

SPECIAL REPORT
CMU/SEI-2001-SR-021

 Army Workshop on
Lessons Learned from
Software Upgrade
Programs

William Anderson
John Bergey
Matthew Fisher
Caroline Graettinger
Wilfred J. Hansen
Ray Obenza
Dennis Smith
Halbert Stevens

November 2001

Pittsburgh, PA 15213-3890

Army Workshop on
Lessons Learned from
Software Upgrade
Programs

CMU/SEI-2001-SR-021

William Anderson
John Bergey
Matthew Fisher
Caroline Graettinger
Wilfred J. Hansen
Ray Obenza
Dennis Smith
Halbert Stevens

November 2001

Unlimited distribution subject to the copyright.

printed 11/14/01 7:28 AM v05 / wrt

This report was prepared for the Department of Army.

The Software Engineering Institute is a federally funded research and development center sponsored by the
U.S. Department of Defense.

Copyright 2001 by Carnegie Mellon University.

Requests for permission to reproduce this document or to prepare derivative works of this document should be
addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do
so, for government purposes pursuant to the copyright license under the clause at 252.227-7013.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

CMU/SEI-2001-SR-021 i

Table of Contents

Executive Summary vii

Abstract ix

1 Introduction 1

2 Workshop Approach 3

2.1 Development of Topics and Questions to
Guide Workshop 3

2.2 Working Group Topics 5

2.3 Preparation for Workshop 5

2.4 Format of Report 6

3 Summary of Lessons Learned 7

3.1 Project Management 7

3.2 Systems and Software 8

3.3 Funding and Contracting 9

3.4 Deployment 10

4 Conclusion 13

4.1 Findings 13

4.2 Concluding Note 14

References 17

List of Acronyms 19

Appendix A Project Management Working
Group 21
Requirements Management 21
Planning and Estimation 24

ii CMU/SEI-2001-SR-021

Organization and Staffing 28
Risk Management 29

Appendix B Systems and Software Working
Group 31
Legacy Systems and
Obsolescence 32
Mandates 34
Interoperability 36
Government Furnished Equipment
(GFE) 37

Commercial Off-the-Shelf (COTS)
Products 38
Architecture 39
Topics Related to Other Working
Groups 41

Individual Summary
Recommendations 45

Appendix C Funding and Contracting Working
Group 47
Software Contracting Scope 47
Contractual Planning 49

Decision Making on Cost and
Schedule 51
Contract Performance 52
Contractor/Government Relationship53

Appendix D Deployment Working Group 55
Testing 55

Compromising Testing When Cutting
Back Schedules (Lesson #3) 56
Integration 59
Configuration Management 60
Training 62
Operational Suitability 64
Migration Planning 66
Cross-Communication 67
Prioritization/Rank Grouping 68
Recommendations for Next Steps 70

CMU/SEI-2001-SR-021 iii

Appendix E Relationship of Workshop Findings
to Enterprise Framework 71
Overview of the Enterprise
Framework 72
Regrouping of Workshop Findings 74
Relevance of Framework 75

Appendix F Questions from System Evolution
Checklists 77

iv CMU/SEI-2001-SR-021

CMU/SEI-2001-SR-021 v

List of Figures

Figure 1: Four Work Groups (Plus One Topic:
Mandates) 4

Figure 2: Rank Groupings of Lesson Importance 69

Figure 3: A Framework for the Disciplined
Evolution of Legacy Systems 73

vi CMU/SEI-2001-SR-021

CMU/SEI-2001-SR-021 vii

Executive Summary

The Software Engineering Institute (SEI) conducted the “Software Upgrade Workshop for
Legacy Systems” at the Redstone Arsenal from June 5–7, 2001. The workshop captured ex-
periences from software upgrade efforts for the Abrams, Bradley, Patriot, Apache Longbow,
and Multiple Launch Rocket programs. Workshop participants explored strategies that
worked and those that failed, and the obstacles that were encountered. They addressed pre-
award planning, project management, systems and software, mandates, and deployment.

A high-level summary of the findings is presented below. The findings are summarized ac-
cording to the topics of the four working groups:

Project Management

• Specify requirements clearly, using tool support when appropriate; and practice change
control.

• Use historical data and tools for collecting data.

• Provide training on the use of cost estimation methods and tools.

• Consider the effect of potential upgrades when scheduling.

• Be sure to have experienced senior staff. Invest in worker skills and identify career
paths.

• Involve all stakeholders throughout the project, particularly through the use of integrated
product teams (IPTs).

Systems and Software

• Design the architecture with change in mind; plan for regular legacy system upgrades.

• Have the appropriate development and test environment resources and tools in place.

• When using commercial off-the-shelf (COTS) components for an extensive part of a
system, allow ample time for integration, and require the contractor to integrate the
components.

• Maintain the integrity of testing even if cuts must be made in a project.

Funding and Contracting

• When money is tight, don’t sacrifice sound engineering practices.

• Designate a decision-making agency to resolve inter-project conflicts.

viii CMU/SEI-2001-SR-021

• Consider logistics, upgrades, and contingencies throughout the planning cycle.

• Address software problems right away; don’t defer them to follow-on contracts.

• Strive for mature processes for both the government and the contractor, especially in the
areas of requirements management and control.

• If a contractor has attained Capability Maturity Model for Software (SW-CMM) level
3, require the use of its metrics and data for managing the contract.

• Determine software ownership rights before the contract award.

• Mandates often have negative unanticipated consequences. Be very cautious about issu-
ing mandates and involve all stakeholders in the decision-making process.

Deployment

• Be sure that the documentation is appropriate. It should contain enough information to
adequately maintain a project, without including irrelevant details.

• Write training materials prior to the release and deploy training before fielding the new
system.

• Avoid configuration proliferation.

• Plan for block upgrades.

• When possible, automate the installation of upgrades.

• Provide regular upgrade schedules.

 Capability Maturity Model, Capability Maturity Modeling, and CMM are registered in the U.S.

Patent and Trademark Office.

CMU/SEI-2001-SR-021 ix

Abstract

The Software Engineering Institute (SEI) conducted the “Software Upgrade Workshop for
Legacy Systems” at the Redstone Arsenal June 5–7, 2001. The workshop captured experi-
ences from software upgrade efforts for the Abrams, Bradley, Patriot, Apache Longbow, and
Multiple Launch Rocket programs. Workshop participants explored strategies that worked
and those that failed, and the obstacles that were encountered. They addressed pre-award
planning, project management, software and systems, mandates, and deployment. Their effort
resulted in a set of recommendations and guidelines to help organizations improve the proc-
ess of upgrading legacy systems.

x CMU/SEI-2001-SR-021

CMU/SEI-2001-SR-021 1

1 Introduction

The SEI conducted a Software Upgrade Workshop for Legacy Systems at the Redstone Arse-
nal June 5–7, 2001. This workshop was sponsored by the Office of the Assistant Secretary of
the Army for Acquisition, Logistics and Technology (ASA [ALT]). The workshop captured
lessons learned from software upgrade efforts to the Abrams, Bradley, Patriot, Apache Long-
bow, and Multiple Launch Rocket programs. Workshop topics and questions were based on
experiences with other software upgrade and acquisition efforts.

The workshop split into four working groups consisting of peers from each of the programs
mentioned above. Participants discussed basic issues and problems, and examined topics
across programs. The lessons learned from this effort can be useful for future software up-
grade efforts. All discussions were non-attributable.

2 CMU/SEI-2001-SR-021

CMU/SEI-2001-SR-021 3

2 Workshop Approach

This section describes how the topics and questions for the workshop were developed. It lists
the working group topics, and describes the steps taken in preparing for the workshop. It also
outlines the format of the report.

2.1 Development of Topics and Questions to Guide
Workshop

The topics and questions for guiding the workshop were developed from SEI experience with
other organizations that have undergone software upgrade efforts. Members of the SEI team
synthesized their experiences from three different perspectives: (1) software migration and
system evolution, (2) software acquisition, and (3) software risk evaluation.

In the course of working with organizations on software migration and system evolution, the
SEI has developed a framework for disciplined system evolution, a set of checklists to use
when applying this framework, and guidelines for system migration [Bergey 97, 98, 99]. This
material helps organizations identify the issues that should be addressed for a successful
migration effort, including issues related to software, systems, the organization, the project,
and the legacy and target systems. It helped the SEI to formulate some of the initial questions
for the working groups and to interpret the findings.

To help organizations benchmark and improve the software acquisition process, the SEI de-
veloped its Software Acquisition Capability Maturity Model (SA-CMM) [Cooper 99]. The
model follows the same architecture as the Capability Maturity Model for Software (SW-
CMM), but emphasizes acquisition issues and the needs of those who are planning and man-
aging software-acquisition efforts. SA-CMM describes the practices that are most critical for
an acquisition organization to follow. The issues identified by the SA-CMM formed the basis
for some of the acquisition topics and questions.

To successfully acquire or develop software, organizations must identify risks and implement
strategies to mitigate them. The software risk evaluation (SRE) process helps organizations
identify, analyze, and develop risk-mitigation strategies while the software-intensive system

 Capability Maturity Model, Capability Maturity Modeling, and CMM are registered in the U.S.

Patent and Trademark Office.

4 CMU/SEI-2001-SR-021

is still in development [Williams 99]. The team used the SRE approach to help formulate
workshop topics and questions.

After consulting with Army ASA (ALT) representatives and reviewing the topics and ques-
tions from these perspectives, the team developed four working groups:

1. Systems and Software

2. Funding and Contracting

3. Deployment

4. Project Management

These areas interact with the program manager as shown in Figure 1.

Figure 1: Four Work Groups (Plus One Topic: Mandates)

The team next developed starting points for each working group. These are outlined in Sec-
tion 2.2. The team then analyzed source documents in detail to produce and refine a set of
questions appropriate for generating discussion.

While the topics and questions for each working group were derived from experience, each
group was encouraged to move beyond the questions as appropriate and spend time on topics
that had the most relevance and importance. The questions thus provided a starting point for
their efforts, rather than a rigid guide.

���

�����

��	�
���

���������

��
���

��������
�������

�������

���
����

���	��������

��������
����������

��������
�
��������

����������

�����������
�
�������

���

�����

��	�
���

���������

��
���

��������
�������

�������

���
����

���	��������

��������
����������

��������
�
��������

����������

�����������
�
�������

CMU/SEI-2001-SR-021 5

During their intense discussions, the working groups captured salient points on a visual dis-
play for review by all. This report reflects their findings and provides a rich set of lessons
learned, recommendations, and guidelines based on their experiences.

2.2 Working Group Topics
The initial topics covered by each working group were:

1. Project Management

− requirements schedule
− project planning
− project management
− technical contract oversight
− process definition and maintenance

2. Systems and Software

− systems engineering
− software engineering
− technologies
− architectures
− legacy system
− target system
− interoperability

3. Funding and Contracting

− software contracting scope
− contractual planning
− government/contractor relationship
− contract performance
− decision making on cost and schedule

4. Deployment

− testing
− integration
− configuration management
− operational suitability
− migration planning
− training

2.3 Preparation for Workshop
All participants were provided with mailings that described the nature and focus of the work-
shop. A Web site1 was developed containing extensive information on the workshop, includ-

1 <http://www.sei.cmu.edu/cbs/workshops/ASA-ALT-Software-Upgrades-Workshop>

6 CMU/SEI-2001-SR-021

ing topics and starter questions. Currently, the Web site contains a record of the workshop,
including the final briefings of each working group and this workshop report.

2.4 Format of Report
Following the introduction (Section 1) and workshop approach (Section 2), this report pre-
sents a summary of lessons learned (Section 3) and a set of conclusions (Section 4). The con-
clusions relate the lessons learned to the system-migration guidelines previously developed
by the SEI. Appendices A through D contain a list of working group members, the major top-
ics of the group’s discussions, and any adjustments that group members made to their topics.
Following these sections, the reports present findings by topic. The findings identify relevant
issues and problems then examines

• approaches that programs have implemented to address the issues, and lessons learned.
When appropriate, case studies are highlighted to illustrate challenges, actions taken,
and results. Since the workshop promised non-attribution, these anecdotes, although re-
flecting a real situation, are phrased in general terms.

• recommendations showing how other programs or high-level management can augment
or modify existing policies and practice

In some cases, a working group combined several topics under a new heading or added new
topics that were relevant to the discussions. On occasion, two working groups considered
similar topics from the differing perspectives. These discussions tended to be complementary
and the findings are presented in the most appropriate report.

Appendix E follows the four working group reports. It discusses the findings in light of the
enterprise framework for disciplined system evolution. Appendix F contains questions from
the system-evolution checklists.

CMU/SEI-2001-SR-021 7

3 Summary of Lessons Learned

The discussions of the working groups were productive and prolific. In all, the four working
groups developed more than 250 lessons learned. To summarize them, we identified common
themes and then grouped lessons learned and recommendations under those themes. Each
summary abstracts the findings of the entire workshop, and does not necessarily reflect the
complete discussions of individual working groups. Appendices A through D include a record
of the full discussions.

The findings represent thoughtful reflections by a group of people with hard-won experience.
While the findings cover a broad range of topics, they are not designed to be a complete or
systematic set of guidelines. If such an effort were launched, these findings would represent a
very useful starting point.

Appendix E relates the findings to the “Enterprise Framework for Disciplined System Evolu-
tion” [Bergey 97]. This framework provides a comprehensive mechanism for understanding
the findings in terms of their relationships.

3.1 Project Management
Project management lessons were classified under the categories of requirements, scheduling,
performance management and skills, and communication.

Requirements
• Practice formal change control.

• Specify requirements clearly, using tool support when appropriate.

• Do not over-specify requirements.

• Enforce cutoff dates for requirements for each release.

Scheduling
• Use historical data and tools for collecting data.

• Provide training on the use of cost-estimation methods and tools.

• Collect, evaluate, and disseminate information on aids for estimating.

8 CMU/SEI-2001-SR-021

• Consider the effect of potential upgrades when setting schedules.

Personnel Management and Skills
• Be sure to have experienced senior staff. It is particularly important to have a domain

expert as the PM.

• Invest in worker skills and identify career paths.

• Develop plans to retain skilled workers.

• Give program managers authority to improve work conditions and provide incentives to
workers.

