
The SAE Avionics Architecture Description Language
(AADL) Standard: A Basis for Model-Based Architecture-

Driven Embedded Systems Engineering

Peter H. Feiler (Software Engineering Institute) SAE AS-2C AADL Standard Co-author
phf@sei.cmu.edu

Bruce Lewis (US Army AMCOM) SAE AS-2C AADL Chair
bruce.lewis@sed.redstone.army.mil

Steve Vestal (Honeywell) SAE AS-2C AADL Standard Co-author
Steve.Vestal@honeywell.com

Abstract.

Architecture Description Languages provide significant opportunity for the incorporation of
formal methods and engineering models into the analysis of software and system
architectures. A standard is being developed for embedded real-time safety critical
systems which will support the use of various formal approaches to analyze the impact of
the composition of systems from hardware and software and which will allow the
generation of system glue code with the performance qualities predicted. The standard,
the Avionics Architecture Description Language (AADL), is based on the MetaH language
developed under DARPA and US Army funding and on the model driven architectural
based approach demonstrated with this technology over the last 12 years. The AADL
standard will include a UML profile useful for avionics, space, automotive, robotics and
other real-time concurrent processing domains including safety critical applications.

Introduction

The Avionics Architecture Description Language (AADL) is a computer language used to describe
the software and hardware components of an avionics system and the interfaces between those
components. The language is used to describe the structure of an embedded system as an
assembly of software and hardware components. The language can describe functional
interfaces to components (such as data inputs and outputs) and non-functional aspects of
components (such as timing). The language can describe how components are combined (such
as how data inputs and outputs are connected or how software components are allocated to
hardware components). In particular, the language can describe standard control and data flow
mechanisms used in embedded systems, and the language can describe important non-
functional aspects such as timing requirements, fault and error behaviors, time and space
partitioning, and safety and certification properties.

The AADL is developed under the auspices of the International Society for Automotive Engineers
(SAE) in their Avionics Systems Division (ASD). The AADL is developed for embedded systems
that have challenging resource (size, weight, power) constraints, that have challenging and strict
real-time response requirements that must tolerate faults, that have specialized input/output
hardware, and that must be certified to high levels of assurance. Intended fields of application
are avionics systems, flight management, engine and power train control systems, certain
medical devices, industrial process control equipment, and space applications. Since the AADL
is an architecture description language (ADL) it addresses system of systems issues, where
these systems include embedded systems components.

 2

Background

The AADL is based on experiences in the use of DARPA funded ADL efforts, in particular MetaH
developed by Honeywell [1]. A number of organizations have used MetaH in prototypical system
developments, including Boeing, US Army, and the SEI. The case study of a pilot application of
the MetaH technology by the U.S. Army AMCOM SED laboratory to missile guidance systems
produced some insights into the potential cost savings of an architecture-driven approach. An
existing missile guidance system, implemented in Jovial, was reengineered to run on a new
hardware platform and to fit into generic missile reference architecture [3]. As part of the
reengineering effort the system was modularized and translated into Ada95. The task architecture
consisting of 12-16 concurrent tasks was represented as a MetaH model and the implementation
generated automatically from the MetaH model and the Ada95 coded application components.
The resulting system consisted of 12,000 source lines of application component code, 3000 lines
of MetaH executive generated from the MetaH model, and 3000 lines of code representing MetaH
kernel services. The engineers doing the reengineering work made a conservative estimate of
effort required to reengineer the system into a pure Ada95 implementation and validated the
estimate with the prime contractor who implemented the missile. The cost savings ranged from
50% for reengineering to a different language and platform, while a platform port had a cost
savings of 90%.

