces.

Figure 8-2: Mining Context as a UML Profile

50 CMU/SEI-2006-SR-002

Figure 8-3: Attribute Association Rules for Mapping Heterogeneous Semantic Values

For compatible properties that are at dif-
ferent levels of granularity or scale, con-
version functions may be used. For in-
stance, contexts
(ImplementationLanguage=�Java�) and
(ImplementationLan-
guage=�ObjectOriented�) can be mapped
using cvtImplementationLanguage to rep-
resent Java at a higher level of granularity
as an object-oriented language. Also, se-
mantic value 30(Metric=� AccessPerfor-
mance�, MetricScale=�miliseconds�) can
be converted into
0.3(Metric=�AccessPerformance�, Metric-
Scale=� seconds�) by using the scaling

function cvtMetricScale with the scaling
factor 100.

For incompatible properties, such as prop-
erties from different domains as shown in
Figure 8-3, conversion may be performed
using attribute association rules including:

• Feature hierarchies, where contexts
are matched if they related to a se-
lected feature or one of its sub-
features.

• Lexicographical matching, where con-
texts are matched as text using various
information retrieval techniques such

CMU/SEI-2006-SR-002 51

as n-gram matching, word-matrix
matching, or latent-semantic indexing.

• Spatial matching, where contexts are
matched based on their relation to a
specific data flow.

8.4 Conclusions and Future
Research

In this paper, we have presented a frame-
work for defining the mining context for
mining existing software assets using the
theory of semantic values. We have pre-
sented an approach for annotating avail-
able components with corresponding se-
mantic properties and values. We have
also discussed the creation of the mining
context using association rules, and use of
the defined association rules to query and
select suitable components.

In future research, we aim to extend the
approach by more formally specifying the
annotations and annotation categories. We
also intend to adapt the approach to other
mining steps as described in the OAR ap-
proach, such as component refactoring,
and relate it to more recent reengineering
methods such as the Service-Oriented Mi-
gration and Reuse Technique (SMART)
[5].

8.5 Acknowledgements
This work is performed in collaboration
with the IBM Canada Ltd. Laboratory,
Center for Advanced Studies (CAS) in
Toronto.

8.6 References
[1] J. Bergey, D. Smith, N. Weiderman,
and S. Woods. Options analysis for re-
engineering (oar): Issues and conceptual
approach. Technical Report CMU/SEI-99-
TN-014, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh,
PA, 1999. http://www.sei.cmu.edu
/publications/documents/99.reports
/99tn014/99tn014abstract.html

[2] B. Ganter and R. Wille. Formal Con-
cept Analysis: Mathematical Foundations.
Springer-Verlag, 1999.

[3] I. Ivkovic and K. Kontogiannis. To-
wards automatic establishment of model
dependencies. Accepted to the Interna-
tional Journal of Software Engineering
and Knowledge Engineering (IJSEKE),
Sep 2005.

[4] I. Ivkovic and K. Kontogiannis. Using
formal concept analysis to establish model
dependencies. In Proceedings of the IEEE
International Conference on Information
Technology Coding and Computing, Las
Vegas, NV, Apr 2005.

[5] G. Lewis, E. Morris, L. O�Brien, D.
Smith, and L. Wrage. Smart: The service-
oriented migration and reuse technique.
Technical Report CMU/SEI-2005-TN-
029, Software Engineering Institute, Car-
negie Mellon University, Pittsburgh, PA,
Sep 2005.
http://www.sei.cmu.edu/publications
/documents/05.reports/05tn029.html

[6] OMG. Meta object facility (mof) speci-
fication version 1.4. Technical report, Ob-
ject Management Group (OMG), Apr
2002. http://www.omg.org/docs
/formal/02-04-03.pdf.

[7] OMG. Unified modeling language
(uml) 2.0 infrastructure specification.
Technical report, Object Management
Group, Sep 2003.
http://www.omg.org/docs/formal
/03-09-15.pdf.

52 CMU/SEI-2006-SR-002

http://www.sei.cmu.edu
http://www.sei.cmu.edu/publications
http://www.omg.org/docs
http://www.omg.org/docs/formal

[8] E. Sciore, M. Siegel, and A. Rosenthal.
Using semantic values to facilitate inter-
operability among heterogeneous informa-
tion systems. ACM Transactions on Data-
base Systems, 19(2), June 1994.

CMU/SEI-2006-SR-002 53

54 CMU/SEI-2006-SR-002

9 Workshop Outcomes
The results of this workshop consist of the papers presented during it (included in Sections
4-8), the outcomes of discussions triggered by those papers, and some agreements related to
the organization and continuation of this workshop and research topic.

The papers that were presented could roughly be said to address two main issues:

1. variation points (papers by Olumofin and Cornelissen)

2. identification of product line assets (papers by Ganesan, Knodel, and Ivkovic)

Part of the research is focused on the application and extension of existing reverse and reen-
gineering techniques to a product line context. The problem that needs to be solved is how to
use these techniques (that were previously applied only to individual systems) to handle mul-
tiple software variants.