• Award managers based on performance.

• Provide more training in earned value, IPTs, and software-acquisition management.

• Train military officers to understand software issues and to raise issues about software
decisions.

Communication
• Involve all stakeholders throughout the project, particularly through the use of IPTs.

• Clearly state the limitations of what will be delivered with the funding provided.

3.2 Systems and Software
Systems and Software issues include architecture, tool support, GFE and COTS, and testing.

Architecture
• Design with change in mind; plan for regular legacy-system upgrades.

• Analyze the implications of throughput and memory.

• Analyze potentials for reuse.

Tool Support
• Have the appropriate development and test-environment resources in place.

• When appropriate, select and adopt tools for

− requirements management
− risk management
− metrics management
− automated configuration testing and upgrades

GFE and COTS
• Allow ample time for integration.

• When using COTS extensively in a system, get the COTS vendor under contract.

CMU/SEI-2001-SR-021 9

• Require contractors to integrate COTS and GOTS products.

Testing
• Maintain the integrity of testing even if cuts need to be made in a project.

• Identify and preserve test assets.

• Provide automated test scripts when appropriate.

• Plan testing fully; be sure to align testing with all relevant projects.

3.3 Funding and Contracting
Funding and contracting issues include processes used to determine costs and schedules, role
of software issues in acquisition, contract performance, software data rights, and mandates.

Decision Making on Cost and Schedule
• When money is tight, don’t sacrifice sound engineering practices.

• Involve all parties in estimating schedule and effort.

• Ask external groups to develop estimates for interrelated, cross-PEO projects.

• Designate a decision-making agency to resolve inter-project conflicts.

• Consider logistics, upgrades, and contingencies throughout the planning cycle.

• Empower IPTs. Have senior management on the teams and give them decision-making
authority.

Role of Software Issues in Acquisition
• Address software problems right away; don’t defer them to follow-on contracts.

• Fund software from the beginning because software implements system performance.

• Insert a level-of-effort (LOE) funding line in development contracts for continuing soft-
ware enhancements.

Contract Performance
• Strive for mature processes for both the government and the contractor, especially in the

areas of requirements management and control.

• Extend the current CMM requirement for all ACAT 1 programs for all software con-
tracts.

• If a contractor has attained CMM level 3, require the use of its metrics and data for man-
aging the contract.

• Hold contractors to their processes.

• Use metrics in contract management and analyze them.

10 CMU/SEI-2001-SR-021

• Improve software capability maturity level of acquiring organizations.

Software Data Rights
• Develop policy and training about the acquisition and retention rights to software.

• Determine whether software ownership will be needed before the contract award.

• Do not let the contractor make default decisions on data rights and software ownership.

Mandates
• Mandates often have negative unanticipated consequences. Be very cautious about issu-

ing mandates and involve all stakeholders in the decision-making process.

• Communicate clearly the purpose of any mandates and the mechanisms for complying
with them.

• Specify desired goals, but do not mandate specific solutions, such as COTS, specific
CPUs, specific programming languages, or software warranties.

• Identify an authority to resolve conflicts on mandates.

• If mandates are required, it is important to

− provide funding
− write cost-plus contracts
− adopt only widely used standards

3.4 Deployment
Deployment issues include documentation, training, configurations, and development of an
upgrade mentality.

Documentation
• Require electronic documents and early access to the documentation.

• Be sure that the documentation is appropriate. It should contain enough information to
adequately maintain a project, without including irrelevant details.

Training
• Train acquirers dealing with legacy systems in the areas of test planning and test disci-

pline.

• Write training materials prior to the release and deploy training before fielding the new
system.

Configurations
• Avoid configuration proliferation.

• Plan for block upgrades.

CMU/SEI-2001-SR-021 11

• Automate the installation of upgrades.

• Provide machine-readable identification for the hardware and software of every compo-
nent.

• Use an installation tool that can choose the correct version of a required upgrade.

Development of an Upgrade Mentality
• Incorporate an upgrade mentality in the culture.

• Provide regular upgrade schedules.

12 CMU/SEI-2001-SR-021

CMU/SEI-2001-SR-021 13

4 Conclusion

4.1 Findings
These findings are the result of practical lessons learned from Army efforts. The findings are
consistent with the broad migration guidelines previously developed by the SEI [Bergey 99],
and provide important recommendations.

Below, we briefly discuss the workshop findings relative to the migration guidelines. Each
guideline is listed, and relevant workshop recommendations are highlighted:

1. Develop a comprehensive strategy with achievable and measurable milestones for each
reengineering project.

Projects often try to address too many goals at once without intermediate milestones.
The workshop stressed the importance of developing an overall strategy in bite-sized
chunks, with a regular upgrade schedule and a clear plan of communication to all stake-
holders.

2. When outside systems-engineering services are needed, carefully define and monitor
their role.

The working groups wrestled with how to define and monitor vendors. Current best-
practice mechanisms include insisting on mature process use by both the government
and contractor, and applying metrics to monitor relevant processes. Since software own-
ership often becomes a critical factor in follow-up systems, ownership rights should be
resolved before the contract is awarded.

3. If new technology is used for a project, provide adequate training in both the technical
content and the motivation for change.

The workshop stressed the importance of investing in worker skills and identifying ca-
reer paths. It recommended providing training in new methods and tools, and deploying
new training prior to system releases.

4. Establish and maintain configuration-management control of the legacy system.

The working group discussions attested to the importance of configuration management.
Recommendations included avoiding configuration proliferation, planning for block up-
grades, and automating the installation of upgrades.

5. There should be a carefully defined and documented process for eliciting and validating
requirements.

14 CMU/SEI-2001-SR-021

Workshop recommendations included specifying requirements clearly, using tool sup-
port when appropriate, and to practicing and enforcing change-control processes.

6. Make software architecture a primary reengineering consideration.

The Systems and Software working group identified the architecture as a key technical
focus for the system. Recommendations included designing the architecture with change
in mind, planning for regular technical upgrades, and carefully considering throughput
requirements.

7. There should be a separate and distinct reengineering process.

This guideline stresses that a reengineering or evolution effort should have a well-
defined process with appropriate planning, scheduling, and monitoring. The workshop
emphasized that organizations should use mature software processes to monitor contract
performance, and should analyze historical data before making schedules and decisions.
It also recommended establishing processes for requirements management, testing, and
COTS integration, and implementing configuration-management and software-
engineering tools.

8. Create a team-oriented reengineering plan—and follow it.

The working groups emphasized the importance of involving all stakeholders in accom-
plishing project goals. In particular, they emphasized the role of IPTs in conflict resolu-
tion, consensus building, and communication.

9. Management must be committed for the long haul.

While there was substantial discussion on the need for consistent, long-term vision, the
practice of rotating top management makes this difficult to resolve. Specific
recommendations included addressing software problems right away rather than
deferring them to future releases, and considering future upgrades and releases through-
out the planning cycle.

10. Management edicts should not override technical realities.

Management edicts often specify a technical approach or schedule before a detailed
technical analysis has been performed. The workshop highlighted the importance of un-
derstanding and managing requirements, and developing realistic plans and schedules
based on available resources. In addition, the working groups discussed the negative
consequences of mandates. Workshop participants urged caution in issuing mandates
and recommended that mandates only be considered after affected stakeholders are in-
volved and implications for the programs are analyzed.

4.2 Concluding Note
The workshop successfully elicited a set of practical and useful lessons learned from people
who have experience acquiring, developing, deploying, and upgrading mission-critical sys-
tems. By applying the lessons learned to future programs, many similar issues and problems
can be resolved quickly or, better yet, avoided in the first place. Specific lessons learned are

CMU/SEI-2001-SR-021 15

documented in Appendices A through D. Analyzing these lessons learned can help focus fu-
ture efforts in terms of establishing high-priority issues.

16 CMU/SEI-2001-SR-021

CMU/SEI-2001-SR-021 17

References

[Bergey 97] Bergey, J; Northrop, L.; & Smith, D. An Enterprise Framework for
Disciplined System Evolution (CMU/SEI-97-TR-007). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University.
URL: <http://www.sei.cmu.edu/publications/documents/
97.reports/97tr007/97tr007abstract.html> (1997).

[Bergey 98] Bergey, John K. “System Evolution Checklists Based on an Enter-
prise Framework” (white paper). Pittsburgh, PA: Software Engi-
neering Institute, Carnegie Mellon University, February 1998. URL:
<http://www.sei.cmu.edu/reengineering/pubs/
white-papers/Berg98> (1998).

[Bergey 99] Bergey, J.; Smith, D.; & Weiderman, N. DoD Legacy System Mi-
gration Guidelines (CMU/SEI-99-TN-013, ADA 370621). Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon Uni-
versity. URL: <http://www.sei.cmu.edu/publications/documents/
99.reports/99tn013/99tn013abstract.html> (1999).

[Cooper 99] Cooper, J.; Fisher, M.; & Sherer, S.W. (editors). Software Acquisi-
tion Capability Maturity Model ® (SA-CMM®), Version 1.02
(CMU/SEI-96-TR-020, ADA320606). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University. URL:
<http://www.sei.cmu.edu/publications/documents/
96.reports/96.tr.020.html> (1996).

[Williams 99] Williams, R.; Pandelios, G.J.; & Behrens, S.G. SRE Method De-
scription (Version 2.0) & SRE Team Members Notebook (Version
2.0) (CMU/SEI-99-TN-029). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, URL:
http://www.sei.cmu.edu/publications/documents/99.reports/
99tr029/99tr029abstract.html> (1999).

18 CMU/SEI-2001-SR-021

CMU/SEI-2001-SR-021 19

List of Acronyms

ACAT Acquisition Capability

ASA (ALT) Assistant Secretary of the Army for Acquisition, Logistics and Technology

AWR Air Worthiness Release

CCB Change Control Board

CPU Central Processing Unit

C3 Command, Control, Communications

COTS Commercial Off-the-Shelf

CMRT Computer Resources Management Team

CTSF Confirmed Test Site Facility

DCSCOPS Deputy Chief of Staff for Operations

ECP Engineering Change Proposal

GFE Government Furnished Equipment

GICOD Good Idea Cutoff Date

I/O Input-Output

IPT Integrated Product Team

IRAD Independent Research and Development

IOTE/FOTE Initial Operational Test and Evaluation

IV&V Independent Validation and Verification

JTA Joint Technical Architecture

LOC Lines of Code

LOE Level of Effort

LRU Line Replaceable Unit

MPRNT Material Process Review Team

MTTR Mean-Time-to-Repair

OT/IOC Operational Test/Introduction of Operational Capability

PCR Problem Change Request

PDF Portable Display Format

20 CMU/SEI-2001-SR-021

PDSS Post-Deployment Software Support

PM Program Manager

PCR Problem Change Request

RAM Random Access Memory

SBVT Software Baseline Verification Test

SIL System Integration Laboratory

SOW Statement of Work

SPORT Soldier Portable On-System Repair Tool

SRE Software Risk Evaluation

STR System Trouble Report

SW-CMM® Capability Maturity Model® for Software

SEI Software Engineering Institute

TEMP Test and Evaluation Master Plan

TIM Technical Interchange Meeting

TRADOC Training and Doctrine Command

UML Unified Modeling Language

VVID Vehicle Verification Identification

CMU/SEI-2001-SR-021 21

Appendix A Project Management Working
Group

This working group collected lessons learned and best practices from a project management
focus. The scope included the topic areas of

• requirements management

• planning and estimation

• organizing & staffing

• risk management

Session participants included the following representatives from each of the legacy programs
in the workshop:

• Ron Bokoch, PM Abrams

• Edmund Cheung, Bradley

• Jerita Crummie, MLRS

• Ed Fowler, Patriot

• Kevin Houser, PM Abrams

• Keith Robinson, Apache

• Abdul Siddiqui, PM Bradley

• Matt Fisher, SEI

• Hal Stevens, SEI

Requirements Management

Requirements Instability

For all the programs, there had been impositions of requirements changes, specifically related
to battlefield integration and command and control from higher levels with directed dead-
lines and no additional funding or analyses of how these requirements changes would impact
the individual programs. For some programs, these impositions included the integration of

22 CMU/SEI-2001-SR-021

non-stable products from other programs into existing systems, again with insufficient analy-
sis performed on the impact of the product integration.

Approach and Lessons Learned

To help address the programmatic and technical issues, programs established working-level
IPTs to coordinate schedules and facilitate the integration of products. These IPTs had repre-
sentatives from the program offices, Training and Doctrine Command (TRADOC), and par-
ticipating contractors. In addition, one program suggested that in order to meet the imposed
schedules a good idea cutoff date (GICOD) be established. The GICOD would be a date after
which no new requirements from external sources would be accepted for a specific system
build. This approach enables the schedules to be met and additional requirements incorpo-
rated at a later planned time.

The use of IPTs allowed common issues among the participating programs to be discussed
and allowed stakeholders to plan and manage requirements and builds. Most work of the IPT
was accomplished at the working level. However, not all issues were resolved at this level.

The use of the GICOD in combination with IPT did not work for one program because dates
proposed were not agreed to by all stakeholders and the products to be integrated were not
sufficiently stable to comply with the dates. Stability here means that the product builds
lacked needed functionality and performance. In addition, higher-level authority continued to
add requirement changes even after the proposed dates. The timeframe for imposed integra-
tion was too constrained for the requirements to be implemented.

Recommendations

Use of IPTs to manage both programmatic and technical-integration requirements is still con-
sidered a good practice. However, these IPTs must involve all relevant stakeholders and be
empowered to set schedules and enforce techniques such as the GICOD. The use of cross-PM
IPTs was also recommended as well as including DCSOPS as members of appropriate IPTs.

The group also recommended that senior management be provided an oversight role to re-
solve issues that the IPT cannot resolve. This would assure that issues and risks are identified
early and elevated to the correct levels for decisions and mitigation.

Imposed Technical Requirements

In all programs it was believed that insufficient technical analyses were conducted at higher
levels of management to determine the technical feasibility of implementing imposed re-

CMU/SEI-2001-SR-021 23

quirements. This was especially true when these requirements involved application of com-
monality to multiple platforms.

