455

Distributed software :
from component model to software architecture

Philippe ANIORTE, Frédérick SEYLER
LIUPPA
IUT de Bayonne — Département Informatique
Place Paul Bert
64100 BAYONNE — France
laniorte, seyler}@iutbayonne.univ-pau.fr

Abstract. Today, Information Systems are
often distributed and heterogeneous. Thus,
software systems become more and more
complex and their evolution is difficult to
manage. Our works deal with prolonging life of
heterogeneous distributed systems with the help
of component reuse. Such systems need a
distributed adaptable sofiware architecture to be
implemented. In this paper, we propose a
component model for redeveloping software.
First, we briefly present the component
paradigm in which we place our works. Then we
position our component model with regard to
related works. The interface of the component is
described by the way of points of interaction.
These points are used to manage different types
of interactions in order to build a graph of
interactions allowing the integration of the
reused components. We finish with the
presentation of the distributed adaptable
software architecture allowing to implement this
graph. Each part of this paper is illustrated with
a concrete case, the European ASIMIL project

Keywords. Distributed
middleware, component model,
integration, interoperability

platforms,
reuse,

1. Introduction

Technological and economical mutations of
these last years have really modified the life of
organisations. They have engendered the
multiplication and the dissemination of
heterogeneous information [SING98]. So, more
and more, we have to qualify Information
Systems (IS) as distributed and heterogencous
ones.

Because of the increasing complexity of IS
and their constant evolution, it is becoming more

and more difficult to re-develop them. Moreover,
developed applications are more expensive and
are less reliable. Therefore, a strong need of
reuse has been expressed by firms. The reuse
provides a set of solutions developed in the
research and development domain to face on the
software crisis. It is defined as a new approach of
system engineering allowing to build systems
from existing elements, compared to traditional
approach where a new system starts from scratch
and needs to be re-invented each time.

The two previous points deal with
interoperability. More and more, the idea of
interoperability becomes a need to answer to new
organisational demands and benefit of technical
improvements, especially with networks and
Internet. We can compare this approach to a
monolithic vision of systems and their heavy
evolutions in terms of complexity, delay and
costs.

The research domain linked to these
problems is very wide. We are interested in the
engineering of heterogeneous distributed
information systems based on reuse. Our
approach is in keeping with the recent research in
developing High Confidence Software and
Systems (HCSS) [HCSSO01]. It is based on the
“component” paradigm. The objective is to reuse
software existing components and to integrate
them in order to make them co operate. The
application field in the context of our laboratory
gives us a certain experience with the re-
engineering of distributed applications
[ANIOO1b]. The challenge consists of
conserving the quality of the existing application
made of several dispatched elements developed
independently.

The problem of these works is shared with
several well identified research domains
distributed IS, reuse, interoperability, co-
operation. The difficulty lies in the cross feature

24th int. Conf. Information Technology Interfaces ITI 2002, June 24-27, 2002, Cavtat, Croatia

456

of our approach. Indeed, it is the actual trend. For
example, CIS (Co-operation Information
Systems) have concerns close to ours. CIS are
presented as a new domain of research
[DEMI97] in synergy with IS technology,
CSCW (Computer Supported Collaborative
Work), modelling and planning theories. Some
of the encountered problems with this approach
[HERIO1] are near to us. This is the case with
interactions between autonomous parts which is
the support of co-ordination activities.
Nevertheless, the objective is relatively far
because CIS want to operate a managerial
change, presented as the ultimate goal of the
three activity fields related with CIS.

Our contribution in this paper consists of an
original component model for redeveloping
software. At first, we do a brief state of the art on
reuse and about de-coupling between
components which constitute the two paradigms
on which our works are based. Next, we will
present our component model and we will
position it with regard to the reuse paradigm and
with related works, and the metamodeiling
domain. We will follow using the component
model in order to construct a graph of
interactions between components. We will finish
with a presentation of the “Framework™ allowing
to implement the graph and therefore to integrate
the components.

