
RESEARCH REVIEW 2020

Problem
Development, deployment, and operation of ML systems
involves three perspectives, often with three completely
separate workflows and people: data scientists build the
model; software engineers integrate the model into a larger
system; and then operations staff deploy, operate, and
monitor the system.

Because these perspectives operate separately and
often speak different languages, there are opportunities
for mismatch between the assumptions made by each
perspective with respect to the elements of the ML-enabled
system, and the actual guarantees provided by each
element.

Solution
Develop descriptors for elements of ML-enabled systems
by eliciting examples of mismatch from practitioners;
formalizing definitions of each mismatch in terms of data
needed to support detection; and identifying potential for
using this data for automation of mismatch detection.

Descriptors for ML system elements
make stakeholder assumptions
explicit and prevent mismatch.

Principal Investigator, Grace A. Lewis | info@sei.cmu.edu
Stephany Bellomo | Ipek Ozkaya | April Galyardt

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

P17

Characterizing and Detecting Mismatch in ML-Enabled Systems

Looking Ahead: Automated Mismatch Detection

Phase 1 Findings

Phase 1: Practitioner interviews to elicit examples of
mismatch and their consequences

Operational Data 8%

5% Data Rates

5% Development & Integration Timelines

21% Data Sources16% Data Syntax &
Semantics

21% Data Pipelines 37% Data Statistics

Development Environment 9%

40% Upstream and Downstream
System Components

10% Computing Resources 45% Programming Language/
ML Framework/ Tools/ Libraries

4% Anonymization

2% Data Buffering

13% Proxy Data

18% Task

31% Data Dictionary4% Restrictions

15% Usage Context

14% Required Model Inference Time 54% Runtime Metrics & Data32% Computing Resources

14% Decisions, Assumptions,
Limitations & Constraints

17% API/
Specifications

17% Test Cases
& Data

14% Model Output
Interpretation

62% Data Preparation Pipelines 15% Versioning 23% Data Statistics

12% Programming Language/
ML Framework/ Tools/ Libraries

11% Evaluation
Metrics

8% Versioning

48% Metadata

26% Success Criteria 29% Success Criteria

Raw Data 10%

Task and Purpose 15%

Operational Environment 16%

Trained Model 36%

Training Data 6%

5% System Configuration
Requirements

12% Data Rights & Policies

Training Data mismatches are mostly due to lack of clarity
on data preparation pipelines (37%) and lack of data
statistics (21%).
Operational Data mismatches are mostly due to lack of
data statistics (37%) and lack of clarity on data pipelines
(21%).
Development Environment mismatches are mostly due to
differences in programming languages … (45%) and lack of
knowledge of upstream and downstream components (40%).
Raw Data mismatches are mostly associated with lack of
metadata (48%) and lack of a “data dictionary” (31%).
Task and Purpose mismatches are mostly associated with
unknown business goals (29%) or success criteria (26%).
Operational Environment mismatches are mostly
associated with unavailable runtime metrics and data (54%)
and unawareness of computing resources available for
model serving (32%).
Trained Model mismatches are mostly associated with
lack of test cases and test data (17%) and lack of model
specifications and APIs (17%).

Distribution
Monitor

Training Data
Descriptor

Operations
Dashboard

Operational
Data

Alerts

Predictions

Distribution={Label, Percentage}

Predictions Over
Period of Time

Input+Prediction+Other Metrics

Chi Square Test
Between Distributions

JSON

Upstream
Components

Downstream
ComponentsML Component

Logs

!
"#! $ %&!'"

%&!
()

#

!$%$&'()*+

!

6% Training Data 10% Raw Data 16% Operational
Environment

8% Operational Data
9% Development Environment

15% Task and Purpose 36% Trained Model

Resulting Mismatch Categories from Practitioner Interviews

Descriptors Being Used for Automated Drift Detection

mailto:info@sei.cmu.edu

RESEARCH REVIEW 2020

Copyright 2020 Carnegie Mellon University.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official
Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-
IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for
non-US Government use and distribution.
Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided
the copyright and “No Warranty” statements are included with all reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission should
be directed to the Software Engineering Institute at permission@sei.cmu.edu.
* These restrictions do not apply to U.S. government entities.
DM20-0865

mailto:permission@sei.cmu.edu