Approach and Lessons Learned

In order to assure feasibility of the new requirements, one program employed prototyping of
these requirements with systems involved. Programs also established IPT(s) to address inter-
face requirements and feasibility. As part of this IPT effort, agreements were established
among government agencies involved to specify responsibilities and to provide an infrastruc-
ture for resolving issues and conflicts.

The prototyping of new requirements with the existing legacy system was successful in dem-
onstrating the technical feasibility of integrating new requirements. The technique also
helped to reduce the cost of the effort and it mitigated risks associated with the integration.
On the other hand, the IPT(s) did not work as well as expected because of competition among
participants and lack of common goals. This can be partially attributed to the fact that the
Government had not established a business case for involved contractors to work together.

Recommendations

It is recommended that analyses be performed to ensure technical feasibility of software inte-
gration with legacy systems before the imposition of new requirements. This would help to
resolve technical issues up front, especially in the case of commonality where the same tech-
nical solutions could be used for all the programs. The use of prototyping in determining
technical feasibility of integrating new requirements is considered an excellent way to im-
plement the analyses.

If technical working groups (IPTs) are used to work out technical issues, these groups should
be empowered to enforce decisions on the programs. If contractors are participating in these
groups, then the government must establish partnerships (buy-in) between all the working
group members. It was also recommended that an IV&V process be employed to provide un-
biased assurance of technical feasibility.

Requirements Traceability

Tracing of requirements is a critical aspect of requirements management. Tracing require-
ments helps to ensure that the system design effectively and efficiently meets the users’
needs. The trace of requirements provides rationale for prioritizing and justifying decisions
on the design.

24 CMU/SEI-2001-SR-021

Approach and Lessons Learned

In some of the programs a requirements-management tool was utilized to trace requirements.
The tool was used to centralize and share the requirement trace and to identify interdepend-
encies among requirements for the contractor, program manager (PM) and users. In addition,
the tool was used during periodic software-requirement reviews to verify requirements and
the trace with all stakeholders.

The requirements-management tool provided more visibility into the requirements. Stake-
holders were able to get a better understanding of the requirements and the system. Tracing
the requirements and sharing the results with the stakeholders mitigated adverse schedule and
cost impacts.

Recommendations

The group recommended that all programs use a requirements-management methodology or
tool, and establish a requirements-tracing process. Such a process would include the sharing
of results with all stakeholders of the system and would have a mitigation mechanism in
place to accommodate requirement changes.

Planning and Estimation

Software Integration Planning

In order to be successful in obtaining approval of programs and funding, program managers
often are forced to commit to success-oriented planning and schedules. Such plans do not
allow flexibility to mitigate program risks. This is especially true when new requirements are
imposed to effect integration across the battlefield with directed deadlines. Subsequently,
these schedules are “forced” onto contractors who are developing or enhancing the system
software and simultaneously trying to implement new requirements associated with the inte-
gration. This situation causes both government and contractors to sacrifice or compromise
processes, it adds risks to the overall program, and it results in lower-quality deployed prod-
ucts, especially software. It also leads to a lack of synchronization between software release
schedules.

Approach and Lessons Learned

To satisfy the success-oriented planned milestones or directed deadlines, sequential processes
were often performed in parallel (e.g., contractor and government testing). This makes syn-
chronization of events difficult. In some cases the times to effectively perform processes,
such as testing, were reduced. In other cases, steps in established processes were modified
significantly or completely eliminated. One program planned a “cleanup drop time” in the

CMU/SEI-2001-SR-021 25

schedule to accommodate schedule constraints and changes. On the other hand, there was one
program that was allowed to slip its schedules.

Even with the approaches outlined above, the results were the following:

• degraded system/software product quality

• increased rework

• increased errors

• delayed cost until later (always costs more)

• burnout of people (they worked long hours and quit)

• cutting of corners (didn’t do all of the things that should have been done)

• use of chicken wire and duct tape solutions

Recommendations

Programs should make process changes as difficult to make as schedule changes. Programs
should plan for “cleanup drop time” for contractors and government similar to the way that
companies such as Microsoft plan at least one third of development time as a cushion for
contingencies.

Inflexible Schedule

Arbitrary target dates for fielding are sometimes established without sufficient analysis on the
impact to program schedules or required effort to meet the date.

Approach and Lessons Learned

One approach to ameliorate schedule constraints was to reduce the scope of the functionality
to be provided and still meet the fielding date. This leads to planned incremental upgrades to
incorporate all the functionality at later dates. This approach did not succeed because it would
not satisfy the schedule or provide all the functionality the user wanted.

A second approach is to implement a new technical solution to satisfy the functionality on the
date imposed. This approach of taking an entirely new technical approach late in the system
upgrade did allow the Initial Operational Test and Evaluation (IOTE/FOTE) schedule to be
met.

26 CMU/SEI-2001-SR-021

Recommendations

Perform an “up front” analyses by all players to determine the feasibility of the technical so-
lution(s) providing the necessary functionality and performance while satisfying the imposed
schedules. These analyses would be provided to the decision makers who set the schedule(s)
and would allow a more informed decision concerning the set dates. It was also recom-
mended that an independent group conduct such analyses to provide an objective view and
preclude any program bias.

Planning for Integration and Test

Most programs pointed out that there was inadequate planning for spares to support the sys-
tem/software integration environment—including prototype hardware/production hardware
and the actual platforms. In some cases there were requests to use systems (and associated
resources) being tested that were not included in the test planning. In some cases these re-
quests could not be honored.

Approach and Lessons Learned

Programs used the following techniques to resolve the issue of a lack of resources during
testing:

• Develop a comprehensive plan to utilize system resources during all phases of the pro-
gram, especially during testing. In this planning, programs anticipated unplanned re-
quirements based on historical experience.

• Assign an asset manager to control and track assets.

• Schedule midnight shifts to satisfy requirements.

• Conduct continuous review and updating of plans.

The approaches noted above worked. However, it was felt that these should be improved
upon and institutionalized. Even with these approaches, the eventual cost to the government
increased, especially when early planning was not performed.

Recommendations

For the Integration and Test phase of programs it was recommended to

• develop comprehensive plans to include spares and test equipment for the integration
environment

• anticipate unplanned requirements based on historical experience

• assign an asset manager to control and track assets

• conduct continuous review and updating of plans

CMU/SEI-2001-SR-021 27

Planning for Software Tools and Training (Life Cycle)

The use of and training for (life cycle) software tools and environments between the PM and
the contractor helps in managing the overall program and facilitates the government’s even-
tual use of the tools. The planning and implementation of this effort reduces overall program
costs by minimizing duplication of training and coordination of schedules for tool usage.

Approach and Lessons Learned

Some projects coordinated software tool use during their programs. When the contractor and
PM use the same software tools and environment, and share the same training for these tools,
the program benefits through reduced cost.

Recommendations

Plan for the selection of software tools and environments and the coordination of their adop-
tion and use. Plan for joint training for the contractor and PM on these tools and environ-
ments.

Estimating Software Project Cost

For most programs, available funding may not support the program office’s estimates of costs
of the software effort. The lack of availability of funding usually causes changes to the pro-
gram plan. In addition interrelated programs develop their software cost estimates without
sufficient coordination, resulting in conflicting estimates/cost for competing dollars. This is
especially true for newly imposed interoperability requirements where unplanned test events
for such interoperability were added to the program and were not envisioned during the
original program-planning and cost-estimation process.

Approach and Lessons Learned

For most programs any shortfall in funds had to be” made up” from the reallocation of inter-
nal resources.

The primary lesson learned was that when programs are interrelated, especially for integra-
tion requirements, the integration cost estimates for each program must be developed, coor-
dinated, and consolidated by all involved parties.

Recommendations

The group recommended that costs for interrelated programs, especially for integration ef-
forts, be developed by an independent, umbrella organization. Such an organization would

28 CMU/SEI-2001-SR-021

help validate, manage, and approve all interrelated project-software cost estimates. It would
also help interrelated programs to coordinate and synchronize estimates for system-of-system
integration.

Organization and Staffing

Maintaining Adequate Staffing

There is a large amount of turnover of technical personnel in programs. This is true in the
government as well as supporting and development contractors. In most of the programs this
reflects not only the loss of technical knowledge but also the loss of corporate (e.g., program
management) and domain-specific (e.g., avionics) expertise. In addition, there seems to be a
lack of training for necessary skills, knowledge, and abilities for new hires, leading to an in-
sufficient quantity of government personnel with appropriate skill, knowledge, and ability to
manage the program and contractors.

Approach and Lessons Learned

Programs have tried to provide incentives to technical staff members to stay in the programs
by improving the work environment, pay, and training. Another approach has been to employ
matrix support from other government organizations and by contractors’ augmentation of the
staff (i.e., support contractors). However, as noted above, these support contractors are also
suffering from the turnover and loss problems.

While these approaches have met with only marginal success, the lessons learned indicated
that strong, proactive leadership was essential to retaining technical staff. Improving the work
environment, providing workplace tools, and providing training has a positive impact in this
area.

Recommendations

The recommendations from the programs were the following:

• Give program managers additional authority to provide incentives to employees by im-
proving the work environment, providing workplace tools, and providing the necessary
training.

• Identify paths for upward mobility within the programs.

• Identify transition employment opportunities for personnel assigned to legacy-system
programs that are reaching the end of their life cycle.

CMU/SEI-2001-SR-021 29

Risk Management

Planning for Risk Management

Programs inherently have risks (both technical and programmatic) that should be planned for
and monitored. Most programs were concerned that risk mitigation was not sufficiently rig-
orous to be effective.

Approach to Resolution and Lessons Learned

In most programs both the government and contractors track and manage risk through proc-
esses and supporting tools. Successful risk planning that implements a risk process should be
accomplished “up front.” This ensures that periodic reviews and updates of risks are con-
ducted in coordination with all stakeholders.

For some programs, risks and mitigation plans were identified early. This helped programs,
including both government and contractor teams, to be better prepared to address risks. It en-
abled some of the more critical risks to be mitigated. However, in some cases mitigation op-
tions were eliminated when a risk-management process and techniques had not been planned
or utilized.

Recommendations

Employ risk management to include continuous risk planning and mitigation.

30 CMU/SEI-2001-SR-021

CMU/SEI-2001-SR-021 31

Appendix B Systems and Software
Working Group

This working group focused on systems and software, the aspect of the program that is con-
cerned with the technical construction of the product.

The participants included the following:

• Ed Andres, Abrams

• Tim Carr, Apache

• Edgar Dalrymple, Bradley

• Ron Gormont, PEO AVN

• Fred Hansen, SEI

• Jim Linnehan, SA ALT

• Ed Naylor, Patriot

• John Parker, MLRS

• Tom Pollard, Bradley

• Dennis Smith, SEI

• Emory Steedley, Patriot

• Bob Topp, Apache

To initiate discussion, we considered systems and software through the following topics:

• systems engineering

• software engineering

• technologies

• architectures

• legacy systems

• target systems

• interoperability

32 CMU/SEI-2001-SR-021

These topics focused the discussion and stimulated consideration of additional areas. This
section of the report is organized around the major categories that the discussion actually fol-
lowed:

• legacy systems and obsolescence

• mandates

• interoperability

• government furnished equipment (GFE)

• commercial off-the-shelf (COTS) products

• architecture

• topics relevant to other working groups

Legacy Systems and Obsolescence

Since the theme of the overall workshop was software upgrades, many of this group’s com-
ments focused on legacy systems and their obsolescence.

A set of issues and problems was discussed, including

• logistics support for multiple versions

• scheduling upgrades

• what to do about obsolescent components

• how to deal with vanishing support for development tools

The negative effects of these problems include

• non-interoperability

• unit failures

• equipment downtime

• higher costs

• safety test is tough due to multiple configurations

Approaches and Lessons Learned

In discussing potential approaches to address the problems, example case studies were drawn
from the experience of the programs. These included the following:

• Upgrades to one system specified the inclusion of a switch for a new component on an
already-full panel. The developers were able to utilize an existing switch for old equip-
ment that would not be used when the new component was installed. The software was

CMU/SEI-2001-SR-021 33

modified to check the hardware configuration in order to determine which component
was present and to control it appropriately in response to the switch. This solution was
possible because of a robust and modular architecture. However, the solution did by-
pass standards.

• In order to try to field units with uniform configurations, one program required that
every engineering-change proposal Engineering Change Request (ECP) have full fund-
ing for all changes. This funding was, in fact, provided. In practice, it was not possible
to make all the changes simultaneously. In some cases, the fleet contained diverse vari-
ants for up to five years.

• Lack of team management and coordination can lead to more complex systems than
necessary. In one case, the hardware developers “dumped” onto the software developers
“a bunch of ill-designed boards.” Instead of being in a compact array, the input-output
(I/O) addresses were scattered across a space. So instead of a tidy iteration, the program
needed a sequence of ad hoc code.

• A legacy system had organized its processing around a fixed cycle of 20 milliseconds.
However, with additions to handle upgrades there was no longer time in the cycle to
handle all the computation if there were five or more items under control at a time. To
research the problem, the team studied the bus traffic, plotting its use by each task over a
series of cycles. The team discovered that some tasks, for instance keyboard response,
did not need processing at that cycle rate. It was possible to find a list of such tasks with
lower requirements and process them less frequently. Thus, “decomputing” the frame
times eliminated the need to upgrade the software.

These examples provided the following set of potential approaches for executing upgrades:

• Require the contractor to have a plan for obsolescence and a group to deal with obsoles-
cence.

• Develop planned upgrade cycles to target obsolescence of hardware and software.

• Address tool support as a major effort.

• Program for block upgrades to tool support.

• Add electronically accessible identifiers to all hardware and software components. Use
them to automate reconfiguration based on component presence.

• Plan for change and expansion. Budgets need unallocated funds, schedules need unallo-
cated time, physical space should not all be filled, interactive computing tasks should be
planned to complete in less than the desirable response time, and computer resources
such as memory, computer power, expansion slots, and disk space should not be totally
utilized.

• Load software from a CD-ROM having multiple software versions. Choose the version
depending on what other components are present.

• Plan to rebuild every k years. A good value for k is three.

• Recognize “architectural decay.” If fixing one problem causes three more, it may be
time to re-architect.