2. State of the art

2.1. The reuse

To provide the reuse, we need methods and
techniques for reusable component engineering
(design for reuse) and for systems engineering by
reuse of components (design by reuse)
[CAUV99].

The reusable components engineering covers
the identification and the specification of
components, their organisation and their
implementation. Two principles are essential in
the model representation of components needed
by the activity of identification and specification
: the abstraction principle and the variability
principle. The organisation and the
implementation of reusable components concerns
the design and the implementation of the
infrastructure for reuse.

The architecture of reuse constitutes a
coupling tool between the two essential activities
of the reuse, the engineering of components and
the engineering of systems. The architecture of

reuse consists in using a specific architecture to
produce the system. The engineering of reusable
components and engineering of systems by reuse
of components are still considered as two
different independent activities. With the
interlaced organisation used in the CARE system
[CALD91], we use components to produce an
application, and also we contributes to the
development of those components. The first
activity consists in researching into the library
one component which corresponds to the specific
problem of development. The adaptation:
modification, instantiation, parameterisation,
specialisation and the integration of components
constitute the second activity. This integration
problem becomes difficult if the development
and the specification languages are different.

2.2. The principle of de-coupling between
components

The “component” paradigm is emerging in a
specific domain of software components.
Component-based approach is based on the
principle of de-coupling between components.
According to this approach, dependencies
between entities are no more used into these
entities, but are defined outside the components
[PESCO00]. For example, in the component model
MALEVA [MEURO1], components are specified
by input/output marks potentially linked with a
connection to another component, and constitute
a graph of interconnections. The general idea
consists in providing a communication
abstraction independent of operational choice.
Absence of references to the called entity in the
definition of the calling entity allows to respect

the encapsulation principle, and the
communication mechanism authorises
modification of connections between

components without modifying components.
When an object communicates with another,
by a message, a structural and a behavioural
coupling appears implicitly. A component does
not reference directly another component, and
the message passing between components does
not imply the control passing [LHUI98].
Therefore, it is possible to manage active,
independent, and generic components because a
part of the control description is already included
into the graph of interconnection. The distinction
between the data flow and the control flow has
been introduced into SADT [MARCS87].
Nevertheless, this separation is mainly proposed
at the design level for the management of

457

projects. In the component approach it is
accessible at the implementation level.

2.3. Metamodeling: from meta-model to
applications

Metamodeling is the primary activity of
specification. Interoperability in heterogeneous
environments is allowed by the building,
publishing and understanding of shared meta-
data or models [POOLO02].

The approach proposed by OMG [OMGO02]
with Model Driven Architecture (MDA)
[MDAO2] is to migrate the reuse from the
component definition in a specific middleware
(like CORBA, EJB, XML/SOAP) to its
conceptual model itself. The goal of MDA is to
capitalise and reuse models of application instead
of regularly migrate software components from a
middleware to another. Then, only conceptual
model like UML models can be capitalised
during the full software lifecycle. Those
conceptual models can be the only reusable
components of a software. In Model Driven
Architecture, software components frame are
automatically generated by a mapping of model
in a target middieware.

MDA is build on the
representation model of OMG:

e meta-meta level, which offers Meta
Object Facility as standard meta-meta —
model.

e meta level, where meta-models are all
defined as MOF instances, in order to
allow exchange and interoperability.
Those meta-models define model
language which are used to describe
models. OMG has defined, on this level,
UML language which is a meta model
instance of MOF.

e (lass level, where models are described
with an instance of a meta-model. For
example, a UML model, issued from the
specification of a software component is
defined on this level as an instance of the
meta-mode] of UML

e Instance -level where are built instances
of class model

For creating MDA-based applications, the
first step is to create a Platform Independent
Model (PIM), which should be express in UML.
Such a PIM can then be mapped to a Platform
Specific Model (PSM) to target platforms like
the CORBA Component Model (CCM),

four-level

Enterprise Java Beans (EJB) or Microsoft
Transaction Server (MTS). Standard mappings
should allow tools to automate some of the
conversion. Such a PSM, again expressed in
UML, can then be actually implemented on that
particular platform.

