
Issues in Predicting the Reliability of
Composed Components

Judith Stafford
Software Engineering Institute

4500 Fifth Avenue
Pittsburgh, PA 15213

+1-412-268-5051

jas@sei.cmu.edu

John D. McGregor
Clemson University

Department of Computer Science
Clemson, SC 29634

+1-864-656-5859
johnmc@cs.clemson.edu

ABSTRACT
Availability is one of the most frequently specified quality
attributes for computerized systems and the computation of
availability requires knowledge about the reliability of the system.
Although much research has been devoted to software system
reliability, much work remains to be done in identifying ways to
predict reliability of assemblies of components. We are designing
an experiment for use as a foundation for creating a reliability
prediction-enabled component technology (PECT), which is to be
used to produce systems that are predictably reliable by
construction; in the course of that work we have recognized the
need to evolve combinatorial reliability models for use in
computing reliability of assemblies based on the reliabilities of
constituent components. In this paper, we describe and discuss
aspects of current models that need to be adapted and how they
affect the design of our experiment.

1. INTRODUCTION

In this paper we discuss the prediction of reliability of component
assemblies where the components are reusable assets. Rather than
present a solution to the prediction problem, we present a set of
issues related to currently accepted combinatorial reliability
models that must be resolved in order to predict reliability of
component-based software systems and we describe the skeleton
of an experiment that is in its developmental stage.

Reliability is an important quality attribute. System availability,
the likelihood that the system will be capable of performing a
function when needed, is one of the most common quality
requirements specified by commissioners of computerized systems
and availability is based on system reliability. Reliability is
generally defined as the probability for failure-free execution for a
specified interval of time or other natural unit. A survey of
reliability models by Farr may be found in Lyu’s handbook [1]
and Goseva-Popstojanova and Trivedi have compiled an overview
of architecture-based reliability models [3].

System1 reliability has its origins in the realm of hardware. This
heritage, and the fact that availability is a system requirement that
involves both software and hardware, has strongly influence
research in software reliability. System reliability was, and still is,
calculated in much the same way as hardware reliability. It is
widely recognized that there are fundamental differences in the
causes of failure in hardware and software. For instance hardware
degrades because it is used and wears but using an executable
piece of software does not cause it to wear out. It might become
more likely to fail over time, but that failure is not due to wear
and tear on the executable.

While hardware is expected to be failure free when first used, for
software, failure is generally not time dependent, but rather is
dependent on the probability that a failure-causing input will be
used. Software will always fail when used in the same way and all
copies of a program will fail in exactly the same way; failure
depends on whether a path is executed that includes the execution
of a faulty piece of code or if communication among program
units fails. On the other hand, that same program can be rerun in a
different context and perform perfectly well with no modification
to the code.

These issues are magnified when using third party components
and require evolution or adaptation of traditional combinatorial
reliability models, which are based on the assumption that the
following three items have been determined:

− what constitutes a failure

− a common interval of time or other natural unit

− an operational profile

Issues beyond those associated with system reliability, such as
these that are related to component reliability, arise because
information computed by the component developer will be used in
unknown contexts for unknowable reasons.

In the rest of this paper we describe our work towards developing
a reliability prediction-enabled component technology. We
describe and discuss issues that have broader implications for

1 When we use the termsystemwe are referring to combinations
of both hardware and software components.

Submitted to the 5th ICSE Workshop on Component-Based Software
Engineering, Orlando, Florida, May 2002.



compositional analysis and that should inspire discussion at the
workshop.

2. Developing a Reliability Prediction-
Enabled Component Technology

We are developing a reliability prediction-enabled component
technology. This work is the second step in the development of a
general model for creating prediction-enabled component
technologies (PECTs) that is being carried out as part of the
PACC2 project at the Software Engineering Institute (SEI). The
first step involved developing a latency prediction-enabled
component technology, ComTek-λ, which is based on the
ComTek component technology [5]. ComTek is a component
technology that provides a design environment, a component
model, and the runtime environment in which to execute
assemblies of components. The ComTek development
environment is shown in Figure 1. The menu bar at the top
includes a button labeled “Prediction”. At present, one is able to
click on the button and select latency prediction, at which time the
user will be provided a prediction of average latency for the
component assembly on the palette. The result of the current
experiment will support a similar prediction of reliability.