34 CMU/SEI-2001-SR-021

• When planning an upgrade, do systematic reuse analysis to determine what components
to replace. Reject an old software component if it does not meet modern coding tech-
niques and standards. The steps to an analysis process are the following:

− Look at the code and identify problems.
− Use automated source-code analyzers.
− Identify potential solutions.
− Re-architect the software if necessary.
− Code and test.

• Plan for regular upgrades. This includes the following tasks:

− Target the obsolescence of hardware and software.
− Upgrade line replaceable units (LRUs).
− Exploit lessons learned.
− Manage the process with weekly integrated product team (IPT) meetings.

Recommendation

• Train acquirers to proactively address legacy systems.

Mandates

A “mandate” is a system design decision that comes not from the needs of the users, but from
a higher authority. Mandates come in several forms.

• Standards mandates dictate that certain specified standards must be followed for some
specific tasks.

• Government furnished equipment (GFE) mandates dictate the incorporation of some
specific component, usually software, into a system. These are covered in the next sec-
tion.

• Process mandates dictate certain sequences of actions and the generation of certain arti-
facts.

Mandates offer a range of problems to programs. Among them, loss of control—or at least
perceived loss of control—can be salient to program managers. This loss magnifies other
problems raised. For example:

• When mandates are handed down subsequent to the project’s design, they impose sig-
nificant rework, raising costs and challenging or destroying the schedule.

• Mandates must sometimes be met with short-term workarounds that must be undone
later in order to extend the system.

• Some mandates prescribe a solution developed by or for the DoD in competition with
commercial alternatives. In later years, however, there may not be funding for updates to
the solution that were contemporaneously occurring with the alternatives.

• Mandates require resources for analysis of their applicability, regardless of whether they
are, in fact, relevant for a program.

CMU/SEI-2001-SR-021 35

Approaches and Lessons Learned

Case studies of mandates include

• documentation standards switch from DoD 2167 to DoD 4943. The question was raised
as to why acceptable documentation should be rewritten.

• compliance with joint technical architecture (JTA) is mandated, and yet compliance is
not well-defined. A large document is available with a number of potential solutions that
sometimes conflict and that are subject to alternative interpretations.

• language mandate change. The contractor was funded to write a converter, convert the
software, and write a compiler from the new language to a particular piece of hardware.
When the hardware then became obsolescent, the tools were no longer available because
the contractor could not afford to keep the tool team in place.

Approaches for dealing with mandates include

• request waivers

• use translators

• rewrite to avoid mandate

• wait to see if the mandate changes

• obey the mandate

The following outcomes were reported in response to the Ada mandate:

• One translation was completed, but was unsupportable, and was abandoned.

• Another translator is currently working and supportable.

• An Ada system that complied with the mandate now feels discrimination.

• Another system migrated away from Ada.

• Because of the size of the existing code, one group is staying with Ada.

• One group needs to change its processor, but must abandon Ada because there is no sup-
port for Ada on the new processor.

Lessons learned from dealing with mandates include the following:

• Revise plans to deal with mandates. Describe to both the mandating agency and to cli-
ents the effects of the mandate on outcomes. Will schedule slip? Will fewer units be de-
livered to the field? Will safety be compromised?

• Apply for a waiver. Waivers are usually the first resort of a program manager. However,
mandates often address problems that must be solved on a level wider than the individ-
ual program. A waiver can be a short-term solution, but a potential long-term problem.

• Be prepared to determine and clarify the effects of a mandate, such as reduced number
of fielded units or decreased safety.

36 CMU/SEI-2001-SR-021

• Request a meeting forum in order to deal with the problem that the mandate is to solve.

Recommendations

Going beyond steps that programs can take, the work group members offered the following
recommendations to alleviate the problems posed by mandates:

• Evaluate mandates with a bottom-up consultative process to be sure the full effects on
the field are understood.

• Request studies of the impact of mandates.

• Specifically obtain estimates of the schedule, cost, and other impacts of the mandate
from representative programs.

• Recognize that some industry standards are more real than others. Predicate the adoption
of standards upon the degree of adherence actually found. The most effective standards
are those that are already in use before their adoption.

• Do not impose a particular processor or programming language. These are particularly
subject to market forces and potential obsolescence.

• Use problem-focused forums instead of mandates.

• Have mandates interpreted by a government officer rather than leaving the interpretation
to vendors.

• Mandates should be defined in such a way that the contractor can match them against
other constraints. One good way to do this is to define the mandate “at the boundaries of
the box.” That is, do not specify how something is done, but specify the interface that
must be provided.

• As a result of acquisition reform, contractors are told what to do and not how to do it.
The participants recommend that management should extend the approach to programs
by specifying the ends that programs must accomplish but not specific direction on how
to achieve those ends.

Interoperability

The need for interoperability was a major concern. Lack of interoperability renders com-
mand-and-control systems useless for accomplishing mission requirements. Plans have been
discussed to prescribe new interoperability mandates. However, program managers are reluc-
tant to make the changes without conducting careful study of the cascading effects on the
integrity of their systems. The issues can be summarized as follows:

• If some systems do not provide interoperability, then information will conflict.

• Interoperability is difficult for legacy systems.

Approaches and Lessons Learned

Example case study:

CMU/SEI-2001-SR-021 37

One exercise was conducted using a single communication system shared be-
tween voice and data. This particular system does not incorporate an automated
means to allocate the bandwidth of the system. As a result, voice communica-
tions overwhelmed the channel to the extent that computer traffic, especially the
command to fire a weapon, was impeded. The results were blamed on the pro-
gram instead of on the communication channel.

No approaches specific to interoperability were expressed. Instead, interoperability was
treated as just another mandate. Frequently, waivers were justified.

Recommendations

The recommendations about mandates included the following:

• Get platforms involved in decision making.

• Leave implementation details to the platform.

Government Furnished Equipment (GFE)

GFE is often developed by a contractor under a government program and subsequently pro-
vided to other programs for integration as a subsystem or component within their systems.

GFE raised the following problems in both development and support of systems:

• Late arrival of GFE items may force schedule slippage.

• When the GFE does arrive, its behavior can conflict with its description. This results in
complexity and frustration during system integration, as well as schedule slippage.

• Personal and corporate relations between a program’s own contractor and the GFE con-
tractor can deteriorate, exacerbating other problems.

• The architecture of the GFE may conflict with that chosen for the system. This is espe-
cially a problem if the mandate for the GFE arrives after development begins in earnest.

• The GFE vendor may have its own agenda for fostering the use of particular proprietary
items.

• A program may inherit a high dependency on the GFE vendor, without fall-back options.

Approaches and Lessons Learned

A GFE case study was described as follows:

In order to incorporate a COTS product into a host platform, a separate proces-
sor was added. A switch was also provided to swap use of the single display be-
tween the tank and GFE computers. The use of the desktop COTS system was
judged by the program manager not to be “a nuclear hardened solution.”

38 CMU/SEI-2001-SR-021

Lessons learned include the following:

• Make a separate contract with the GFE contractor for support of the program.

• Install a liaison person at the GFE contractor site.

• Install a separate computer to run GFE software.

• Allow ample time for integration of GFE into the system.

• Make the GFE vendor part of the development effort.

• Have a block upgrade program for GFE.

Recommendations

• Allow interface compliance as an alternative to incorporating the GFE itself. If a system
behaves as though it contains the GFE, there is not a reason to favor it less than a system
that actually does incorporate the GFE.

• Have a block upgrade program for GFE.

Commercial Off-the-Shelf (COTS) Products

COTS software promises a number of advantages to military systems. COTS products can
provide benefits such as reduced costs through shared overhead and higher quality through
wider usage. Participants cited several important technology advances made in the commer-
cial sector: fiber optics, VMEbus, and graphical maps.

However, there are also strong caveats to take into account when using COTS. These include
the following:

• One size does not fit all. Embedded systems have very different requirements than desk-
top systems do.

• COTS is not necessarily faster, better, cheaper.

COTS systems offer the following challenges:

• supportability

• compatibility

• control of performance

• security

• safety criticality

• intellectual property. Someone owns the code and may change the conditions for its use.
There is license uncertainty, license-management overhead, opacity of proprietary code,
and potential non-availability of a new version’s memory images.

CMU/SEI-2001-SR-021 39

• excessive (and often growing) resource consumption (memory, disk, central processing
unit)

• robustness: frequent crashes, non-existent error recovery strategy, and poor error logging

• fragility of the hardware: sensitivity to vibration, heat, and shock; the impact on soft-
ware

• longevity: new versions appear frequently; software companies can go out of business

Approaches and Lessons Learned

COTS case studies included the following:

• A COTS hardware piece costing under $100 was selected to solve a particular problem.
Unfortunately, it needed certification for its military use, so the vendor was put under
contract for the part. After two years, the cost of the part, still physically unchanged, had
risen eightfold. The part is currently being replaced.

• Software running on a COTS operating system has been deployed in a weapon system.
It suffers from

− user interface deficiencies
− insufficiently robust operating system. A software halt can kill a weapon system.
− not being nuclear hardened
− long power-up and power-down times
− poor response to power outage (operators often “pull the breaker” to reset the system)

COTS lessons learned include the following:

• Eschew proprietary code or buy rights.

• Put the COTS vendor under a support contract. This approach offers reduced schedule
risk, collaborative debugging, and more immediate resource availability.

• Perform a source/documentation/test case review

• Give the contractor the right to choose COTS and the responsibility to make it work.

• Use an independent evaluator to examine the candidate COTS software. At a minimum
the independent evaluator should visit the vendor facility and review the source code,
documentation, and test cases coverage.

Recommendation

• Do not over-mandate the use of COTS.

Architecture

Pay attention to the hardware and software architectures of embedded platforms.

A number of constraints affect the architecture task, including

40 CMU/SEI-2001-SR-021

• the need to address the primary quality attributes, such as availability, performance, se-
curity, safety, and maintainability

• the need to allow for evolution to support requirements changes and changes in other
constraints

• environmental constraints, such as space, power, or heat

• standards and mandates

• preparation for software maintenance; especially system-construction tool support

• hardware obsolescence

• COTS software upgrades and obsolescence

Approaches and Lessons Learned

The discussion generated a set of lessons learned, including the following:

• Involve all stakeholders: hardware and software developers, testers, users, and manage-
ment.

• In planning the architecture, design for change. Expect that things will change over time
and that individual pieces of the developed system will have to be replaced.

• Incorporate interfaces between components to promote their independent replacement.

• Isolate groups of functionality.

• Analyze tradeoffs between competing requirements.

• Exploit open systems.

• Recognize the key role of throughput and memory.

• Recognize up front the differences between desktop and embedded systems.

• Recognize that architecture gets constrained quickly.

• Use simulation and prototyping. As in spiral development, choose a methodology to
minimize risk.

• Plan to be able to change the programming language. Write code in a small, stylized
subset of whatever language you do use.

• Plan for expandability by incorporating spare capacity.

Study the application of methods and tools. For example, unified modeling language (UML)
with tool support has helped one program in defining architecture level requirements. It made
digitization simple and allocated timing constraints with it. But it also automatically gener-
ated a large number of documents that required careful analysis and did not always map to
the needs of the program.

• Place control of system design clearly with either the government or contractor.

• Define operational architecture and review it first, especially with users.

CMU/SEI-2001-SR-021 41

• Use a software layer to isolate from the hardware and provide a leverage point for future
replacement software.

Topics Related to Other Working Groups

During the discussion, a number of issues were addressed that had relevance for other work-
ing groups. The main points of these discussions are recorded here. The issues and concerns
were consistent with the discussions that took place in the other groups; the Systems and
Software group added additional insights from its own perspective.

Funding and Contracting

Funding was discussed from the perspective of software and systems. Funding problems in-
clude the following:

• Uncertainty results from changes of federal government administration.

• Mandates will often impose additional costs on a project without offering funding to
cover those costs.

• If there is a mandate for the use of a component, funding for sustainment of that compo-
nent is sometimes withheld.

• Declining funding levels prevent retention of expertise.

Approaches and Lessons Learned

Lessons learned include the following:

• Recognize the difficulty of upgrades when arranging for funding. Revising software can
mean relearning everything that the original developer understood when writing the
original code.

• Always calculate the logistics costs. Include costs for new part numbers, new manuals,
retraining, and multiple similar parts in inventory (e.g., space, increased error rate).

• Remember that a replacement component offered as an upgrade may well meet perform-
ance specs, but it may also create logistics problems.

• Big contractors can afford to retain tool expertise, but small contractors cannot. If you
have software from small contractors, consider keeping the supplier under contract in
order to support their continued expertise on essential tools.

• An in-house mentoring approach can be valuable.

Recommendations

• Provide resources as necessary to adhere to mandates.

42 CMU/SEI-2001-SR-021

Project Management

Project management problems include the following:

• There may be insufficient insight into the contractor’s efforts.

• Optimism can lead to aggressive and unrealistic schedules.

• There is no consistent mechanism to resolve issues of conflicting mandates or inter-
project issues.

Negative effects include

• schedule disruption

• integration difficulties

• failure to interoperate

• confusion

Approaches and Lessons Learned

The following two case studies were discussed:

• A replacement board had to be accommodated. All parties knew that it had been time
consuming to integrate the original board. The engineers believed that the new board
would be little better, but management overrode them in the belief that the prior experi-
ence would help. It didn’t. The schedule target was missed. One way to look at this is as
a failure to use prior data to hone present estimates for future work.

• One project arranged with a contractor to place a person from the program-management
office at the contractor site. This individual became a valuable conduit for communica-
tions in both directions and across levels. He established a reputation for integrity and
discretion and became a confidant of various contractor personnel.

Lessons include the following:

• Use data and metrics analysis. At first, when there is no historical data, this approach is
painful. Later, as data accumulates, it becomes highly rewarding.

• Programs should always strive to defend themselves with real data.

• Exploit the fact that the DoD requires vendors to have attained CMM level 3. This is
helpful because it requires vendors to have metrics. Demand to see those metrics and use
them to manage the program. However, vendors may try to tailor their processes for
your project to exclude metrics.

• In demanding metrics values and process documentation from major contractors, recog-
nize that they, in turn, will be very demanding of the same materials from their
subcontractors and suppliers.