3. The points of interaction

The reuse paradigm lets two activities
appear: the engineering of reusable components,
and the engineering of system by reuse of
components, with a weak coupling between these
two activities. Even if we first present the
component model, then its use, we want to have
an interlaced approach.

Our component model is the formalisation of
our reuse infrastructure, the traditional goal of
the engineering of reusable components. In our
case, essentially, these are the results of a
specification phase. We can point out that we are
working on autonomous software components to
re-deploy. Identification activities, organisation
activities and implementation activities do not
present interest here.

Our component model also supports the
separation between the data flow and the control
flow, and lets two kinds of interaction points
appear : input/output information points and
control points. At this level, our approach is
comparable to the one of [MEURO1]. We will
now enter into the detail to show the originality
of our approach.

3.1. Input/output information points

Intuitively, Input Information Points (IIP) are
acquisition points for a component. On the
contrary, Output Information Points (OIP) are
points to resituate. The following schemas
illustrate this with a graphical representation
associated to our component model :

Figure 1. OIP of a component, lIP of a
component

3.2. Control Points

The component model MALEVA only offers
one type of control marks. We propose several

458

types of control points : synchronisation points
and resource sharing points

3.3. Synchronisation points

Synchronisation points are dedicated to the
synchronisation of components. When a
component synchronises another one, the first
one is called “the synchroniser” and the second
one is called “the synchronised”. The
synchroniser has a Signal Emission Point (SEP)
whereas the synchronised has a Signal Reception
Point (SRP). The following schemas show the
corresponding graphical representation.

Figure 2. SEP of a component, SRP of a
component

3.4. Resource sharing points

Resource sharing points constitute an answer
to the problems of sharing of resources. This is
typically encountered with concurrent
executions. This is the case with autonomous
software components we propose to manage.
Moreover, the resource sharing and the
synchronisation that we have previously
presented, appear in works dealing with co-
ordination. To provide the resource sharing, we
use Resource Access Points (RAP) and Resource
Release Points (RRP). The first ones allow to get
the resource when available. The second ones is
to release the resource when used. The following
schema show the graphical representation..

Figure 3: RAP (upper arrow) and RRP (lower
arrow)

3.5.1llustration : the European ASIMIL
project

Aero user-friendly SIMulation-based dlstance
Learning (ASIMIL)[ASIMO02] is an European
project to improve training for aeronautical staff

with the help of Intelligent Agents. Different
programming languages (Java, C, C++,
Macromedia Director, script CGI...) have been
used to develop these different parts. Each part
represents a component which must be reused to
develop a distributed application. The job of our
research team is to integrate these different
components on a net. In these sense, the ASIMIL
project is a good field of application of our
research domain. Let us present the interface of
different components of ASIMIL.

PFC (Procedure Follow-up Component)
manages training procedures and exercises. It
tracks learner’s progression during the

procedure. After each action performed by the
trainee on the simulator and after each step of the
procedure, PFC sends a «Required Action »
value to its OIP. PFC is able to synchronise other
components using a SEP. Therefore, PFC has its
own RAP and RRP, which serve to allow
printing of a procedure or data showing in a
shared window. A TIP allows to PFC to get the
error type and gravity of trainee’s action.

ET.G PFC RA .
————-) 7
1P o1
B bt >
SE
RR

Figure 4:Procedure Foliow-up Component

Every action performed (PA) by the trainee
on FSimu, is put in a OIP. The learner uses
directly the graphic interface in order to pilot the
aircraft. This component. can be started by
another one via a SRP.