For instance, in the case of dynamic analysis, the use of reverse and reengineering techniques
implies additional difficulties with respect to the determination of useful scenarios to obtain
traces from different variants of a software system. Cornelissen used this approach for the
detection of potential variation points in a product line architecture.

Interestingly, the technique presented by Olumofin requires exactly that information about
variation points. When combined with knowledge on sensitivity points (which can be discov-
ered using the SEI Architecture Tradeoff Analysis Method® [ATAM®] developed by the Car-
negie Mellon® Software Engineering Institute [SEI]) evolvability points can be identified that
deserve special attention during software evolution to ensure the architectural conformance of
the product line architecture and product family members.

Most approaches, however, focused on the use of static information. Two approaches were
presented to find the software components that should be considered reusable assets for a
product line. The approach by Ganesan and Knodel is based on metrics, while the approach
proposed by Ivkovic uses semantic annotations to find the components in which there is in-
terest. Finally an approach was presented that combines several techniques, such as metrics
and clone detection, to assess the extent to which an existing software component is suitable
for reuse in a product line environment.

Various problems involving the introduction of software product lines in software develop-
ment organizations were covered in this workshop. The focus was on the

• detection of variability and how to use this information to ensure successful software
evolution

® Architecture Tradeoff Analysis Method, ATAM, and Carnegie Mellon are registered in the U.S.

Patent and Trademark Office by Carnegie Mellon University.

CMU/SEI-2006-SR-002 55

• identification of components that are amenable to become product line assets

• determination of the extent to which these components are suited to be product line assets
as is

Other issues that still need to be investigated in the future include

• the derivation of a complete product line architecture (instead of focusing on identifying
individual components)

• combinations of different approaches, such as dynamic analysis and metrics or other
static approaches

• the process steps involved in the migration towards a product line approach

• the scalability of the proposed approaches and potential tool support for them, as product
line architectures typically concern large systems

• the reusability of other artifacts after migration to a product line approach, such as test
cases and architectural views

• traceability from legacy to product line artifacts

One more important issue came up: participants found it difficult to find suitable case studies
for applying their techniques. Such case studies should consider not only the availability of a
complete product line example system but also a set of existing software variants that can be
migrated to a software product line.

As a follow-up of this workshop, a mailing list was set up (r2pl@st.ewi.tudelft.nl) and the
need for a successor workshop in 2006 was confirmed.

56 CMU/SEI-2006-SR-002

mailto:r2pl@st.ewi.tudelft.nl

References

URLs are valid as of the publication date of this document.

[Graaf 05] Graaf, Bas; O�Brien, Liam; & Capilla, Rafael. �Reengineering To-
wards Product Lines (R2PL2005),� 231. Proceedings of WCRE
2005, 12th Working Conference on Reverse Engineering. Pitts-
burgh, PA, USA, November 10, 2005. Los Angeles, CA: IEEE
Computer Society, 2005.

[R2PL 05] Workshop on Reengineering Towards Product Lines (R2PL 2005).
http://www.st.ewi.tudelft.nl/~basgraaf/r2pl2005 (November 2005).

CMU/SEI-2006-SR-002 57

http://www.st.ewi.tudelft.nl/~basgraaf/r2pl2005

58 CMU/SEI-2006-SR-002

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

March 2006
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

R2PL 2005�Proceedings of the First International Workshop on Reengi-
neering towards Product Lines

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Bas Graaf, Liam O’Brien, Rafael Capilla
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2006-SR-002

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report contains the proceedings from the First International Workshop on Reengineering Towards Prod-
uct Lines (R2PL) 2005, which was held on November 10th, 2005 in Pittsburgh, Pennsylvania, USA and colo-
cated with the Working Conference on Reverse Engineering (WCRE) 2005 and WICSA 2005—the Working
Institute of Electrical and Electronics Engineers/International Federation for Information Processing
(IEEE/IFIP) Conference on Software Architecture. This report consists of an overview of an invited presenta-
tion, a set of position papers, and details of the workshop’s outcomes.

14. SUBJECT TERMS

software product lines, reverse engineering, reengineering
15. NUMBER OF PAGES

72
16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	R2PL 2005—Proceedings of the First International Workshop on Reengineering Towards Product Lines
	Table of Contents
	List of Figures
	List of Tables
	Executive Summary
	Abstract
	1 Background
	2 Workshop Organization
	3 Invited Talk: Consolidating Software Variants into Software Product Lines—A Research Outline
	4 Quality-Driven Conformance Checking in Product Line Architectures
	5 Identification Of Variation Points Using Dynamic Analysis
	6 Identifying Domain-Specific Reusable Components from Existing OO Systems to Support Product line Migration
	7 Analyzing the Product Line Adequacy of Existing Components
	8 Mining Existing Software Product Line Artifacts using Polymorphic Dependency Relations
	9 Workshop Outcomes