CMU/SEI-2001-SR-021 43

• Recognize and discount the optimist factor. Programmatic people tend to be more opti-
mistic than engineers, especially in proposing schedules. Decision makers are sometimes
tempted to use the most optimistic, rather than the most realistic, estimate.

• Retain all schedule estimates and reward those managers who come closest, whether
their approach was accepted or not.

• As with funding, recognize the difficulty of upgrades when doing scheduling. Revising
software means relearning everything that the original developer understood when writ-
ing the original code.

• Utilize independent validation and verification (IV&V) support from either the DoD or
the contractor.

• Send a liaison person to work at the contractor site.

• Demand that software managers respect memory and throughput requirements. Too of-
ten they don’t see these as real and constraints are haphazardly exceeded.

• Hold inter-organizational meetings to resolve issues.

Recommendations

• Publish guidelines for reviewing metrics.

• Have clear criteria for which guidance and mandates to follow.

• Have an authority with the power to make decisions.

• Have readiness-driven schedules.

Requirements

While mandates arrive at the program manager’s office from “above,” the requirements are
the project definition and arrive from the users “below.” Traditionally, requirements are cre-
ated as a thick document that changes frequently throughout the project.

Acquisition reform has changed many of the ground rules relating to requirements. It has
eliminated many documents and has led to an emphasis on performance specifications. While
this has streamlined part of the process, it has also led to the abandonment of many of the
controls that program managers need to monitor a program effectively.

Problems in the requirements process include the following:

• Requirements can be difficult to determine and hard to gel.

• Requirement additions arrive frequently.

• Satisfaction of new requirements often translates into a need for higher data speeds.

• Requirements creep is exacerbated by email.

44 CMU/SEI-2001-SR-021

• Requirements traceability can be difficult with acquisition reform. It is not always pos-
sible to be sure that a system satisfies requirements or that a particular part of a system is
necessary to satisfy the requirements.

• Requirements documents become very large and lead to very large design documents.

• Regression to earlier milestones may be required to meet interoperable software re-
quirements.

• Requirements can be written with too many details.

The negative effects of these issues include the following:

• Late changes have schedule and resource implications.

• Late changes can lead to suboptimal solutions.

• Designs may need to be scrapped to accommodate late-arriving requirements.

• Large documents are very difficult to check.

• Excessive detail constrains the design and severely limits COTS options.

Approaches and Lessons Learned

The following case study was presented:

As a workaround for a late-breaking requirement, a GFE modular software
package had to be modified to borrow RAM (random access memory) across the
VMEbus. This is a slow access path and it hurt performance.

Lessons include the following:

• Use system segment design documents; they are voluminous, but well organized.

• Require change request documents.

• Have a formal change control board and make sure it performs.

• Demand that each change be accompanied with a full cost analysis.

• Discuss each change in a formal forum, such as the change control board.

• Allow changes to be made only with written approval.

• Approve change requests with signatures at commitment meetings.

• Use performance specifications. This form of specification requires a new mindset dif-
ferent from the detailed specification mode.

• When appropriate, use methods such as UML with tool support to describe require-
ments.

Deployment

Deployment problems include the following:

CMU/SEI-2001-SR-021 45

• Requirements to simultaneously field different interoperating systems can create prob-
lems of complexity.

• Delivered product is not documented or documentation is completed late. If documenta-
tion is completed early, it may be inaccurate and never get updated.

• Automatic generation of documentation creates large documents of questionable value.

Approaches and Lessons Learned

Lessons include the following:

• Require electronic submission of documents.

• Require early access to preliminary documents over the network. Review them early and
often.

• Choose document formats carefully. Portable display format (PDF) is good, but should
not be expected for early documents. Whatever format is chosen, be sure to have fund-
ing for enough people to be able to read it.

• Write requirements only to the level of detail that is needed.

• Require a software baseline verification test (SBVT) because it includes all documenta-
tion. One program ensures compliance by refusing to progress to air worthiness release
(AWR) until the SBVT is accepted by the computer resources management team
(CMRT). However, this approach requires discipline from an acquisition organization.

Individual Summary Recommendations

In the final session, each participant was asked to recommend one change that would be a top
priority “if I were king.” Many of these echoed other issues brought up during the discus-
sions. While these comments do not necessarily reflect a group consensus, and in fact several
of them contradict others, they are recorded here as being highly salient in the mind of at
least one participant:

• Reinstate ADA.

• Get rid of mandates.

• Do not allow GFE.

• Carefully choose a time to declare that requirements are stable. Stop the changes and
build the system. Defer all changes to later upgrade cycles.

• Exploit the fact that the DoD requires vendors to have attained CMM level 3. It is help-
ful because it requires vendors to have metrics.

• Have an authority with power to make decisions.

• Be sure that there is bottom-up consultation on mandates.

• Provide more inter-program meetings.

46 CMU/SEI-2001-SR-021

• Resolve issues clearly and in a timely manner.

• Require that all decisions be based on data and analysis.

• Provide mechanisms to resolve conflicting mandates.

• Government management should listen to its workforce as much as it listens to industry.

• Train military officers to question software decisions.

One participant listed the following five factors that are critical to the success of programs:

1. experienced senior staff. It is particularly important to have a domain expert as the PM.

2. mature processes in place. These especially include requirements management and con-
trol.

3. proper development and test environment resources

4. a propensity to plan for change, including strong risk-management processes

5. clear communications with the customer. It is essential to tell the customer clearly the
limitations of what will be delivered with the funding provided.

CMU/SEI-2001-SR-021 47

Appendix C Funding and Contracting
Working Group

The participants included the following:

• Nell Baites, MLRS government acquisition

• David Fogg, Patriot government acquisition

• Mike Patterson, Abrams contractor

• Neal Patterson, MLRS government

• Bob Pusicz, Apache contractor (Decilog)

• Caroline Graettinger, Software Engineering Institute

• John Bergey, Software Engineering Institute

The Funding and Contracting Working Group explored the following five topics:

• software contracting scope

• contractual planning

• decision making on cost and schedule

• contract performance

• government/contractor relationship

• For each topic, the group identified one or more issues, and their outcome, impact, and
lessons learned. The group then made recommendations to address the issues.

Software Contracting Scope

System Versus Software Emphasis

Even though systems are software intensive, the current acquisition paradigm does not reflect
the importance of software to the acquirer. In particular, an emphasis on the system at the
expense of software is related to the following issues:

• Contractual arrangements purchase capability rather than software.

48 CMU/SEI-2001-SR-021

• Software is treated “in the small”—it is not possible to put the detail in the contract (e.g.,
statement of work (SOW) does not accurately describe what we want; we are required to
cut out deliverables, etc.).

• Software requirements and costs are small compared to total platform costs, leading to
software concerns not getting sufficient attention.

• Not enough up-front money is allocated to software.

• Software gets funded at the end when money and schedule are tight.

As a result, software is often treated as an implementation-specific detail. The Army does
not obtain enough visibility and leverage to properly manage the software aspects of an
acquisition.

Approach and Lessons Learned

There were two primary lessons learned. First, paying attention to the software from the be-
ginning of a program is important because “software implements the system performance.” If
you don’t do sufficient software planning up-front, Murphy’s Law will catch up with you in
the end. Second, software problems are often not solved in a timely fashion; instead they get
deferred to a follow-on contract. For example, requirements are often not definitive enough to
allow project personnel to accurately quantify and describe the contractual tasks. As a result
they tend to specify place-keeper tasks because it is not possible to specify level-of-effort
contracts.

Recommendations

This problem can be addressed through education and training. The group recommends edu-
cation and training in applying earned value, IPTs, team work, and software acquisition man-
agement. The latter would include how to use performance specifications to get what you
want from software. Potential agents responsible for carrying this out include the ASA (ALT)
or program managers.

COTS Introduces a New Set of Contractual Issues

The widespread use of COTS introduces a new set of contractual issues—some good and
some bad. This is due to the relatively short COTS-technology upgrade cycle and the long
system-development lead times. A project cannot get to operational test/introduction of
operational capability (OT/IOC) without significant rework to address software obsolescence
of COTS products that are part of the system.

CMU/SEI-2001-SR-021 49

Approach and Lessons Learned

Lessons learned suggest that projects need to be more proactive and plan block upgrades
every three to five years to address

• obsolescence

• new functional requirements

• non-supported COTS

In addition, the experience of working group members suggests that an effective way of deal-
ing with software obsolescence is to bring in contractors having special expertise in combat-
ing COTS software obsolescence.

Recommendations

The group recommends that there be a level-of-effort (LOE) funding line in development
contracts for continuing electronic and software enhancements. Tasks to offset hardware and
software obsolescence would be defined as needed. The group believes Program Managers
should be responsible for funding such a line item in all programs involving use of COTS.

Contractual Planning

Mandates from Above Are Problematic

Mandates from above are almost universally viewed as a major problem. The classic example
was the Ada mandate. But current mandates are viewed with the same concern. Current man-
dates include such items as

• joint technical architecture (JTA)

• performance specifications instead of detailed specifications

• warranties on software

The lone exception is the CMM level 3 requirement. Although it is viewed as being “pain-
ful,” the demonstrated benefits are worth it from the perspective of both the contractor and
the program manager.

Approach and Lessons Learned

The working group identified a series of mandates that had an adverse effect on their pro-
jects. These include the following:

50 CMU/SEI-2001-SR-021

• There were differences between the performance requirements and the detailed specifi-
cations being mandated. This has benefits for hardware but not for engineering services
or software. It results in

− the lack of a recognized approach to ensure delivery of the software that fulfills mission
needs

− full control over the software development by the contractor
− limited visibility and control by the government
− an inability to achieve a graceful transition of software from one contractor to the other

for post-deployment software support (PDSS)

• Mandating fixed-price contracts for large-scale development has not been effective.

• Warranties for software do not work, for the following reasons:

− Software warranties are not cost effective. They apply to specific test plans and proce-
dures but are not warranted under any other conditions.

− Once the software is tested against the performance specification and accepted, all
changes are costly.

Software warranties are viewed as being contentious and contributing to an adversarial gov-
ernment/contractor relationship. The group’s experience suggests that money used to obtain a
software warranty would be better spent by applying it to an engineering-services contract
instead. Problems could then be fixed in accordance with the government’s priorities and
specific needs.

With regard to mandating fixed-price contracts, experience suggests that when a contract is
cost plus and level of effort, the contractor will do whatever it takes to get the job done. The
group believes the following contract mechanisms should be used:

• cost plus contract / earned value for new development

• cost plus contract / level of effort for maintenance

Recommendations

The working group recommends that all agencies do away with mandates for software war-
ranties, and give the program managers the authority to decide if the mandates are applicable.

To address the systemic nature of the problem, the group believes that acquisition reform
should be revisited to consider the full implications of adopting performance specifications.

Software Data Rights

In many situations the government should own software data rights in order to transition to
post-deployment software support.

CMU/SEI-2001-SR-021 51

Approach and Lessons Learned

Specific lessons learned include the following:

• Don’t let contractors put blanket proprietary labels on software deliverables because the
acquirer needs data rights and this may preclude obtaining government rights.

• Don’t let contractors incorporate independent research and development (IRAD) money
or they will claim total ownership of software data rights.

Recommendations

Increase awareness about software data rights issues, provide guidance, and empower pro-
grams to enforce follow-through, especially where subcontracting is involved.

The government should obtain “government use” data rights to the software so that it has the
means to perform and compete, if necessary, software life-cycle post-deployment support.
Otherwise the development contractor will have a “lockout” on post-deployment software
support.

Decision Making on Cost and Schedule

Cost and Schedule Estimation Are Problematic

The group discussed how to best estimate cost and schedule for software development and
maintenance. This includes the following questions:

• How do we estimate cost per line of code (LOC)?

• How do we estimate cost per drop?

• Can there be a database or tool to provide hours/LOC for negotiation purposes or
hours/LOC by ground-based systems or avionics or another domain?

Approach and Lessons Learned

The group’s understanding is that there are no Army standards for cost estimation and this
leads to arguments in planning contracting efforts. Some of the lessons learned include the
following:

• Plan for quality but realize you will implement to schedule.

• Costing tools are available but there is a lack of community awareness.

• Make initial estimates using models such as COCOMO, Price-S, and SLIM. If the
contractor’s estimate falls within this range, it provides some independent verification
that the estimate is realistic.

52 CMU/SEI-2001-SR-021

• Bring lessons learned back into the cost-estimation models.

• There should be greater effort dedicated to planning and estimating.

• Using cost and schedule data derived from historical data through working with a con-
tractor is an effective workaround, but such data are not always available.

Recommendations

The government should provide training and make cost estimation tools and historical data
widely available to support the cost and schedule decision-making process. A concern is that
proprietary issues can limit capturing the appropriate data.

Contract Performance

How Do I Manage Contract Performance (When Schedule Considera-
tions Always Predominate)

A problem cited by all the participants is that in day-to-day practice “schedule is everything.”
This makes it more difficult to properly manage contract performance.

Approach and Lessons Learned

Schedule, quality, and cost considerations (in that order) are understood to define acquisition
priorities. Various approaches that have met with marginal success in this highly schedule-
driven environment are captured in the following lessons learned:

• Manage by incremental builds and track by milestones if using level of effort (LOE).

• Use an integrated product team (IPT) approach or hold technical interchange meetings
(TIMs) to track software progress.

• IPTs help but they should be given the power to make schedule and quality decisions
within contract scope.

• Sharing of information at lower levels is key to success.

• Hold the contractor to its process by reviewing the contractor’s internal quality audits.

Recommendations

The group had the following recommendations:

• Extend current CMM requirement for all acquisition capability (ACAT) 1 programs to
all software contracts; hold contractors to their processes; and periodically reassess their
capability.

• Improve the software acquisition capability maturity level of acquiring organizations.

CMU/SEI-2001-SR-021 53

Contractor/Government Relationship

No Significant Issues

Both the government and contractors rely heavily on the use of integrated product teams to
manage the acquisition and perform their contractual tasks.