Given a set of ComTek wave application components, predict
the reliability of an assembly of these components deployed in
the ComTek runtime environment.

2 http://www.sei.cmu.edu/pacc

2.1 Defining Assembly Reliability

The reliability model chosen for this work is based on the widely
used definition of software reliability that is given by Musa [6]:

The probability of execution without failure for some
specified interval of time or other natural units.

Musa defines two basic configurations of computations for which
reliabilities can be calculated. The AND configuration represents
a series of computations, all of which must be successful for the

assembly to be successful. The formula is given by∏
=

N

i
iR

0

where

N is the number of components in the path.

The OR configuration represents subassemblies, one of which
must be successful in order for the assembly to be successful. The

formula is given by ∏
=

−−=
N

i
iRR

1

)1(1 where N is the

number of components in the path.

These two operators are sufficient for describing many classes of
assemblies including those that will be used in our initial
experiment. In fact, it will be sufficient to use the AND formula
because the cyclic, pipe&filter,non-pre-emptive nature of the
scheduler used in ComTek requires successful execution for all
tasks for successful execution of the assembly.

Issues arise when attempting to use simple combinatorial
reliability models if one considers issues related to the
degradation for software over time. These models assume
independence of failure and the ability to predict the rate of failure

Figure 0: The ComTek Prediction-Enabled Component-Based Development Environemnt.



but this is not necessarily the case for assemblies of software
components. Although software itself does not wear out, that is it
does not degrade when it sits unused, there are environmental and
assembly related conditions that can change over time and affect
the ability of a given component to do its job. The term “software
aging” has recently been coined by Garg et al. [2] to describe the
effect of these types of software faults. Software aging is caused
by situations such as memory leakage, incorrect or insufficient
exception handling, and interdependent timing of events. Software
aging is prevalent in component-based systems because many of
the causes result from unanticipated component interactions.
Research in predicting the effect of software aging on assembly
reliability is a wide-open research topic.

This class of faults is outside the scope of our initial experiment
therefore we will not attempt to address this issue when adapting
the AND formula for use in our experiment. We will however
attempt to monitor the behavior of the assembly in such a way as
to capture data that might provide input to the development of
such a theory.

2.2 Defining Component Reliability

When developing a PECT it is assumed that the components are
black-boxes, independently deployable, and reusable components.
Applying the Musa reliability combinatorics require the analyst
define what failure means and determine a common interval for
natural units or time that is most useful for those needing
information about the system. In addition, it is necessary to have
knowledge about expected system usage. Understanding how to
determine each of these must be re-examined for use in the
context of component composition.

Consider the issue of defining a common interval of time. When a
software assembly is executing, not every constituent component
is executing all the time. In fact, a given use of an assembly might
not activate a particular component at all. Using the total
execution time for a program as the execution time for its parts for
the purpose of calculating each component’s contribution to
overall reliability is not accurate and, in fact, may overstate the
reliability of a component. For instance, the error-handling
component in a highly reliable assembly will only execute for a
very small fraction of the total execution time of the assembly and
therefore the strength or weakness of its reliability matters little to
the overall reliability of the system.

We are considering applying other reliability models that use
“natural units” other than time. We recognize that the close tie
between reliability and availability raise issues with this approach
and therefore are exploring the potential for using conversion
mappings from non-time based reliability measures to time.
Candidates include using a path-based approach to reliability that
uses individual program paths of execution, average number of
invocations for a specific service, and predicted average latency.

2.2.1 Operational Profiles

Regardless of the definition, reliability is an operational attribute
that is measured by execution. To empirically validate a
prediction theory requires execution that is constrained by an

operational profile3. If a component could be exhaustively tested,
which in most cases is not possible, and if one could know exactly
how the component was to be used, then one couldaccurately
calculate the probability of using a given failure-causing input
within a specified amount of time.