AMCOM Effort Saved Using MetaH

Review 3-DOF Trans-
late

6-DOF RT-
6DOF

Trans-
form

Test
6DOF

RT-
Missile

Build
Debug

Debug Re-target

MetaH

Current

Traditional
Approach

Using
MetaH0

1000

2000

3000

4000

5000

6000

7000

8000

M
an Hours

MetaH Current

total project savings 50%, re-target savings 90%

Benefit of
Model-Based
Architectures

Benefit of
Model-Based
Architectures

MetaH demonstrated the practicality of using an ADL as core modeling notation for providing
analysis capabilities of several performance-critical quality attribute dimensions such as
schedulability, dependability, and safety-critical concerns. The MetaH toolset demonstrated the
capability of not only supporting system analysis, but also automatic generation of glue code in
form of a system executive that performs all task binding, dispatching, and inter-task
communication with application components as “plug-ins” into this infrastructure. This separation
of concerns allows application developers to focus on domain functionality, while a software
system architect can focus on achieving system-level performance-critical quality attributes.

 3

Generated Partitioned Architecture

Strong Partitioning
• Timing Protection
• OS Call Restrictions
• Memory Protection

Portability
• Application Components
• Tailored Runtime Executive
• Standard RTOS API

Real-Time Operating System

Software
Component

Software
Component

Software
Component

Embedded Hardware Target

Software
Component

Runtime Executive Fault Recovery, Execution Control, Mode
Control, Timing Control, Data Synchronization,

Interprocess Communication

An Analyzable Software System Architecture Description Notation

The AADL has been designed to be a basis for model-based analysis and generation of
embedded systems, i.e., embedded and system of systems engineering driven by an architecture
that is reflected in the models and maintained throughout the system life cycle [2]. The notation
has been designed as an extensible core language with well defined semantics and both a
graphical and textual presentation. The core language supports modeling in several architecture
views [7] and addresses timing and performance analyses through explicit modeling of
application system and execution platform components and their binding as well as precisely
defined concurrency and interaction semantics and timing/performance properties. The extension
mechanisms permit properties to be introduced that are specific to additional architecture
analyses in terms of other quality attributes such as reliability, security, etc. In this section we
introduce to core language and in the next section we discuss the extension capability.

The focus of the AADL is to model the software system architecture in terms of an application
system bound to an execution platform. The architecture is modeled in terms of hierarchies of
components, whose interaction is represented by connections. Components have a component
type that represents its externally visible interface and other characteristics, i.e., represents a
component specification, and one or more implementations. A component implementation in the
AADL may represent application source text and may be decomposed into an interconnected set
of subcomponents that are instances of other component types and implementations.
Generalization of components is supported in that component types and implementations can be
expressed as extensions of other component types and implementations.

To support modeling of execution platforms four categories of components have been introduced:
processor as a virtual machine that schedules and executes units of concurrent execution
(threads) according to a specified scheduling protocol and may support space partitioning through
protected address spaces; memory as a storage abstraction that can hold data and/or code; bus
as a connector abstraction between execution platform components, and a device as an
abstraction of an active component that an application system can interact with and a processor
executing software may require access to via a bus. The execution platform components may
represent hardware components or abstract execution platform components, whose
implementations may represent virtual machines that are implemented in terms of another
execution platform, with the bindings finally resolving to actual hardware. Each execution
platform category has a number of predefined properties such as thread and process swap time
or scheduling protocol for processors. The core AADL predefines such properties and an initial
set of acceptable property value that can be extended. For example, new scheduling protocols
can be introduced through a property extension mechanism.

 4

Application system modeling is supported through two groups of component categories. The first
group focuses on the runtime behavior of a system and consists of: thread as basic unit of
concurrent execution; and process as unit of protected address space. Threads are contained in
processes and have one of a set of predefined dispatch protocol property values or one
introduced through the property extension mechanism. Predefined dispatch protocols include
periodic, aperiodic, sporadic, server, and background. Threads have separate execution
entrypoints into their associated source text for initialization, nominal execution, and recovery. In
case of nominal execution server threads may have multiple entrypoints defined as server
subprogram entrypoints. The process load, thread dispatch and scheduling semantics are
defined using a hybrid automaton notation.

The second group focuses on the source text of a system and consists of: package as unit of
source text; and data component as passive application data. The package category allows the
modeler to represent the source text decomposition structure to a level of detail that is
appropriate to the modeling effort. The data component category supports representing data
types and class abstractions in the source text as necessary for architecture models. The data
type is used to type ports (see below), to specify subprogram parameter types, and to type data
component instances. The component type extension mechanism can model type inheritance.
Subprogram features (see below) in component types can represent class methods and
accessors of data component declared as sharable with a specified concurrency control protocol.
Required access to sharable data component instances is specified in a requires subclause of a
component type.