FSImu PA
>
OIP
Start()
SRP

Figure 5:Flight Simulator

459

Multi Agent System: The goal of this component
is to interpret trainee’s errors. Every couple of
data (Waiting Action, Performed Action) it
receives via IIP (Input Information Point) is
analysed When an error is detected an
characterised , MAS may perform an action by
sending a signal on a SEP (Signal Emission
Point).With the help of RAP and RRP , MAS is
able to print of show the help instruction in
another shared resource like printer or window in
order to help the trainee during his exercise. This
component can be activated by another one via a
SRP (Signal Reception Point).

MAS op RA

1IP RN
—_—>

RA, PA | SE .. R

---------- > ‘?RF\—)

SRP < \)

Figure 6: Multi Agent System

The component History Manager is intended to
manage the history of learner’s interactions with
the system , for pedagogical analysis purposes.
The SRP is intended to allow to it to start.

HM 1P

Figure 7: HistoryManager

4. The graph of interaction

The reengineering by reuse of components
consists of using our component model. This use
concerns mainly the components integration and,
a bit less, their adaptation. The selection activity
is not suitable with our objectives. Components
integration consists of managing interactions
between components. We find information
interactions, control interactions and mixed
interactions.

Before entering into details, we have to
notice that we follow the idea that components
integration consists of making a de-coupling as
strong as possible between components. With a
general point of view, this idea is interesting
because the reuse can be more systematic, a
bigger number of components may be candidates
to the reuse. With a practical point of view, this
approach is absolutely necessary with our
application field.

4.1. Information interactions

We can transfer information between
components. This transfer may be preceded by
the Building of Information (BI).

Concerning the transfer, we can point out

two cases. The first one is the stream transfer
[SHAW96]. The OIP of a component is linked to
the IIP of another component.
The second one is the transfer via mailbox. Let
us notice that our purpose is not at the
implementation level. In this case, contrary to the
stream transfer, the information is not directly
addressed to a component but deposited into a
mailbox from where an unnecessary identified
component will get it.

Figure 8: continuous flow transfer

| .

Figure 9: mailbox transfer

When we write “building of information” we
mean producing a needed piece of information
from one or several pieces of information
provided by one or several components.

460

Figure 10: building of information from
two pieces of information from two
components

This offers very interesting perspectives
because it allows to create “ad hoc” interactions
and thus facilitates the integration of
components. The unique constraint is that the
building of information have to be
algorithmically expressible. More generally, we
offer a solution to the classical problem of the
finite number of devices, not enough to process
the variety of problems.

If we compare our approach with
[MEUROL1], we note that our proposition is richer
than theirs in terms of information interactions.
In fact, we add the mailbox transfer at the stream
transfer. The experience we got with enterprises
convinced us of this need. Moreover, we offer
the possibility to build “ad hoc” interactions
facilitating a lot the integration of components.

4.2. Control interactions

Control interactions deal with the
synchronisation of components, the resources
sharing between components and the complex
control interaction. Concerning the
synchronisation, we only have to link a SEP with
a SRP. Then, the component whose SEP is used
synchronises the one with the SRP.

_____________ -

‘Figure 11:synchronization of two
components

If several components need the same
resource during their execution, we need to
provide the resource sharing thanks to RAP and
RRP of the concerned components :

Figure 12: resource sharing between two
components

Complex interaction control is similar to the
building of information. In other words, it allows
to create another element of control from several
elements of control.

————

Figure 13: complex interaction control

4.3. Mixed interaction

We had the idea to generalise the building of
information and the complex control interactions.
To do that, we propose mixed interaction where
information and control can be mixed together.
Its goal is to provide a piece of information or an
element of control from both a piece of
information and/or an element of control.