However, even in such a perfect world there would be problems
for using operational profiles to assist with calculating system
reliability in component-based development. Operational profiles
are used to guide testing efforts and to assign reliability values to
certain aspects of components. Because software components are
third party composable, determining an operational profile is at
least very complex and may be intractable. Creating operational
profiles assumes knowledge of the context in which the
component is to be used. When creating a components that are to
be used in assemblies, all that can be known is that they provides
certain services. The nature or identity of the users of the services
is unknowable. Hamlet et al. discuss this problem in their ICSE
2001 paper [1]. They suggest supplying profile mappings in
component data sheets that can be used in combination to predict
overall system reliability before actual assembly. We have
concerns about the scalability of this approach, but even in the
event that this does turn out to be the case, their work provides
good insights into problems associated with this aspect of
compositional reliability prediction.

Another issue related to operational profiles is the fact that a
component is typically sufficiently large that different users will
use the services of the component in very different ways and, in
fact, usually do not use a majority of the component’s services.
This invalidates the profile and leaves the question of reliability
unresolved. Given that operational profiles are crucial to
computing reliability, understanding the impact that component-
based development has on identification and use of operational
profiles is perhaps the most pressing issue for developing
compositional approaches to reliability analysis.

2.2.2 Time

Both context dependencies and software aging affect evaluation of
components to support combinatorial reliability models. These
issues are sketched below.

Context Dependencies and Time Intervals

Definition of time interval is assembly dependent. Recall that
Musa's definition of reliability is based on some natural unit or
time. Certification and testing of reliability has been assumed to
happen within the context of component use. The reported
reliability will be with respect to some specific interval of natural
or time unit but this may have no relationship to that which is
required in the deployment environment. This number must be
adapted in order to reflect the components contribution toeach
assembly in which it is deployed.

As a simple example, Suppose there are three componentsA, B,
andC to be used in an assembly.A executes for 10% of the time,

3 An operational profile is the frequency distribution that
describes the relative frequency with which each operation of
the system is selected for use.



B executes for 60% of the time, andC executes for 30% of the
time. For every 100 minutes of assembly executionA has
executed 10 minutes,B has executed for 60 minutes andC has
executed for 30 minutes. It is necessary to extrapolate the
reliability of each component to reflect its contribution to overall
reliability of the assembly, otherwise the impact of using a
component of questionable reliability may overly influence the
calculation. In general it is necessary to adjust reliability values
over periods of time other than that supplied with the component.
This will be the approach taken in the initial experiment. We will
assume a linear relationship between probability of failure and
time. In general this is not true but may prove sufficient.
Depending on the results of our experiment we will explore more
precise extrapolation functions.

Software Aging

The causes of software aging can be traced to specific types of
assumptions that components make about the environment into
which they will be deployed as well as coding errors. We will be
simulating coding errors in our experiment and attributed the
components with appropriate property value. As mentioned
above, we will not be addressing issues of software aging in this
experiment and will not explore issues of evaluating components
for their contribution to aging at this time.

2.2.3 Defining Failure

There are many ways in which a system can fail and many ways in
which a component can contribute to a given type of system
failure. Thus, it might be that a system developer is interested in
predicting the likelihood that the system will produce an incorrect
value but one or more of the components that are being assembled
define reliability only in terms of failure to continue operating. If
suppliers are to provide reliability information, it would be best
for them to have knowledge of the types of failure that are of
interest to component users so that the appropriate test cases can
be used to inform the reliability prediction. At the very least, the
component reliability value must beaccompanied by the
definition of failure for which it applies. Exploring other solutions
to this dilemma is another interesting and open research problem.

2.3 Communicating Reliability Information

The assumptions of a reliability theory impose a heavy burden on
the component supplier for anticipating component usage and
reliability concerns of expected users. In addition to the basic
concerns, time-based reliability theories might benefit from
knowledge of the rate at which failures were incurred during
testing so reliability can be extrapolated based on testing data and
expected component execution time within a given assembly.

Reliability values are typically reported as a single value, a
percentage, which indicates the percentage of time in which the
software is available to perform the requested operation. As noted
above, this value is valid in the context of the operational profile
that was used to structure the reliability test suite. To fully
understand the reliability number, the user must understand that
context.

We are considering a number of formats for reporting information
on a component’s data sheet. Three possible formats are:

− A single component reliability – It is assumed that the user
will use the component in a pre-determined manner
including invoking specific services with specific frequency.
Only the single value would be communicated along with a
description of the operational profile.

