

A Taxonomy of Cyber Attacks in Smart Manufacturing with NIST Cybersecurity Framework Manufacturing Profile

Bethanie Williams, Marena Soulet, Advisor: Dr. Ambareen Siraj Department of Computer Science, Tennessee Tech University

Abstract	Introduction	NIST		
 A revolution in manufacturing systems is underway with smart manufacturing becoming an integral component of the broader push towards Industry 4.0. As the modern manufacturing industry continues to bridge digital and physical environments through the use of Internet of Things (IoT), cloud systems, data analytics, and machine learning, this integration of physical industrial systems with cyber technology has led to an increase in cyber-physical attacks with ongoing discovery of new security challenges. This paper provides a comprehensive study of common security challenges and attacks faced by smart manufacturing systems today and uses the NIST Cybersecurity Framework Manufacturing Profile as a guideline to address cyber incidents that have occurred within the manufacturing sector. 	 As the modern manufacturing industry continues to bridge digital and physical environments through the use of Internet of Things (IoT), cloud systems, data analytics, and machine learning, this integration of physical industrial systems with cyber technology has led to an increase in cyber-physical attacks with ongoing discovery of new security challenges. $with the technology transmission of the technology of new security challenges.$ 	 National Institute of Standards and Technology Supports and develops information security standards and guidelines for industries such as manufacturing Cybersecurity Framework Manufacturing Profile Provides identification of common business/mission objectives relevant to the manufacturing sector Manufacturing Objectives Creates context for identifying and managing cybersecurity risk mitigation pursuits Categorization Process Identifies a security measures performance, relevance, and effectiveness for assessing a level of risk 		

NIST Manufacturing Profile [2]

NIST Smart Manufacturing

- \rightarrow A cyber event capable Incident of jeopardizing the CIA
- Actors \rightarrow Groups or individuals who exploit system vulnerabilities

Proposed Taxonomy with Attributes

• Maps smart manufacturing cyber attacks based upon the priorities of the manufacturing objectives, security challenges, and the potential impacts on the manufacturing systems • Lists well-known cyber attacks that have occurred throughout cyber-history and creates awareness about damages caused by the cyber attacks • Conducts an analysis of publicly available technical publications to establish a baseline for cyber attacks in smart manufacturing • Recognizes that attacks target organizations to compromise cyber systems with the intention to cause harm to the physical environment • Identifies a pattern of vulnerabilities found in industrial control systems (ICS) and information technology (IT) systems in manufacturing sector • Enables manufacturers to develop a proactive approach to mitigate attacks, resulting in increased security in smart manufacturing systems.

Examples of Dimensions

	First Dim	ension:	Human Sa	fety		Second Dimension: Environmental Safety					
Incident	Attack Mechanism	Level of Impact	CIA Violation	Type of Threat	Actors	Incident	Attacl Mechani	k ism	k Level of ism Impact	k Level of CIA ism Impact Violation	k Level of CIA Type of ism Impact Violation Threat
Car Shark	Malicious Software	High	Integrity Availability	Usurpation Disruption	Domestic (USA)	Florida Water Treatment Plant	Unauthorized Remote Acce	d ss	d Low ss	d Low Integrity ss	d Low Integrity Usurpation
Davis-Besse Nuclear Power Station	Worm	Low	Availability	Disruption	Foreign (Czech Republic)	Australia Wastewater Treatment Plant	Insider Threat		High	High Integrity Availability	High Integrity Disruption Availability Usurpation
Jeep Cherokee Ignition Switch	Zero-Day Exploit	Moderate	Confidentiality Integrity	Usurpation	Domestic (USA)	BTC Turkey Pipeline Explosion	Malicious Software		Moderate	Moderate Integrity Availability	Moderate Integrity Deception Availability Usurpation
Saudi Arabian	Malware	High	Integrity	Usurpation	Foreign	US Turbine Control System	Malware		Moderate	Moderate Confidentiality Availability	Moderate Confidentiality Disruption Availability Disclosure
Petrochemical Plant				Disruption	(Russia)	New York Dam	Unauthorized Remote Access	•	Low	Low Confidentiality	Low Confidentiality Disclosure
						Ukraine Power Grid	Malware		High	High Availability	High Availability Disruption

Third Dimension: Quality of Product					Fourth Dimension: Production Goals						Given the importance of IoT-based	
Incident	Attack Mechanism	Level of Impact	CIA Violation	Type of Threat	Actors	Incident	Attack Mechanism	Level of Impact	CIA Violation	Type of Threat	Actors	industries and economies, identifying and
Virginia Tech Case Studies	Code Modification	Low	Integrity	Disruption Deception	Domestic (USA)	Daimler Chrysler Cars	Worm	Low	Integrity Availability	Disruption Usurpation	Morocco	 importance. Future Work:
						Stuxnet	Worm	High	Integrity Availability	Disruption Usurpation	USA and Israel	 Improve vulnerability and risk assessments
Dyn Inc.	Denial of Service (DoS)	Moderate	Integrity Availability	Disruption Deception	Domestic (USA)	German Steel Mill	Spear-phishing	High	Confidentiality Integrity Availability	Usurpation Disclosure	Unknown	 Incorporate mitigation techniques with the NIST standards and framework Create/enhance mitigation and detection
Kemuri Water Plant	Malware	High	Confidentiality Integrity	Disruption Disclosure	Foreign Hacktivist	Honda Car Manufacturer	Ransomware	Moderate	Integrity Availability	Disruption Disclosure	North Korea	Acknowledgements
					Group	Taiwan Semiconductor Manufacturing Company	Virus	Moderate	Availability	Disruption	North Korea	This research was conducted at Tennessee Tech University (TNTech) sponsored by the Office of Research at TNTech and National
WannaCry Virus	Ransomware	High	Integrity Availability	Disruption Disclosure	North Korea	Norsk Hydro	Ransomware	High	Confidentiality Integrity Availability	Disruption Disclosure Usurpation Deception	Unknown	Science Foundation Scholarship for Service program.

Conclusion & Future Work

- Smart manufacturing systems are much more vulnerable to cyber attacks than traditional manufacturing systems.
- lost
- - the

References

[1] (March 31,). Industry 4.0 and Industrial IoT in Manufacturing: A Sneak Peek. Available: https://www.aberdeen.com/featured/industry-4-0-industrial-iot-manufacturing-sneak-peek/.

[2] K. Stouffer et al, "Cybersecurity Framework Manufacturing Profile ," (NIST Internal *Report (NISTIR) 8183),* 2019. Available: https://doi.org/10.6028/NIST.IR.8183r1.