Figure 14 : mixed interactions

After we have provided all needed
interactions to solve a problem, we obtain a
graph where each component represents a node.
During the work to integrate components we
create other nodes as we showed previously. The
set of these nodes and the totality of arcs express
the 1level of the de-coupling between

461

components. If we compare graphs obtained with
our approach and interconnection graphs
obtained with MALEVA, we can measure the
effort we made to manage dependencies between
components and put them on the graph. This
allows to modify substantially the application
without intervening on components. With regard
to the reuse paradigm, we situate our works
clearly on a reverse-engineering approach based
on “components/connection”.

4.4. lllustration : the integration of
ASIMIL components

This part shows the integration of the
ASIMIL components in order to develop the
ASIMIL application. This integration in
represented as a graph of interaction (Figure 15)
which uses pre-defined interaction (continuous
flow transfer, mailbox transfer, synchronisation
and resource sharing) and dedicated interactions.

PFC (Figure 1) and MAS (Figure 6) cannot
be directly connected one to another, because
PFC provides a Required Action on its OIP and
MAS needs a couple Required Action,
Performed Action on its IIP. To solve the
problem, we use a “dedicated interaction” (BI -
Building of Information) built with two pieces of
information from PFC and FSimu (Figure 5) to
provide an other piece of information

needed by MAS.

HM (Figure 7) has an asynchronous
operating mode. Thus we use a “mailbox” in
which HM gets messages sent by MAS.

ASIMIL application is managed by PFC
which starts all the components using
“synchronisation interactions”.

The window, in which PFC shows an error
message if the action of the trainee is not
required, must be shared with MAS with a
“resource sharing interaction”.

We can note that all the interaction points of
the interfaces are not necessary used in the graph
of interaction (see MAS for example). This is an
illustration of the generics of the components.
Each component is reusable and adaptable to
different applications through its points of
interaction.

Figure 15 : graph of interaction of the ASIMIL
application

5. A framework of Components

Our objective is to build a framework
allowing the architect of the distributed
application to construct a graph of interaction
with the help of the tools provided by the
platform. The specifications of this graph or
architecture must be middleware-independent.

We have decided to use MDA specification,
to express our component model with UML
notation with defining a UML Profile, to store
this meta model of components on the meta level
of MDA as a core model, to instanciate this
model on the class level in order to build a
Platform Independant Model of the application. -

5.1. Uml profile

The UML Profile for our component model
called UPPA is designed to provide a standard
means for expressing its semantic using UML
notation and thus to support expressing these
semantics with UML tools. It is a way for us to
express our model with the help of a standard
language. When one wishes to represent a UPPA
type via UML notation, the usual approach is to
model it as a Classifier and to stereotype the
Classifier to indicate whether it represents an
Component, a IIOP, etc. This is a legitimate
approach, since a Stereotype is one of UML’s
official extension mechanisms. The first step is
to define core elements of our model as
UPPAComponent, UPPAOIP, UPPAIIP,UPPA,

462

UPPAInteraction. The second step is to define
tools we propose to allow the integration of the
components, as UPPADatalnteraction,
UPPAControlInteraction,
UPPAMixedIntercation

5.2. Platform Independant model

The architect of the application can construct
a Platform Independent Model with connecting
each component with another. The architect can
also implement the behaviour of UPPA ad’hoc
interaction with the help of UML language

5.3. Platform Specific model

Platform Specific Model is the mapping of
the Platform Independent Model to the target
middleware (CORBA, XML/SOAP, EJB, our
specific middleware). This step which can be
called integration step must automatically
generate the wrapper of each component defined.

5.4. A specific middlware

~ We have decided to implement our specific
middleware, which is the target of the mapping
step of the PSM.

At the implementation level, we have to
point out operative devices, control devices, a
transfer device and an exchange device. With
operative devices, we mean the building of
information, the complex control interaction and
the mixed interaction. All three have as a
common point the production of a piece of
information or an element of control after a
process expressed with an algorithm. These three
devices are implemented as autonomous and
parallel tasks with Java. Actually, a prototype of
a building of information device is under
development. This prototype will connect three
ASIMIL components.