A final component category supports hierarchical composition and consists of: system as a unit
whose implementations can contain execution platform components, application system
components and other system instances.

The AADL supports modeling of three kinds of interactions between components: directional flow
of data and/or control through data, event, and event data port connections; call/return interaction
on subprogram entrypoints; and through access to a shared data component (see data
component above).

Threads, processors, and devices, and their enclosing components (process and system) have in
ports and out ports declared. Data ports communicate unqueued state data, event ports
communicate events that are raised in their implementation, their associated source text, or
actual hardware, and event data ports represent queued data whose arrival can have event
semantics. Arrival of an event at a thread results in the dispatch of that thread – with semantics
defined via property values and hybrid automata for event arrival while the thread is active. For
data port connections data is communicated upon execution completion (immediate connection
with the effect of mid-frame communication for periodic threads) or upon thread deadline (delayed
connection with the effect of phase delay for periodic threads).

The data and event data ports appear to the application source text as data variables – in ports
as data variables where input is found when a thread is dispatched, and out ports as variables
into which output to be communicated to other components is placed for transfer at well-defined
points. In other words, the application source text of a component has no knowledge of the
components it interacts with. The interaction connection is defined as part of the AADL
description, and appropriate runtime executive code can be generated for thread dispatching and
communication.

Subprogram entrypoints are defined in component types as provided and required entrypoints. At
the level of components representing source text they represent procedures/functions that are
called sequentially. At the level of concurrent components they represent synchronous call/return
between two concurrency units (client subprogram calling a server subprogram).

 5

Components can have modes. Modes represent alternative configurations of the component
implementation with only one mode being active at a time. At the level of system and process a
mode represents possibly overlapping (sub-)sets of active threads and port connections, and
alternative configurations of execution platform components, as well as alternative bindings of
application components to execution platform components. Mode change behavior is specified as
a state transition diagram whose states are the modes and the transitions are triggered by
events. Thus, the AADL can model dynamically changing behavior of statically known thread and
port communication topologies bound to statically known execution platform topologies. Modes
can also be declared for sources text components. This permits mode-specific property values to
be declared in situations where the thread and connection architecture does not change, but the
thread internal behavior changes, e.g., it has different worst-case execution times under different
modes. Such more detailed modeling of application systems allows for less conservative analysis
such as schedulability analysis.

The AADL has the following basic fault handling model. Runtime faults may be handled within
source text components through mechanisms that are part of the source language runtime
environment. For fault not handled at that level or propagated by the source text a thread is given
an opportunity to recover and continue with the next dispatch through a recovery entrypoint.
Thread unrecoverable errors are propagated as error events. The modeler of a particular
application system indicates through event connections where the error event is propagated to,
and mode change behavior descriptions indicate actions taken in response to error events.

The AADL also supports other behavior specifications. It supports specification of sequential
execution paths within threads to represent control flow within a thread in more detail. It supports
specification of expected invocation patterns on subprogram entrypoints that can be checked
against actual invocations. Finally, it supports specification of expected event port trigger patterns
for a port collection, i.e., a lower-level control flow protocol represented by a collection of event
port connections that externally is viewed as a single event connection.

In summary, the core AADL supports modeling of application systems and execution platforms as
interacting components with specific semantics and bindings. Such systems are configurable in
that components have multiple implementations. Semantics defined as part of the component
categories and their predefined properties address timing and resource consumption as well as
interaction consistency in terms of matching port types and data communicated through the ports.
Behavior descriptions allow for model checking of behaviors as well as mode(state)-specific
analyses with less conservative results. The core language does not provide properties and
semantics for all possible architecture analyses. Instead the AADL has been made extensible
both in terms of language notation and in terms of standard annexes to accommodate further
analyses.

An Extensible Software System Architecture Description Notation

The AADL has been made extensible in three respects. First, modelers can define an extensible
set of component specifications in form of component types and implementations by making use
of the extension mechanism discussed in the previous section. Second, the language itself can
be extended through the ability to introduce new properties and extend the set of valid property
values for existing properties. Third, the AADL draft standard includes its specification as a UML
profile.