Approach and Lessons Learned

The single most important lesson learned is that effective use of IPTs mitigates many poten-
tial problems. The IPTs are effective because they provide

• communication, communication, communication

• regularly scheduled technical-interchange meetings

• longstanding relationships with contractors and subcontractors

The degree to which IPTs are embraced by the contractor/government community is evi-
denced by the fact that contractors involved in IPTs often establish subcontracts with one an-
other to resolve problems and fulfill tasking (which overcomes the limitations of a stovepiped
acquisition infrastructure). This is another good reason for using level-of-effort (LOE) and
cost-plus contracts. Allocation of ample funds to cover IPT activities is also an enabling fac-
tor.

Recommendations

There were no recommendations. The participants place high value on the existing contrac-
tor/government relationships because they believe a good relationship is essential to their mu-
tual success, especially in light of other factors (e.g., poor requirements management, sched-
ule perturbations, funding constraints, etc.) that are not under their direct control.

54 CMU/SEI-2001-SR-021

CMU/SEI-2001-SR-021 55

Appendix D Deployment Working Group

Participants included the following:

• Bill Anderson, SEI

• James Cyr, MLRS

• Don DeHart, Patriot

• Jim Kelley, Apache

• Ron Lafond, Apache

• John Markovich, Abrams

• Ray Obenza, SEI

• Mark Willhoft, Bradley

The topics covered by the deployment group included the following:

• testing

• integration

• configuration management

• operational suitability

• migration planning

• training

The deployment group assigned a number to each lesson. These numbers were used later in
ranking recommendations. The results of this exercise are reported in Figure 2.

Testing

Interdependencies in Testing (Lesson #2)

The ever-increasing interdependencies of subsystems in systems, and of systems in platforms,
have made optimization of test programs difficult. This problem has led to redundant testing,
unplanned resource allocation, missed milestones, and testing delays.

56 CMU/SEI-2001-SR-021

Often testing of one system requires involvement of another system or program. If the second
program has not planned for this coordinated testing, the testing will be delayed. The problem
cascades when the second program enters a testing phase that requires the involvement of the
first program. Then the first program will often delay the testing of the second program.

Approach and Lessons Learned

When the test schedules of multiple programs are aligned, it enables the coordination of all
related resources and schedules. Such an alignment also requires a contractual basis for coop-
eration between the contractors.

Recommendation

The group recommended that alignment of test schedules be considered early in the planning
of a software upgrade program. The plan should include mechanisms to ensure participation
by each of the contractors.

Compromising Testing When Cutting Back Schedules (Les-
son #3)

Pressure on deployment schedules has created a tendency to compromise the development
process. Because of its presence at the end of the life cycle, and because it is difficult to
quantify its specific contributions, testing is often cut back when schedules are compressed or
budgets are cut. As a result, there is inadequate testing to ensure that the initial modification
kits function correctly.

For example, in some cases, a contractor may not be quite ready for testing. Because of
schedule pressures, the government person is sometimes pressured to allow tasks that the
contractor has not completed, with the contractor’s assurance that everything will be fine
upon release of the modification kit. This situation creates risk because the modification kits
might not quite fit or fully function.

Approach and Lessons Learned

The grouping of modifications into block modification kits facilitates the testing of multiple
modifications simultaneously. This approach has been used successfully in several cases.

Recommendation

The team recommended a more disciplined approach that will not compromise testing. A
minimum testing standard could be established to ensure that adequate testing is performed.

CMU/SEI-2001-SR-021 57

Production-Configured Test Assets (Lesson #4)

The lack of production-configured assets can lead to a number of problems including testing
delays, hampering of early problem identification, increased risk, slipping of program sched-
ules, and cost overruns.

Approach and Lessons Learned

These problems can be averted when sufficient dedicated vehicles for each configuration are
built into the schedule. When sufficient vehicles were available, testing delays were avoided
and problems were identified early.

Recommendation

The team recommended that dedicated test assets, separate from lab development assets, be
budgeted into programs.

Test and Fault Isolation (Lesson #6)

When testing a complex system, it is often time consuming to develop a configuration of the
parts that are required for testing and fault isolation.

Approach and Lessons Learned

One program developed an automatic get list generation of all parts, tools, and documentation
required to resolve a fault condition. This resulted in a significant decrease in mean time-to-
repair (MTTR), thus improving the maintainability of the system.

Recommendation

Determine how to make this specific practice applicable to other programs. If it is widely ap-
plicable, disseminate the practice widely.

C3 Interoperability (Lesson #7)

The requirement for interoperability of C3 programs has resulted in a need for testing that
spans multiple systems. The planned addition of aviation platforms gives added priority to
this need.

58 CMU/SEI-2001-SR-021

Approach and Lessons Learned

Interoperability has been demonstrated across ground platforms. The mechanisms for achiev-
ing integration include integrated project teams (IPTs), system integration labs (SILs), and
central technical support facility (CTSF).

Recommendation

Interoperability testing should be addressed at all levels of test plans, beginning with the
high-level test & evaluation master plan (TEMP).

Full Inter-Platform Stress Testing (Lesson #8)

Sufficient time and resources are often not allocated for inter-platform stress testing for full
interoperability. Often the current approach is to wait for a major exercise, such as a war
game scenario, to discover the shortcomings. This is not the optimal environment for testing
because the reason for such exercises is to use the equipment, rather than to test its operation.
This leads to expensive, high stress, last minute, fire drill scenarios.

Approach and Lessons Learned

There is a need to have high level plans and to implement these plans for inter-platform in-
teroperability. Plans to address performance are especially important.

Recommendation

The team recommended that a higher level TEMP be developed, resourced, and scheduled
into program schedules. The TEMP should include inter-platform, interoperability testing.
This recommendation is similar to Lesson #7, but specifically addresses performance (e.g.,
can the communication pipes handle the demand of all systems at the same time?).

Breadth and Depth of Software Testing (Lesson #9)

Issues of breadth and depth are critical for adequate software testing.

Approach and Lessons Learned

Several organizations reported that automated test scripts reduce test time, increase repeat-
ability, and expand test coverage.

CMU/SEI-2001-SR-021 59

Recommendation

The practice of automated test scripts should be widely disseminated, and there should be
efforts to standardize test scripting tools.

Test Development and Repeatability (Lesson #10)

Test development can be a labor-intensive task. If it is not automated, substantial
repetition of effort will be required every time a software upgrade is made.

Approach and Lessons Learned

The automatic capture and generation of a reusable test script from a recording of operator
actions while using the platform has proven to be effective in saving both time and resources
and in making the test process more efficient.

Recommendation

Automatic capture and generation of tests scripts should be broadly practiced among the pro-
grams.

Integration

Scheduling Dependent Subsystems (Lesson #11)

The last-minute availability of subsystems for integration and testing has led to delays, reli-
ance on patches, repeat testing, loss of coverage, and has delayed problem discovery to the
field trial phase.

Approach and Lessons Learned

Greater discipline in following the testing and integration process has led to positive results.
A particularly difficult issue is to find ways for ensuring that subcontractors will produce
their systems on time.

Recommendation

The team recommended stronger discipline in the entire testing and integration process, in-
cluding:

• more integration testing

• freezing hardware and software configurations prior to integration

60 CMU/SEI-2001-SR-021

• not permitting schedule compression to eliminate testing

Lack of Standardization on Tools for Subsystem Checkout (Lesson #13)

A lack of standardization of tools for subsystem check out has complicated integration.
Unique maintenance tool sets are redundant and expensive, and they complicate training.

Approach and Lessons Learned

The automatic capture and generation of a reusable test script from a recording of operator
actions while using the platform has proven to be very useful.

Recommendation

Every effort should be made to standardize these support tools, and to make them available
and current.

Proprietary Subsystem Software (Lesson #15)

If the SOW has been written to contract for proprietary code, there may be issues associated
with the integration of proprietary code on system platforms. These propriety issues raise is-
sues of integration, testing, and problem resolution. The team made no recommendations.

Configuration Management

Resource Constraints Encourage Multiple Configurations (Lesson #5)

The flexible nature of software configurable systems can create a pull toward multiple con-
figurations.

Approach and Lessons Learned

The indirect costs of configuration proliferation must be considered. Increased operating,
support, and training costs have all been observed.

Recommendation

The team recommended limiting configurations and grouping changes into block modifica-
tions.

CMU/SEI-2001-SR-021 61

Configuration Flexibility (Lesson #12)

Multiple hardware and software configurations can make the complex task of configuration
management more difficult.

Approach and Lessons Learned

An effective approach to improve configuration flexibility has been the use of vehicle verifi-
cation identification (VVID), which is the capability to automatically self-test and sense
hardware and software version compatibility.

The practice involves loading a CD ROM to upgrade the system. Once the upgrade has oc-
curred, the software will not permit loading a previous version of any of the LRUs, even if
desired by the operator.

This practice has shown dramatic improvement in MTTR and is considered a safety critical
feature.

Recommendation

Disseminate the practice of VVID more broadly.

Performance Specification (Lesson #14)

The relaxation of performance specifications (COTS driven) has produced an accompanying
relaxation of change disclosure requirements. This has resulted in integration problems due to
unanticipated incompatibility between systems on a platform.

Recommendation

The team recommended a tightening of performance specifications to promote disclosure of
changes that could impact the performance of other systems.

Maintaining a Single Software Baseline (Lesson #20)

Programs often develop multiple paths of software development that require a delta effort to
reestablish the single baseline. Program funding and schedules often fail to take into account
the extra effort to reestablish the baseline.

For example, a new configuration/upgrade can be applied to some of the equipment, then
patches or changes would be needed and introduced to the next set of equipment, and so on.

62 CMU/SEI-2001-SR-021

As a result, it would be hypothetically possible that no single piece of equipment would be
exactly like any other.

Approach and Lessons Learned

Programs that maintain a single baseline software configuration report success in keeping
configuration management under control. A “Plug & Play” configuration capability is sup-
portable under this model if the baseline includes a superset of the required components.

Recommendation

Maintain a single baseline software configuration.

Documentation Timeliness (Lesson #21)

The documentation change process is cumbersome and slow. This results in documentation
that lags far behind software releases.

In addition schedule pressures for fielding new releases provides a pressure to push documen-
tation updates to the back burner. For example, quick fixes are often needed during and after
testing and integration, and this pressure pushes documentation aside.

Recommendation

The team recommended a line item to budget and schedule documentation updates with each
fielding of an upgrade.

Training

Operator/Maintainer Trainer (Lesson #26)

Operator and maintainer training resources (hardware and software enabled training devices)
cannot accurately reflect finalized systems until the systems are delivered. Just-in-time deliv-
ery of these systems seems to preclude development time for the training resources. This has
led to unsatisfactory workarounds and to training procedures that are inaccurate.

CMU/SEI-2001-SR-021 63

Recommendation

No definitive recommendation was reached. Several possibilities for addressing the problem
were proposed, including concurrent system and system trainer development from the same
contractor.

Trouble Shooting of Training (Lesson #27)

It is difficult to train for trouble shooting operations when the training involves learning a
technique for solving a problem rather than a specific solution.

Some of the potential benefits that could come from more effective training of trouble shoot-
ing techniques include retention of expertise into a database of knowledge, the ability to util-
ize less skilled labor, and more efficient use of limited resources.

Approach and Lessons Learned

One program reported a trial use of “learning systems” that would be used to maintain and fix
equipment, recognize trends and common problems, provide guidance to maintainers to
check the most likely cause, and so on.

Recommendation

Determine if the “learning systems” approach merits further investigation. Research the
commercial world’s extensive capabilities in the body of knowledge associated with call cen-
ter support systems.

Aligning Training With Equipment Fielding (Lesson #28)

Training is often required to prepare trainers at or before operational equipment is fielded. As
a result, there are delays in fielding operational equipment, as well as errors in training due to
making incorrect guesses about anticipated operational equipment.

(This complements testing lesson #2). (It also has parallels to Lesson #26 which addressed
the symptom of training not quite available with the fielded system.)

Approach and Lessons Learned

Field the trainers at the same time as or before fielding the equipment.

64 CMU/SEI-2001-SR-021

Recommendation

None. It’s a paradox.

Subsystem Iteration Without Early Identification of Training Require-
ments (Lesson #29)

Subsystems are permitted to iterate without early identification of training requirements. This
causes last minute reactive scrambles without a clear understanding of training requirements.
In addition the problem points to subcontractors who are behind schedule.

Recommendation

The team recommended uniformly enforcing the good idea cut-off date (GICOD) and prob-
lem change request (PCR) freezes.

Operational Suitability

Problem Change Requests (PCRs) (Lesson #16)

The coordination and processing of PCRs is a critical function that requires substantial effort
to get appropriate user input, make decisions and monitor and track progress.

Approach and Lessons Learned

User representation in the following areas has been beneficial in ensuring operational suit-
ability:

• change control board (CCB)

• setting of priorities

• post field technical reviews (PFTR)

• field problem review boards

• post-supportability reviews

• program field reports

• block phased updates

CMU/SEI-2001-SR-021 65

Recommendation

The support and adherence to a formal problem change request (PCR) or system trouble re-
port (STR) process is mission critical. User involvement is critical for ensuring operational
suitability.

User Requests and Feedback (Lesson #17)

Organizations are motivated to maintain high scores on the readiness report. However, this
motivation also leads to a reluctance to report deficiencies and a difficulty in justifying fund-
ing for enhancements (e.g., if an organization is 99.7% ready, why does a system need en-
hancements?). This issue leads to poor communication, particularly on items that are not
safety-of-flight critical.

Approach and Lessons Learned

Informal mechanisms have been effective, such as field service representatives’ conversations
with the troops. These informal mechanisms have provided a safe way for field units to share
their problems and needs.

Recommendation

A more systematic, anonymous mechanism would provide a way of building on the success
of the informal mechanisms and of increasing opportunities to get feedback.

Maintenance Data Recording (Lesson #18)

Similar to lesson #17, operational units are motivated to produce positive reports relative to
maintenance data recording. As a result maintenance data recording may be inaccurate. Inac-
curate data can impact the ability to justify funding for upgrades.

Recommendation

The team recommended a mechanism for accurate data reporting without negative conse-
quence for the unit.

User Recommended Technology Recommendations (Lesson #19)

As new technology is introduced, the mission changes to leverage the new technology. This
produces a user-driven change request stream that must be managed.