Control devices are the mailbox, the
synchronisation and the resources sharing. Their
implementation must be realised within an
heterogeneous and distributed environment
[BOUGY8]. This point has not been implemented
yet. We are currently studying numerous
technologies available to choose the best suited
to our works.

The transfer device concerns exclusively the
transfer of information. This is a critical point
with distributed systems. This is the role of the
communication manager.

The exchange device is the interface
between the architecture and the components.
This role is dedicated to component managers
allowing the coupling between the components
and the architecture.

6.Conclusion

This paper seems to us an interesting
contribution for the redevelopment of distributed
software. From general point of view, we offer a
global solution from the component model to the
implementation. Moreover, we have the
opportunity to test our component model on an
industrial application, with the ASIMIL project.

If we detail a bit more, we have to focus on
different points. First of all, our approach is
based on a strong de-coupling between
components. We have explained it in the first
part. This allows a more important reuse of

- existing components. More and more, firms

express the hope to “superpose” new systems to
existing ones. This is often encountered with co-
operative systems, framework of our application
field, but also with knowledge based
management systems. In these cases, objectives
of these firms consist of reusing the existing
reliable system the more widely possible, before
envisaging a value added thanks to a co-
operative system or a knowledge management
system.

If we consider the component model, we
can underline the variety of interaction points
related to other works. This allows a rich activity
of component specification, adapted to the
problems we propose to deal with. Concerning
the construction of the graph of interaction,
numerous basic devices are completed by
devices which can be developed especially for
the application. This allows a higher de-coupling
between components to reach a more systematic
reuse.

To finish, the architecture warranty the
implementation of the graph of interaction. A
first version has been achieved. It has been
developed with Java, and especially Java Beans.
Interoperability between each Bean is realised
with RMI (Remote Method Invocation), a “light”
version of CORBA for Java environment.
Nevertheless, all of these devices have not been
implemented . This is the case for the control and
consequently for some operative devices (control
and mixed interactions). We are currently
working on these aspects, with the help of
ASIMIL experimentation. Therefore we look for

463

implementations issued of the research domain
as [SIRAO00], but also for ‘“commercial”
implementations around the domain of
components. After considering the limits of
CORBA, we are interested in SOAP (Simple
Object Access Protocol) based on TCP/IP and so
much better adapted to heterogeneous
environment whereas CORBA wuse its own
protocol (IIOP). Moreover, SOAP uses XML as
the description language inter-acting with UDDI
(Universal Description, Discovery, and
Integration), kind of interoperable yellow page
mechanism.

9. References

[1] ANIORTE P. - Engineering of distributed
systems : a component-based approach rested on
an architecture for interoperability - Proceedings
of the 2001 International Symposium on
Information Systems and Engineering
(ISE’2001), Published by Computer Science
Research, Education & Applications Press
(CSREA : USA Federal EIN # 58-2171953), Las
Vegas, USA, June 25-28 2001

[2] [ANIOO1b] ANIORTE P. - 4 method and
tools to migrate applications to distributed
systems - Proceedings of the 7™ International
Conference on Reengineering Technologies for
Information Systems (ReTIS), Published by the
Austrian Computer Society, Lyon, France, July
4-6 2001

[ASIMO2] Presentation of ASIMIL project -
http:/fwww.cordis.lu/ist/projects/99-11286.htm
[BAIL92] BAILIN S. - Domain analysis with
Kaptur - Courses notes, CTA Inc. Rockville,
MD20852, 1992

[BOUG98] BOUGUETTAYA A,
BENATALLAH B., ELMAGARMID A. -
Interconnecting heterogeneous information

systems - Editions Kluwer Academic Publishers,
1998 :

[CALD91] CALDERIA G., BASILI R\V. -
Identifying and qualifying reusable software
components - IEEE computer, February 1991
[CAMP90] CAMPBELLG., FAULK S., WEISS
D. - Introduction to synthesis - Technical report
intro_synthesis-90019-N, Software productivity
Consortium, June 1990