The AADL provides a library concept for organizing component type and implementation
declarations. It provides a name scope, thus, facilitates independent development of major
subsystems. Furthermore, the component extension mechanism allows modelers to define
components and generalizations and specializations of other components.

The AADL currently supports the introduction of new properties extend the set of valid values,
and associate them with existing component categories, ports, and connections through property

 6

extension sets. No specific notational capability is provided are part of the AADL to describe the
semantic meaning of such properties, e.g., in terms of reliability characteristics. Instead, providers
of such extension sets can use notations such as the hybrid automaton notation used in the
definition of the core language, or resort to English text or other more precise notations to
describe the formal model underlying a particular analysis to which the properties represent input.

In many cases it is desirable to express constraints on properties – such as a constraint that the
sum of mass property values of any subcomponent with a mass does not exceed a certain
maximum. We could consider extending the AADL to explicitly support a constraint language. At
this time constraints can be introduced through properties with string values, whose meaning is
only understood by constraint analysis tools.

The AADL can be viewed as a modeling notation that can be completed with notations tailored to
the specific goals of a particular modeling view and analysis. Such complementary notations can
be introduced through string-values properties as suggested above. Alternatively, additional
modeling views and semantics addressing certain analyses can be expressed in terms of a UML
sublanguage model. This approach is possible because we have developed a UML profile of the
AADL as part of the draft standard.

AADL/UML Strategy

ADL
Components
Interactions

UML 2.0

UML-RT
Performance
Timeliness

AADL
UML Profile UML 1.4

Detailed design

AADL

Dependability

Security

Extensible AADL Annexes
UML Working Groups

To Be submitted to OMG for
Adoption

Status of the AADL as a Standard

The AADL standard has been in the works since 1999 with a balloted requirements document in
2000. The draft standard has reached a level of maturity that balloting of the standard is targeted
for late 2003. The specification of the AADL has been aligned with the OMG UML standard to
benefit from its large practitioner base. The emerging UML2.0 standard is considered a partner in
crime rather than competition. The AADL draft standard includes a UML profile of the AADL,
which after being approved as part of the SAE standard, will be submitted for acceptance to the
OMG to be part of their standard suite.

The standard provides a means for the commercial production of tools with a common AADL
language interface. The UML profile, a specialization providing AADL semantics, will allow the
application of formal analysis and code generation tools through a UML graphical specification,
enabling the use of currently available UML tools for specification. The UML profile is being
developed in parallel with the AADL standard and will be provided as an appendix. We also plan
to provide an XML specification for the AADL language once the first version of the language

 7

standard is completed. These capabilities will provide an early interface for developing new
analysis approaches. We expect to start balloting the standard by the end of 2003.

The AADL Standardization Subcommittee also has a liaison relationship with a French research
consortium, COTRE, headed by Airbus. COTRE has adopted the AADL for research into new
tools, development and analysis methods to support aviation system development requirements.
The AADL plays a significant role in a future software and systems development approach
described by Airbus and COTRE in a recent paper[4]. Other US and European companies and
agencies are evaluating and experimenting with MetaH.

Architecture based, model driven approaches are also beginning to appear in the general
software engineering domain. UML 2.0, the Model Driven Architectures Initiative [5], will provide
a new layer to UML to directly support a generalized Model driven architecture based approach.
It is expected that multiple profiles for different domains will be defined as specializations of UML
2.0. UML 2.0 is expected to be released in mid 2003. The AADL UML profile will incorporate
new architecture description capabilities from UML 2.0 when it is released.

The Model Driven Architecture (MDA)
Initiative

• Based on the success of UML, the OMG has formulated a vision of a
method of software development based on the use of models

• Key characteristic of MDA:
– The focus and principal products of software development are

models rather than programs
– “The design is the implementation” (i.e. UML as both a modeling

and an implementation language)
• UML plays a crucial role in MDA

– Automatic code generation from UML models
– Executable UML models
– Requires a more precise definition of the semantics of UML

(UML 2.0)
Source: Bran Selic, Rational

The University of Southern California, Center for Software Engineering, lead by Barry Boehm,
has announced the development of Model-Based Architecting and Software Engineering
(MBASE) approach [6]. This approach currently is being developed to be compatible with several
Architecture Description Languages, one being the AADL.