− A set of component reliabilities – It is assumed that the user
will use the component in one of several modes. Each mode
represents a separate operational profile. For example, a
component may be embedded in a larger component and
accessed by its API or it might be used as part of the GUI for
an application and the component isaccessed through its
user interface. The set of values would be communicated
along with a mode diagram that illustrates the major
operational modes of the component. An operational profile
description for each mode would also be provided.

− Path information – It is assumed that the user will use
detailed path information to form their own reliability
computation based on which services they will use.
Knowledge of provides-requires dependencies can supports
computation of more precise inter-component dependencies
when a subset of the provided services are being utilized [8].
A brief description of how to compute reliabilities for a
service or a mode from the path results would also be
included.

3. EXPERIMENTING WITH COMTEK

Our experimental method follows the procedure used to develop
the latency prediction enabled variant of ComTek [5], in which
the predicted estimates are compared to empirical measurements
to ascertain the adequacy of the predictions. At the time of the
workshop we will be able to report those results. In this section
we sketch out the plan for the experiment.

3.1 The ComTek Component Technology

ComTek has the following high-level characteristics that are
relevant to our development of a reliability PECT:

− It enforces a typed pipe-and-filter architectural style.

− A fixed round-robin schedule is calculated from component
input/output dependencies.

− The execution of an assembly is sequential, single-threaded,
and non-preemptive.

The development of any PECT is expected to involve some
degree of co-refinement between the component technology and
the analytic theory. That is, bringing the assumptions of the
analytic theory and the constraints imposed by the component
technology in line might require adaptation to either or both of
these elements of the PECT. In the case of our initial experiment
the characteristics of ComTek support the assumptions of the
AND reliability theory described in Subsection 2.1. The
sequential pipe&filter nature of ComTek assemblies requires that
all components succeed for the assembly to succeed. In addition,
reasoning about input profiles is simplified by the fact that and all
required inputs must be available before a component executes
and we are adapting our components to fail based on the value of



a randomly assigned value ateach invocation of the component,
thus neither the methods called, nor the data supplied, will affect
the rate of failure of the components.

The latency PECT can be used to predict the average contribution
each component will make to the execution of a given assembly
and can be used to extrapolate assembly specific reliability values
for individual components.

3.2 Seeding ComTek Components

As mentioned in the previous section, we are using a seeding
approach to introduce unreliability into already existing ComTek
components. Each component will be assigned a reliability value
and will “fail” conditionally at the appropriate rate based on a
randomly generated integer.

3.3 Creating Representative Assemblies

We will be using the Wave family of ComTek components for this
experiment, primarily because this is the set of components that is
latency prediction-enabled. The ComTek development
environment is shown in Figure 1. The Layout window shows
members of the wave family of components on the palette
connected. One might be fooled into thinking that this is a
specification of an assembly but, in fact, the components were
lifted from the menu of component implementations that is
located just above the palette, and then connected to form an
assembly. At that point it is possible to play an actual CD and
listen to the music as well as to view it on the scope that is
available if one clicks on the little box on the upper right hand
corner of theSCOPE component. Allowable connections are
constrained by a naming scheme and connectors are pipes through
which streams of audio data are passed.

Components can be replicated and combined as desired, within
the bounds of the connection constraints imposed by the ComTek
component model. Although it is not possible to define a
representative set of assemblies, we will create 30 applications
using the automated assembly generator that has been created by
the PACC team, varying the topology and the number of
components in the assembly in order to base our results on a
variety of assemblies that we feel mimics that of a representative
set.

3.4 Validating Reliability Prediction Theory

The experiment will include creating and executing all assemblies
100 times. The reliability of each assembly will be predicted using
the AND formula, after extrapolating appropriate reliability values
for the components based oneach component’s average
contribution to the overall execution of the assembly. The
reliability will be stated as the expectation for failure-free
execution for a specified time period, which will vary by
assembly. The assembly will be executed for that duration or until
failure, whichever is shorter. For each execution the time of
failure, or successful completion will be recorded.

When all data has been collected we will apply the empirical
validation assessment that has been developed for this purpose
within the PACC project [5].

