
RESEARCH REVIEW 2020

Introduction
Conventional wisdom tells us that when a compiler
transforms a program from source code to executable, some
information is lost and cannot be recovered. For example,
variable names are not included in a compiled executable,
and have been assumed to be lost. Although state of the
art decompilers can recover the presence of variables, they
make attempt to recover their original names. Instead, they
name the variables v1, v2, and so on. This is unfortunate
since several studies have shown that programmers
carefully select variable names to make the program easier
to understand.

In this project, we showed that the conventional wisdom that
variable names cannot be recovered is wrong. Specifically,
we showed that variable names can largely be predicted
based on the context of code in which they are used and
accessed. We trained a neural network to predict variable
names on a large corpus of C source code that we collected
from GitHub.

Corpus
To generate our corpus, we scraped GitHub for projects
written in C. We then automatically built 164,632 binaries
from these projects and extracted 1,259,935 functions. For
each function, we generated a corpus entry that consisted
of the original source code with placeholder variables, as
shown in the code figure to the right. Each corpus entry also
included a mapping from placeholder variable to the original
identifier in the source code and the decompiler’s identifier.

Bogdan Vasilescu | Dr. Edward Schwartz | info@sei.cmu.edu
Distribution Statement A: Approved for Public Release;

Distribution is Unlimited

A1

Recovering Meaningful Variable Names in Decompiled Code

We can exactly predict 74.3%
of variable names in decompiled
executable code by training a
neural network on a large corpus
of C source code from GitHub.

Results

Experiment Accuracy
Overall 74.3
Function in Training 85.5
Function not in Training 35.3

An important consideration when evaluating a
solution based on machine learning such as ours is the
construction of the training and testing sets. Each binary
was randomly assigned to either the training or testing
set. As in real reverse-engineering scenarios, library
functions may be present in multiple binaries, and thus
may be present in both the training and testing sets. To
better understand the effect of this on our system, we
partitioned our testing set into the set of functions that
were also in the training set, and those that were not
in the training set. As demonstrated in the table below,
DIRE achieves 85.5% accuracy on functions it has been
trained on, compared to 74.3% overall. On functions that
it has not seen in training, it yields 35.3% accuracy.

Decompiled Original Recovered

void *file_mmap(int v1|fd|fd, int v2|size|size)
{
void *ptr|ret|buf;
ptr|ret|buf = mmap (0, v2|size|size, 1, 2, v1|fd|fd, 0);
if (ptr|ret|buf == (void *) -1)
{ perror ("mmap"); exit(1); }

return ptr|ret|buf;
}

Key

Plug-in for Hex-Rays decompiler showing recovered names.

RESEARCH REVIEW 2020

Copyright 2020 Carnegie Mellon University.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-
15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed
as an official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE
OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please
see Copyright notice for non-US Government use and distribution.
Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written
or electronic form without requesting formal permission. Permission is required for any other external and/or
commercial use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.
cmu.edu.
* These restrictions do not apply to U.S. government entities.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM20-0862