66 CMU/SEI-2001-SR-021

Approach and Lessons Learned

Several programs have implemented a user prioritized “plum” list that is worked from the top
down after mutual agreement upon scope change and program impacts. The programs at-
tempt to accommodate user requests as much as possible, but also establish mechanisms for
establishing priorities. A key to their success has been obtaining user involvement in setting
priorities and sticking to them.

Recommendation

The team recommended that user prioritized request mechanisms be adopted more systemati-
cally.

Migration Planning

Obsolescence and Conversions While Meeting Operational Readiness
Requirements (Lesson #22)

Regular upgrades are a part of reality in today’s world. The obsolescence and conversion of
software while continually meeting operational readiness requirements requires user partici-
pation in migration planning.

Approach and Lessons Learned

Acceptance of regular upgrade schedules needs to be institutionalized.

Recommendation

The team recommended proactive upgrade planning with strong user participation. It is im-
portant that upgrade planning becomes part of the operational units culture.

LRU Reprogramming Standardization (Lesson #23)

The lack of a standardized LRU reprogramming process has produced cumbersome, slow,
and error-prone upgrades.

Approach and Lessons Learned

Soldier portable on-system repair tool (SPORT), while in an early stage, represents one prom-
ising approach. SPORT uses a single tool to upgrade each LRU. The use of such an approach
requires that all LRUs need to able to talk to this single tool.

CMU/SEI-2001-SR-021 67

Recommendation

The team recommended a standardized LRU file structure to facilitate a single reprogram-
ming tool on all LRUs.

Software Configuration Upgrades (Lesson #24)

Software configuration upgrades can lead to errors, such as the loading of the wrong software
versions.

Approach and Lessons Learned

A CD-based upgrade erases previous software versions and disallows reinstall of previous
versions. This is coupled with on-board systems configuration checking that prevents the
loading of incorrect software versions.

Recommendation

The team recommended that the CD approach be analyzed in more detail in conjunction with
the recommendation from Lesson 12.

Dynamic Nature of Software Configurations (Lesson #25)

Regular and frequent upgrades are difficult to manage and require compatibility and coordi-
nation to be addressed. The problem is aggravated by multiple versions of the soldier portable
on-system repair tool (SPORT vs. Super Sport).

Recommendation

The team recommended effort to reduce the load/verify time associated with software up-
grades.

Cross-Communication

Deputy Chief of Staff for Operations (DCSOPS) Not Included in Integra-
tion and Fielding (Lesson #1)

There is a communications problem because higher levels of authority are not usually in-
cluded on many IPTs. As a result issues are not identified early enough or elevated to the ap-
propriate authority in a timely manner.

68 CMU/SEI-2001-SR-021

Approach and Lessons Learned

The IPT concept is a vital innovation that can be used as a starting point for including broader
participation. In some examples, a cross-PM IPT with subcontractors and system integration
laboratory participation has been an enabler for early identification of issues and for more
effective communication.

Recommendation

The team focused on the need to expand the scope of the IPTs to include higher levels of au-
thority. DCSOPS should be included to help coordinate integration, fielding, and test working
group (TWIG) IPTs.

Expected positive outcomes include early identification of issues and improved visibility to
appropriate higher levels.

Prioritization/Rank Grouping

The team went through an exercise to rank the lessons learned based upon two criteria: the
desirability of learning from the lesson and the likelihood that learning will occur. The les-
sons were then plotted to group them into quadrants. Highly desirable lessons that are likely
to be adopted are the “low-hanging fruit” that may warrant immediate action. Lessons that
are undesirable and unlikely are low risk and require less attention. The other two quadrants
(desirable and unlikely, undesirable and likely) are the challenges. It should be noted that
these last two quadrants are roughly equivalent because most lessons could be reworded in
the opposite sense (i.e., not having IPTs is bad or having IPTs is good).

A data reduction exercise was used to summarize the team’s overall judgment of lesson im-
portance. The exercise resulted in three leaders for each of the following groupings: Success
(Lessons, 6, 9, & 12) Challenge (Lessons 2, 19, & 28), and Disappointment (Lessons 8, 14, &
26).

Figure 2 depicts the rank groupings.

CMU/SEI-2001-SR-021 69

Figure 2: Rank Groupings of Lesson Importance

These results were ranked and grouped by likelihood and desirability as shown in Table 1.

Table 1: Likelihood and Desirability of Lessons Learned

Lesson 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Likelihood 2 0 6 7 5 8 1 3 8 8 4 7 6 9 9

Desirability 9 10 9 9 8 8 10 10 10 8 9 9 9 4 4
Success 5 4 1 5

Challenge 2 1 1
Votes

for this
as a ... Non-succ. 4 5 1

Lesson 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Likelihood 8 4 2 9 5 3 7 4 7 3 8 4 1

Desirability 8 8 8 9 8 8 9 9 9 8 2 9 8
Success

Challenge 4 1 1 5
Votes

for this
as a ... Non-succ. 5

no
t r

at
ed

70 CMU/SEI-2001-SR-021

Recommendations for Next Steps

Consensus was reached on many recommendations that should be easily actionable (the low-
hanging fruit). The working group made the following overall recommendations:

• Additional work is required to quantify the benefits of the various recommendations to
support their adoption or further development.

• Take on the challenges. There is much to be gained from the more difficult challenges.

• Implement higher level PM coordination, remove the stovepipes. So much is dependent
upon close, timely communication. Develop contractual obligations to make the recom-
mendations happen.

CMU/SEI-2001-SR-021 71

Appendix E Relationship of Workshop
Findings to Enterprise
Framework

The workshop findings can also be related to the enterprise framework for disciplined system
evolution [Bergey, 97].

Reengineering project failures can be traced back to a small set of underlying problems. The
enterprise framework offers an alternative to the lack of discipline that characterizes failures.
It enables the following:

• evaluation of system evolution initiatives

• identification of global issues early in the planning cycle

• coordination of management and technical practices

The enterprise framework characterizes the global environment in which system evolution
occurs and provides insight into the management and technical issues that must be addressed
in evolving software-intensive systems. It helps managers to identify critical success factors
and to develop a set of management and technical practices for planning, evaluating, and
managing system evolution initiatives. The enterprise framework helps organizations to over-
come the tendency to focus on a narrow set of technical issues without considering the
broader systems engineering issues, the increased needs of the customer, the strategic goals
and objectives of the organization, and the business operations of the enterprise.

As discussed in Section 3, the Enterprise Framework was one of the three perspectives that
guided the organization of the workshop. The framework was initially developed for the de-
velopment or maintenance manager with control over the system and its evolution. Because
DoD is primarily an acquisition organization, the framework was supplemented with insights
from the acquisition CMM and risk management. This appendix focuses on the role of the
enterprise framework, considers how well it works from an acquisition perspective, and con-
siders whether there are acquisitions that may be incorporated into the framework.

72 CMU/SEI-2001-SR-021

Overview of the Enterprise Framework

The enterprise framework has a systematic set of questions that help the program manager to
identify the critical issues required for success in an evolution effort. At the highest level
these questions include the following:

• How can we systematically sort out all the issues with which we are confronted?

• How do we plan the evolution of a large and complex system, including reengineering
the system?

• What are the critical success factors of system evolution?

• How can we determine if we are on the right track?

• How do we evolve the system without adversely affecting operations?

The enterprise framework consists of seven elements that are building blocks for a successful
system evolution effort. Each has a critical set of technical and management issues that are
essential for developing a comprehensive plan of action.

The elements of the framework are

• organization

• project

• legacy system

• systems engineering

• software engineering

• technologies

• target system

Figure 3 is a high-level graphical representation of the enterprise framework. The arrows in-
dicate how each of these elements uniquely contributes to a system evolution initiative.

CMU/SEI-2001-SR-021 73

Figure 3: A Framework for the Disciplined Evolution of Legacy Systems

The framework breaks down each element into considerable detail. Appendix C has a set of
checklists with approximately 200 questions associated with the framework to enable a man-
ager to develop a comprehensive set of issues that need to be addressed and tracked.

For example, the following questions concern the legacy core system:

• Is there a current system configuration diagram? A system design document?

• Are the software architecture and software design well documented?

• Are the system interfaces and communication protocols documented?

• What are the dependencies on external interfaces?

• Is the functionality and operation of the system described adequately in user and system
documentation?

• Have all the user interfaces been identified?

• Have the software applications and critical algorithms been identified? Have they been
analyzed?

• Are the software interfaces and message and data formats documented?

• Have the performance characteristics of the system been assessed? Have benchmarks
been run?

• Are the source code, library elements, and build scripts available? Are they current?

• Is there documentation on the logical and physical data dictionaries?

• Have dependencies on undocumented features been identified?

• Has the complexity and brittleness of the system been assessed?

• Has the integrity of the system been affected adversely by the maintenance legacy?

74 CMU/SEI-2001-SR-021

• How stable is the system’s operation? Have the unresolved problem reports and change
requests been reviewed for trend information?

Each of the other framework elements has a corresponding set of questions. Taken together,
these questions provide a comprehensive checklist for a program manager who has control
over the development and maintenance of a system.

While the framework focuses on developing a set of questions to guide a migration effort
before it begins, the workshop captured a set of lessons learned after the completion of the
system upgrades. The workshop offered an opportunity to test the use of the framework in
practice and to determine the most critical practices found on an actual set of projects. It also
suggested areas that are most important from an acquisition perspective, rather than a devel-
opment perspective.

Not all issues identified by the framework would be expected to be equally relevant in a ret-
rospective analysis of a completed project. In addition not all categories from the framework
would be relevant for an acquisition organization.

Regrouping of Workshop Findings

To begin our analysis we group the high-level workshop findings in terms of the framework
elements. (Because the workshop participants were from an acquisition environment, the
software and systems elements are combined below.) This new grouping is listed below.

Organization

• Designate a decision-making agency to resolve inter-project disputes.

• When money is tight, don’t sacrifice sound engineering practices.

• Determine whether software ownership will be needed before the contract award.

• Mandates often have unanticipated consequences. Be very cautious about issuing man-
dates, and involve all stakeholders in the decision-making process.

Project

• Specify requirements clearly, use tool support when appropriate, and practice change
control.

• Use historical data and tools for collecting data.

• Provide training on the use of cost estimation and tools.

• Consider the impact of potential upgrades when making decisions about scheduling.

• Be sure to have experienced senior staff. Invest in worker skills and career paths.

• Involve all stakeholders throughout the project, particularly through the use of IPTs.

CMU/SEI-2001-SR-021 75

• Strive for mature processes for both the government and the contractor, especially in the
areas of requirements management and control.

• Consider logistics, upgrades, and contingencies throughout the planning cycle.

Systems Engineering and Software Engineering

• Design the architecture with change in mind; plan for regular system upgrades.

• When using COTS for an extensive part of a system, allow ample time for integration
and require the vendor to perform the integration.

• Address software problems right away. Don’t defer them to follow-on contracts.

• If a contractor has attained CMM level 3, be sure to require the use of their metrics and
data for managing the contract.

Legacy System

• Provide regular upgrade schedules.

• Avoid the confusion that results from configuration proliferation.

• Be sure that documentation is appropriate. It should contain the right amount of informa-
tion to adequately maintain a project without containing irrelevant details.

Target System
• Plan for block upgrades.

• When possible, automate the installation of upgrades.

• Write training materials prior to the release and deploy the training before fielding the
new system.

Technologies

• Be sure to maintain the integrity of testing even if cuts need to be made in a project.

• Have the appropriate development and test environment resources and tools in place.

Relevance of Framework

As might be expected, since the participants were from acquisition organizations, the work-
shop findings clustered in the organization and project elements.

Under organization, the framework focuses on such issues as goals, vision, scope of effort,
decision-making, and the need for thorough technical analyses before committing to funding.
The workshop findings are consistent with these concerns. Two workshop findings focus on
specific areas that are highly relevant to DoD: software ownership and mandates. While these
issues have hooks within the framework, future analyses of the framework from a DoD per-
spective may factor these issues more directly into the checklists.

76 CMU/SEI-2001-SR-021

Under project, the framework focuses on issues of plans, roles, responsibilities, management
of work breakdown structures, and management of requirements. In addressing these issues,
the workshop focused on ways to manage a contractor effectively in the light of acquisition
reform. The lessons learned centered around historical data, communication, and mature
processes on the part of both the contractor and the government.

The other framework elements relate to the system and its artifacts. The framework provides
a detailed set of relevant issues to enable an understanding of the systems engineering deci-
sions, the software engineering decisions, the legacy system, the target system, and the tech-
nologies. These issues are relevant for the contractor in planning and implementing upgrades.
For example, detailed questions about the support environment, the operational environment,
and the target and legacy core systems are often not explicitly addressed. In these areas the
workshop participants, as may be expected, focused on planning, documentation, training,
and testing.

The workshop provided real world evidence of the role of the framework in integrating a va-
riety of lessons learned. The framework enables the findings to fit together to form a coherent
picture of a recipe for project success. It provides a way of seeing the big picture and a means
to abstract up from the approximately 250 individual lessons. The framework helps to make
sense of the pieces of the puzzle. There is a need to more sharply distinguish between the dif-
fering issues and concerns of development and acquisition organizations and to provide in-
sights for an acquisition specific framework focus. Both communities are highly relevant for
the DoD since successful projects require teamwork between the DoD and the contractor.

CMU/SEI-2001-SR-021 77

Appendix F Questions from System
Evolution Checklists

The questions from the system evolution checklists were used as a source for developing
questions for the working groups. The complete set of system evolution checklist questions is
listed below. The rationale behind the questions is detailed in Bergey [97, 98]. The questions
are grouped according to six major categories: organization, project, legacy system, target
system, system engineering, software engineering, and technology.

ORGANIZATION

CHECKLIST A

An initial set of questions that help
probe the organization element
includes the following:

What are the enterprise goals?

Has a common vision been developed and communicated?

Have the key decision makers and stakeholders been identified?

Are the goals of the organization aligned with the enterprise goals?

Are there defined criteria for the successful accomplishment of goals?

Are these criteria measurable?

What is the corporate information technology strategy?

What is the overall scope of the systems evolution effort?

Is there an established procedure for performing business/mission needs
analysis to determine how new customer needs can best be met?

Are the roles and responsibilities of each of the organizational units involved
in the systems evolution effort well defined?

How will efforts be coordinated across organizational units and with external
customers?

