
RESEARCH REVIEW 2019

These methods assume
that one knows
the resources in the
memory system;
unfortunately, most chip
vendors do not make
this information available.

Today, almost all computers use
multicore processors. Unfortunately,
satisfying hard real-time requirements
of software executing on such
computers is challenging because the
timing depends on how resources
in the memory system are shared,
and this information is typically
not publicly available. This project
addresses this problem.
Multicore processors
Today, almost all computers use multicore
processors. These computers have many
processor cores such that one program can
execute on one processor core and another
program can execute on another processor
core simultaneously (true parallelism). Typically,
processor cores share memory. In today’s
memory system, a large number of resources
are used to make memory accesses faster in
general but, unfortunately, also make execution
time more unpredictable and dependent on
execution of other programs (because these
other programs use shared resources in the
memory system). A simplified view of a multicore
processor with the memory system is shown
in Figure 1.

Embedded real-time cyber-physical systems
These systems are pervasive in society in
general, as shown by the fact that 99% of all
processors produced are used in embedded
systems. In many of these systems, computing
the correct result is not enough; it is also
necessary to compute the correct result
at the right time.

Department of Defense (DoD)
Embedded real-time cyber-physical systems
are pervasive in the DoD. Because of the
importance of achieving predictable timing,
it is common for practitioners to disable all
processor cores except one (hence making
a multicore processor behave as a single
processor system). The importance of timing was
recently stressed by AMRDEC’s S3I director [1]:

“The trick there, when you’re processing flight
critical information, it has to be a deterministic
environment, meaning we know exactly where a
piece of data is going to be exactly when we need
to—no room for error,” [Jeff] Langhout says.
“On a multi-core processor there’s a lot of
sharing going on across the cores, so right now
we’re not able to do that.”

Current solutions
The current state of the art makes solutions
available for managing contention for
resources in the memory system and for
analyzing the impact of this contention
on timing for the case that we know the
resources in the memory system.

Problem addressed
In this project, we have addressed the problem
of verifying timing of software executing on a
multicore processor assuming that we do not
know the resources in the memory system.

Results
We have developed a preliminary method—see
Andersson, B. et al., “Schedulability Analysis of
Tasks with Co-Runner-Dependent Execution
Times,” ACM Transactions on Embedded Computing
Systems, 2018.
[1] ”Army still working on multi-core processor for UH-60V,” May 2017, Available at https://www.flightglobal.com/news/
articles/army-still-working-on-multi-core-processor-for-uh-6-436895/

Dr. Bjorn Andersson | baandersson@sei.cmu.edu
[DISTRIBUTION STATEMENT A]

Approved for public release and unlimited distribution.

P14

Using All Processor Cores While Being Confident about Timing

Memory Bus (and Memory Controller)

Last-Level Cache (L3)

3

Core 1

L1/L2

Core 2

L1/L2

...

Core 3

L1/L2

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B

Figure 1: A simplified view of a multicore processor with shared memory

14_Multicore_Confidence_2019_7.indd 1 10/10/19 5:10 PM

Using All Processor Cores While Being Confident about Timing
Copyright 2019 Carnegie Mellon University.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.
Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for
permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.
* These restrictions do not apply to U.S. government entities.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM19-1043

	Blank Page