Summary

The AADL has been designed to specifically support the development of large-scale systems
through model-based architecture-driven software systems engineering by providing an
analyzable architecture description language with well defined semantics. Its roots are in more
than a decade’s research in architecture description languages with an emphasis on concepts
that address performance-critical embedded systems concerns, in particular timing and
performance. The standard has been made extensible to permit inclusion of other performance-
critical quality attribute concerns through annexes, without bloating the core standard. This
permits new analyses to be supported in the future as they emerge from research, e.g., in the
area of network security and intrusion management.

 8

The AADL in a Nutshell

Application
Thread, Process,

System
Execution Platform

Execution engine
Memory, Bus

Device

Components
Specifications

Variant implementations
Ports

Connections
Domain data objects

Behaviors

A-ADL ADL
System Architecture

Implementation

OPEN
Gov usage rights.

Industry AADL
standard.

HARDWARE
INDEPENDENT

No implementation
specified in SW API.

REUSABLE
Very portable.

Function/non-functional
requirements.

Ideal isolation from
hardware.

GENERIC
Modular,

scalable, system
“block diagram”
with semantics

EXTENSIBLE/
SCALABLE

Multi-processor/multi-
process, easily add/change

and see effects. User defined
domain specific functions..

FORMAL, RICH
SEMANTICS

Models can span high-
level system to detailed

interfaces

FLEXIBLE
System spec used

to change
implementation.

Interface with any
standard or
application

REAL-TIME
User specifies timing

requirements,
analyzers available,
concurrency handled

automatically!

VERIFIABLE
Strong support for predictable

real-time architectures
exhibiting high-reliability

USABLE AND AVAILABLE
Approach/formalism is
SIMPLE/UNIFORM,

PRACTICAL, and EASY TO
USE, LEARN, AND

INTERFACE WITH OTHER
APPROACHES!

OBJECT-
ORIENTED

Clearly defined
object, messaging,

properties,
decomposition

RELIABILITY,
SAFETY,

SECURITY
SUPPORT

User specifies
requirements;

analyzers available

HARDWARE
MODELING AND BINDINGS FULLY
SUPPORTED BY AADL(auxiliary to

the SW API)

The SAE AADL provides an opportunity for the embedded real-time systems research community
to have a direct impact on the practitioner community. As the AADL becomes the accepted
means for modeling, analyzing, and integrating systems based on architectural models, it can
become a vehicle for accelerated transition of research results in new analysis techniques by
demonstrating the use of research theories in the context of the AADL/UML.

References

1. Pam Binns, Matt Englehart, Mike Jackson and Steve Vestal, “Domain Specific Software
Architectures for Guidance, Navigation and Control,” Honeywell Technology Center,
Minneapolis, MN, International Journal of Software Engineering and Knowledge
Engineering, Vol6, No. 2, 1996, pages 201-227.

2. Peter H. Feiler, Bruce Lewis, Steve Vestal, “Improving Predictability in Embedded Real-time
Systems,” Carnegie Mellon Software Engineering Institute, CMU/SEI-2000-SR-011, October
2000.

3. David J. McConnell, Bruce Lewis and Lisa Gray, “Reengineering a Single Threaded
Embedded Missile application onto a Parallel Processing Platform using MetaH,” 5th
Workshop on Parallel and Distributed Real Time Systems, 1996.

4. Patrick Farail, Pierre Dissaux, “COTRE a Software Design Workshop”, DASIA 2002, May
2002.

5. Bran Selic, “Performance Oriented UML”, Tutorial, 3rd International Workshop On Software
and Performance, July 2002.

6. Barry Boehm, Overview, Mini Tutorial, http://sunset.usc.edu/research/MBASE/
7. Paul Clements, et.al., “Documenting Software Architectures: Views and Beyond”, Addison-

Wesley, SEI Series in Software Engineering, 2002.