Does the organization provide suitable infrastructure support to assist projects
in contracting, quality assurance, and other key activities that may be beyond
the scope of an individual project to perform?

What is the review and approval process for new and revised work products?

Is there a well-defined issue resolution process?

78 CMU/SEI-2001-SR-021

ORGANIZATION

CHECKLIST B

There are things which organizations
commonly tend to do, but should avoid
doing. A representative checklist for
intercepting bad practices includes the
following questions:

Have the benefits of evolving the legacy system been predetermined without
first conducting a thorough analysis?

Has the feasibility of evolving the system also been predetermined?

Have all three project variables (capability, schedule, and cost) been
determined by the organization prior to having the project develop a formal
plan for evolving the system?

Have some aspects of the solution space been predetermined before
analyzing the system and involving the project team?

Has sufficient time been allowed for a thorough systems engineering analysis
before finalizing the project implementation plan?

Is a complete project implementation plan required before developing a
concept of operations for the target system and obtaining the agreement of
customers and the user community?

Is a new and unproved life-cycle process being mandated without soliciting
project feedback and the agreement of project team leaders?

Is training and other infrastructure support being provided for piloting the
application of new processes, tools, and work products before attempting to
institutionalize them?

PROJECT CHECKLIST

— PLANNING RELATED —

A checklist for probing the project’s
planning-related practices includes
the following questions:

Is there a clear understanding of the organization’s goals and a linkage
between the organization’s strategy and the project’s strategy?

Is there a comprehensive project plan?

Are all the deliverables specified?

Are roles and responsibilities defined clearly?

Does the project plan define the migration strategy clearly?

Are the systems and software engineering teams fully supportive of the
migration strategy?

How realistic is the project plan and work breakdown structure (WBS)?

Does the WBS describe all the tasks for implementing the migration strategy?

CMU/SEI-2001-SR-021 79

Does the plan include estimates of the resources and time required for each
task?

Are there subsidiary plans covering risk management, configuration
management, quality assurance, and software development?

Is ownership of each plan and project work product established clearly?

Have the plans been suitably coordinated?

What are the cost and schedule for completing the effort?

Is a network activity diagram included which identifies the intertask
dependencies?

How will the project obtain and integrate the necessary interdisciplinary skills?

What kinds of infrastructure support do the systems and software engineering
activities require from the project?

Are they included in the project plan?

Has training been arranged for the system developers and software
engineers?

Are all phases of the project’s life cycle addressed adequately in the project
plan?

How will progress be measured and reported?

Is there a process in place to ensure that the project plan is updated as
changes occur?

Is there a chief systems engineer, or group, who is accountable for the
systems engineering and software engineering effort?

Will a project team composed of key task leaders and interdisciplinary
engineers be established to serve as a system design team?

If not, how will global systems engineering issues and specialty engineering
requirements (e.g., security) be addressed and coordinated adequately?

Do plans include training for customers and users of the system?

80 CMU/SEI-2001-SR-021

PROJECT CHECKLIST

— RISK RELATED —

A checklist for probing the
project’s risk-related practices
includes the following
questions:

How will risks be managed and mitigated?

Are a process and criteria in place for make/buy decisions?

Has an effective contracting strategy been developed?

Is the project adequately funded?

Is there evidence of overly optimistic schedule compression?

PROJECT CHECKLIST

— REQUIREMENTS RELATED —

A checklist for probing the project’s
requirements-related practices
includes the following questions:

Has a common concept of operations for the proposed system been
developed and communicated?

Does the project have a requirements change management process?

How are the customer and user requirements prioritized?

LEGACY CORE SYSTEM

CHECKLIST

The following questions form an
initial checklist for probing the
technical features and current state
of the legacy system:

Are the software architecture and software design well documented?

Is there a current system configuration diagram?

A system design document?

Are the software architecture and software design well documented?

Are the system interfaces and communication protocols documented?

What are the dependencies on external interfaces?

Is the functionality and operation of the system described adequately in user
and system documentation?

Have all the user interfaces been identified?

Have the software applications and critical algorithms been identified?

Have they been analyzed?

Are the software interfaces and message and data formats documented?

Have the performance characteristics of the system been assessed?

Have benchmarks been run?

Are the source code, library elements, and build scripts available?

Are they current?

CMU/SEI-2001-SR-021 81

Is there documentation on the logical and physical data dictionaries?

Have dependencies on undocumented features been identified?

Has the complexity and brittleness of the system been assessed?

Has the integrity of the system been affected adversely by the maintenance
legacy?

How stable is the systems operation?

Have the unresolved problem reports and change requests been reviewed for
trend information?

OPERATIONAL
ENVIRONMENT CHECKLIST

The following questions form an initial
checklist for defining the baseline for the
legacy system’s operational
environment:

Are all of the customers, customer sites, and user groups identified?

Are all of the legacy system products and services on which the users
depend identified?

Is there a profile to accurately characterize the current system workload?

Are all of the external artifacts, system files, and procedures on which the
users depend identified?

Are there operational usage scenarios to ensure that there is a common
understanding of the system’s capabilities and operation from a user’s
viewpoint?

Is there an accurate, up-to-date network configuration diagram that specifies
the subsystems and their interfaces?

Are all of the external system interfaces identifiable and documented?

Are the hardware and software interoperability dependencies with external
sites identified and documented?

Are the software communication protocols identified?

Are they documented?

Are the system’s security provisions and features clearly understood by the
project team?

Are the logistic, support, and system administration operations (and roles
and responsibilities) itemized?

Are they traceable to specific subsystems (and agents)?

Will the operation of the legacy system be sustained to allow adequate time
for users to obtain training and fully make the transition to the proposed
system?

82 CMU/SEI-2001-SR-021

SUPPORT ENVIRONMENT

CHECKLIST

These checklist issues concern
potential shortcomings of the support
environments that could derail a
systems evolution effort:

What is the composition of the support environments?

What products and services do they provide?

To what extent is the development and maintenance environment consistent
with the developer’s original environment?

Does it include the tools used for requirements elicitation and validation,
design, and testing?

To what extent are the tools in the support environments integrated?

Are there established procedures for their use?

Do the tools enforce or promote good programming practices?

Are there documented programming guidelines and practices?

Is a separate integration and test environment available to the maintainers
apart from the operational system?

Does this environment accurately reflect the operation of the legacy system?

Are project management functions such as planning, estimating, costing,
scheduling, progress reporting, and issue and problem resolution supported?

Which functions are supported by automated tools?

Are there labor-intensive functions being manually performed that can be
improved by adopting new tools or processes?

How is configuration management being performed on the hardware and
software products undergoing development, reengineering, or maintenance?

Are the efforts coordinated?

Are software build processes well documented?

Do they produce repeatable results?

Does the integration and test environment provide an automated regression
testing capability?

How are new releases placed into operation?

To what extent are proprietary or customized tools being used?

Are the COTS tools up to date and still supported by the tool vendor?

Is there a defined process for determining when COTS tools should be
upgraded to the latest product release from the vendor?

Are the support environments under configuration management and control?

CMU/SEI-2001-SR-021 83

SYSTEMS AND SOFTWARE

ENGINEERING CHECKLIST

A useful checklist for carrying out
the systems and software
engineering activities (in
conjunction with the target
system element checklist)
includes the following questions:

Are mechanisms in place to ensure that software engineering tradeoffs and
considerations are an integral part of the up-front systems engineering
activities?

Has an incremental development strategy been adopted?

Has consideration been given to adopting an incremental implementation
approach that is driven by the highest priority risks that have been identified
to date?

To what extent will prototyping be employed?

Have criteria been established?

Is there a defined process for performing system engineering tradeoff
analyses and allocating system requirements to hardware and software?

Is there a formal process for risk assessment and mitigation?

Is it performed regularly or is it a one-time activity?

Are appropriate systems and software engineering tools being used?

What means are being employed to ensure requirements traceability?

Is the systems engineering team responsible for the technical oversight of
individual hardware and software product developments?

How will this oversight be accomplished?

How will the degree to which the legacy system software is salvageable and
evolvable (from a technical and economical standpoint) be determined?

Is there evidence to support that the prescribed systems and software
engineering methodologies are effective?

Is a process in place for evaluating candidate software architectures and
assessing their quality attributes?

What approach is planned to acquire an understanding of the design,
functionality, usability, reliability, performance, and operation of the legacy
system?

What is the process for deciding to make changes to programming
languages, operating systems, and related technologies?

Are the training needs of the systems engineers and software engineers
identified?

Are programming guidelines established?

Are they followed?

84 CMU/SEI-2001-SR-021

Is there a change-management strategy for accommodating ongoing
software changes to the legacy system that occur during the development of
the target system?

Are the transition issues associated with operationally deploying the system
being addressed?

How will changes to software interfaces with external systems be
coordinated?

Is there a strategy in place for achieving upward software compatibility?

Are programs needed for converting existing data files and databases?

Will they automatically make the conversion or will user intervention be
required?

Are the training needs of the systems engineers and software engineers
identified?

TECHNOLOGY

CHECKLIST A

A checklist for screening candidate
technologies for potential project
application might include the following
questions:

Does the technology have the potential to make a significant contribution to
the enterprise goals and objectives?

Can it provide a competitive advantage?

Is the technology a prerequisite for the systems evolution effort?

Is the technology sufficiently mature and stable?

What tangible benefits can the technology provide?

Is it required for system compatibility?

Is it a prerequisite for adopting other technologies?

Have pilot efforts or case studies confirmed the suitability of the technology
for the specific application domain?

Have the benefits of adopting the candidate technology been quantified?

What is the potential impact of not adopting the technology?

CMU/SEI-2001-SR-021 85

TECHNOLOGY

CHECKLIST B

Once a candidate technology has been
determined to be generally suitable, a
checklist covering the technology selection
process should include answers to the
following questions:

Are the cost, schedule, and impact of applying the new technology
acceptable?

Is adequate training available?

Are key members of the project team already well versed in the technology?

Can they act as mentors to other team members?

Have the pros and cons of alternative technologies been weighed carefully
(preferably using a formal risk assessment process)?

Has the impact of the new technology on existing customers and users been
analyzed?

Do the customers and users have any strenuous objections?

Unheeded cautions?

Is management aware of the technology adoption plans?

Are these plans consistent with the organization’s strategic plan?

Are there any reservations or cautions?

Is a suitable measurement program being adopted to quantify and evaluate
the actual benefit of applying the technology?

Is there a contingency plan in the event that any unforeseen technology
“show-stoppers” arise?

86 CMU/SEI-2001-SR-021

TARGET CORE SYSTEM

CHECKLIST

A checklist of issues to consider in
making decisions about the desired
features of the proposed target
system include:

Is there a prescribed means for eliciting and validating the target system
requirements?

Has it been used before?

Is there evidence of its effectiveness?

Is there a concept of operations to describe the proposed target system?

Have operational scenarios been developed to describe how the proposed
system will operate?

Have the concept of operations and operational scenarios been validated with
customers, users, and key systems personnel?

Is the difference between the current “virtual requirements” of the legacy
system and the new target system requirements well understood?

Are there standards with which the target system must comply?

What ground rules have been established for the use of COTS software?

How robust is the current legacy system architecture?

Is it practical to evolve this architecture to meet the target system
requirements?

Should the system be re-hosted on a new platform or operating system?

Is the use of a new programming language justified?

What process is used to determine the target system architecture
requirements?

What are the desired performance, availability, and security attributes?

Can the target system be evolved incrementally over a period of time or is a
major reengineering effort required to bring about the desired changes?

CMU/SEI-2001-SR-021 87

OPERATIONAL
ENVIRONMENT CHECKLIST

An initial checklist of issues to consider
for the operational environment that is
envisioned for the target system includes
the following questions:

What changes are required in the operational environment to accommodate
the new target system requirements?

What is the projected impact of the proposed changes on current business
operations?

How will these affect the customer and the organization?

Do the customer and user requirements include explicit changes to the
operational environment?

How do these changes affect the target system (hardware and software)?

What is the projected impact of the proposed changes on performance and
availability?

What differences are there between the existing legacy system environment
and the proposed target environment?

Are there incompatibilities that will need to be resolved?

Will support for some of the existing products and services be dropped?

What customers and users will be affected?

Which external interfaces need to be modified?

How will these modifications be coordinated with external systems and users?

What testing is needed to assure interoperability?

What is the plan for “roll out” and “cut-over” to the new system?

What parts of the target and legacy systems need to coexist during
operational transition?

In the event of a crisis, to what degree can support be rolled back to the
legacy operational environment?

Will the new target environment impose new operating procedures?

Will operators or system administrators require training on the new operating
environment?

Have training needs been identified for customers and users of the system?

88 CMU/SEI-2001-SR-021

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management
and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

November 2001

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Army Workshop on Lessons Learned from Software Upgrade Programs

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

William Anderson, John Bergey, Matthew Fisher, Caroline Graettinger, Wilfred J. Hansen,
Ray Obenza, Dennis Smith, Halbert Stevens

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2001-SR-021

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The Software Engineering Institute (SEI) conducted the “Software Upgrade Workshop for Legacy Systems” at
the Redstone Arsenal June 5–7, 2001. The workshop captured experiences from software upgrade efforts for
the Abrams, Bradley, Patriot, Apache Longbow, and Multiple Launch Rocket programs. Workshop participants
explored strategies that worked and those that failed, and the obstacles that were encountered. They addressed
pre-award planning, project management, software and systems, mandates, and deployment. Their effort re-
sulted in a set of recommendations and guidelines to help organizations improve the process of upgrading leg-
acy systems.

14. SUBJECT TERMS

software upgrades, project management, legacy systems, system upgrades

15. NUMBER OF PAGES

102
16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-

102

	Army Workshop on Lessons Learned from Software Upgrade Programs
	Table of Contents
	List of Figures
	Executive Summary
	Abstract
	1 Introduction
	2 Workshop Approach
	3 Summary of Lessons Learned
	4 Conclusion
	References
	List of Acronyms
	Appendix A Project Management Working Group
	Appendix B Systems and Software Working Group
	Appendix C Funding and Contracting Working Group
	Appendix D Deployment Working Group
	Appendix E Relationship of Workshop Findings to Enterprise Framework
	Appendix F Questions from System Evolution Checklists