[CAST92] CASTANO S., DE ANTONELLIS V.
- A model for reusable requirements - Esprit
project, report pdm 2-1-3-r1, 1992

[CAUV99] CAUVET C., SEMMAK F. - La
réutilisation dans [’ingénierie des systémes

d’information - Dans Génie objet - Sous la
direction de OUSSALAH C., Hermes, 1999

[DEMI97] DE MICHELIS G., DUBOIS E.,
JARKE M., MATTHES F., MYLOPOULOS J.,
POHL K., SCHMIDT J.,, WOO C., YU E. -
Cooperative Information Systems : A manifesto -
In Cooperative Information System : Trends and

directions, PAPAZOGLOU M.P,,
SCHLAGETERG. Editors, Academic Press,
1997

[HCSS01] HCSS (High Confidence Software
and Systems) Coordinating Group. “HCSS
Research neceds: a White Paper”. Interagency
Working Group in Information Technology
Research and Development (IWG/IT R&D),
White House National Science and Technology
Concil, USA, 2001

[HERIO1]JHERIN D., ESPINASSE B,
ANDONOFF E., HANACHI C. - Des systemes
d’information coopératifs aux agents
informationnels - Dans « Ingénierie des systémes
d’information » sous la direction de CAUVET C.
et ROSENTHAL-SABROUX C., Hermes, 2001
[KANG90] KANG K., COHEN S., HESS J.,
NOVAK W., PETERSON 8. - Feature-Oriented
Domain Analysis (FODA) - Feasability study
CMU/SEI-90-TR-21, software engineering
institute, Carnegie-Mellon university, Pittsburgh,
Pennsylvania, 1990

[LHUI98] LHUILLIER M. - Une approche a
base de composants logiciels pour la conception
d’agents — Principes el mise en euvre a travers
la plate-forme MALEVA - Theése de I’Université
Paris 6, Février 1998

[MAID91] MAIDEN N. - Adnalogy as a
paradigm for specification reuse - Software
engineering journal 6(1), 1991

[MAID93] MAIDEN N. , SUTCLIFFE A. - The
domain theory : object system definition

Nature report CU-93-0O0A, 1993

[MARC87] MARCA D. A, MCGOWAN C. L. -
SADT Structured Analysis and Design Technics -
McGraw-Hill, New york, 1987

[MEURO1] MEURISSE T., BRIOT J.P. - Une
approche a base de composants pour la
conception d’agents - Technique et Science
Informatique Vol. 20 n°4/2001, 2001, p. 567-586
[NEIG84] NEIGHBORS JM. - The DRACCO
approach to constructing software from reusable
components - IEEE transactions on software
engineering SE-10(5), p.564-574, 1984
[PESC00] PESCHANSKI F., MEURISSE T.,
BRIOT JP. - Les composants logiciels :
Evolution technologique ou nouveau

464

paradigme ? - Conférence OCM 2000, 2000, p.
53-65

[POOLO02] POOLE J D, Model Driven Architecture:
Vision, Standards and Emerging Technologies,
ECOOP 2001 ,2001

[SEMM98] SEMMAK F. - Réutilisation de
composants de domaine dans la conception des
systémes d’information - Thése de doctorat de
I’Université Paris I - Février 1998

[SHAW96] SHAW M., GARLAN D. - Software
architecture : Perspective on an emerging
discipline - Prentice Hall, 1996

[SING98] SINGH N. - Unifying heterogeneous
information models - Communications of the
ACM, vol. 41, n°5, 1998

[SIRA00] : Projet SIRAC : Systémes
Informatiques Répartis pour Applications
Coopératives - Rapport d’ Activité 2000, INRIA
[WART92] WARTIK S., PRIETO-DIAZ R. -
Criteria for comparing domain analysis
approaches - International journal of software
engineering and knowledge engineering 2(3),
p-403-431, 1992

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