3.5 Expected Outcomes

We reiterate that this initial experiment is not being carried out for
the purposes of validating a reliability theory, but rather to
explore the design of such an experiment and the development of
a reliability prediction enabled component technology.

Through the exercise of designing and carrying out this
experiment we expect to determine the

− information that must accompany a component when
delivered from supplier to consumer

− way in which this information is adapted for use by the
compositional reliability theory in a variety of contexts

− design of an experiment that can be used to validate other
compositional reliability theories

Due to the design of this initial experiment we fully expect our
reliability PECT to be rated highly with respect to the confidence
a user could place in the reliability values computed by the PECT.

4. CLOSING THOUGHTS

There is much work remaining to be done in defining a
compositional reliability theory. These issues involve
understanding and defining the relationships between system
reliability measures and component reliability measures,each of
which depend on defining time and failure, as well as
understanding usage. It is apparent that as the number of
assumptions on which a compositional theory is based increase,
the difficulty of employing it in component-based development
also increases. Perhaps the development of a new business model
for component-based software development could help simplify
these problems.

Given that reliability values are typically derived from testing
data, it seems reasonable to assume that the best source of
reliability information is the component supplier and that
functions be developed to specialize available information.
However, given the issues discussed in this paper, it might be
more reasonable to create a new business model that supports
increased interaction between the component supplier and
manufacturer that allows for negotiation related to the definition
of component reliability. Perhaps component consumers would be
allowed to “test drive” components before making the purchase at
which time they could test a component based on the intended
operational profile and determine reliability based on failures of
concern to the purchaser.

5. ACKNOWLEDGMENTS

The authors thank colleagues: Scott Hissam, Mark Klein, Magnus
Larsson, Gabe Moreno, Kurt Wallnau, and Bill Wood at the
Software Engineering Institute and Il-Hyung Cho and Jessica
Bamford at Clemson University who participated in insightful
discussions. The work of Judith Stafford was supported by the
Software Engineering Institute, a federally funded research and
development center sponsored by the U.S. Department of
Defense. The work of John D. McGregor was partially supported
by the Software Engineering Institute and Clemson University.



6. REFERENCES
[1] W. Farr. “Software Reliability Modeling Survey.” In M.R.

Lyu, (Ed.), Handbook of Software Reliability Engineering.
McGraw-Hill, New York, 1996.

[2] S. Garg, A. van Moorsel, K. S. Trivedi, and K.
Vaidyanathan. “A methodology for detection and estimation
of software aging.” In Proceedings of the Ninth International
Symposium on Software Reliability Engineering, pages 282--
292, Paderborn, Germany, November 1998.

[3] K. Goseva-Popstojanova and K. S. Trivedi. “Architecture-
based approach to reliability assessment of software
systems.”Performance Evaluation, 45(2-3):179-204, 2001.

[4] D. Hamlet, D. Mason and D. Woit. “Theory of Software
Reliability Based on Components.” Proceedings of the 23rd

International Conference on Software Engineering (ICSE
2001), Toronto, Canada, May 2001.

[5] S.A. Hissam, G.A. Moreno, J.A. Stafford, K.C. Wallnau,
"Packaging and Deploying Predictable Assembly," IFIP

Working Conference on Component Deployment, Berlin,
June 2002 (to appear).

[6] J. Musa. Software Reliability Engineering. McGraw-Hill,
New York, N.Y., 1998.

[7] M. R. Lyu, Editor. Handbook of Software Reliability
Engineering, McGraw-Hill, 1996.

[8] J.A. Stafford and A.L. Wolf, "Annotating Components to
Support Component-Based Static Analyses of Software
Systems." Proceedings of the Grace Hopper Celebration of
Women in Computing 2000, Hyannis, Massachusetts,
September 2000 (on CD-ROM). Also available as also
available as University of Colorado Technical Report No.
CU-CS-896-99.

[9] K.S.Trivedi, K. Vaidyanathan, K.Goseva-Popstojanova.
"Modeling and Analysis of Software Aging and
Rejuvenation", Proc. 33rd Annual Simulation Symposium,
Washington D.C., Apr. 2000.


