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Problem
Development, deployment, and operation of ML systems 
involves three perspectives, often with three completely 
separate workflows and people: data scientists build the 
model; software engineers integrate the model into a larger 
system; and then operations staff deploy, operate, and 
monitor the system.

Because these perspectives operate separately and 
often speak different languages, there are opportunities 
for mismatch between the assumptions made by each 
perspective with respect to the elements of the ML-enabled 
system, and the actual guarantees provided by each 
element.

Solution
Develop descriptors for elements of ML-enabled systems 
by eliciting examples of mismatch from practitioners; 
formalizing definitions of each mismatch in terms of data 
needed to support detection; and identifying potential for 
using this data for automation of mismatch detection.

Descriptors for ML system elements 
make stakeholder assumptions 
explicit and prevent mismatch.
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Characterizing and Detecting Mismatch in ML-Enabled Systems

Looking Ahead: Automated Mismatch Detection

Phase 1 Findings

Phase 1: Practitioner interviews to elicit examples of 
mismatch and their consequences 

Operational Data 8%

5% Data Rates

5% Development & Integration Timelines

21% Data Sources16% Data Syntax & 
Semantics

21% Data Pipelines 37% Data Statistics

Development Environment 9%

40% Upstream and Downstream
System Components

10% Computing Resources 45% Programming Language/
ML Framework/ Tools/ Libraries

4% Anonymization

2% Data Buffering

13% Proxy Data

18% Task

31% Data Dictionary4% Restrictions

15% Usage Context

14% Required Model Inference Time 54% Runtime Metrics & Data32% Computing Resources 

14% Decisions, Assumptions, 
Limitations & Constraints

17% API/
Specifications

17% Test Cases
& Data

14% Model Output
Interpretation

62% Data Preparation Pipelines 15% Versioning 23% Data Statistics

12% Programming Language/
ML Framework/ Tools/ Libraries

11% Evaluation
Metrics

8% Versioning

48% Metadata

26% Success Criteria 29% Success Criteria

Raw Data 10%

Task and Purpose 15%

Operational Environment 16%

Trained Model 36%

Training Data 6%

5% System Configuration
Requirements

12% Data Rights & Policies 

Training Data mismatches are mostly due to lack of clarity 
on data preparation pipelines (37%) and lack of data 
statistics (21%).
Operational Data mismatches are mostly due to lack of 
data statistics (37%) and lack of clarity on data pipelines 
(21%).
Development Environment mismatches are mostly due to 
differences in programming languages … (45%) and lack of 
knowledge of upstream and downstream components (40%).
Raw Data mismatches are mostly associated with lack of 
metadata (48%) and lack of a “data dictionary” (31%).
Task and Purpose mismatches are mostly associated with 
unknown business goals (29%) or success criteria (26%).
Operational Environment mismatches are mostly 
associated with unavailable runtime metrics and data (54%) 
and unawareness of computing resources available for 
model serving (32%).
Trained Model mismatches are mostly associated with 
lack of test cases and test data (17%) and lack of model 
specifications and APIs (17%).
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6% Training Data 10% Raw Data 16% Operational
Environment

8% Operational Data 
9% Development Environment 

15% Task and Purpose 36% Trained Model

Resulting Mismatch Categories from Practitioner Interviews

Descriptors Being Used for Automated Drift Detection
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