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We are developing automated 
techniques to repair C source 
code to eliminate memory-
safety vulnerabilities.

Software vulnerabilities constitute 
a major threat to DoD.  Memory 
violations are among the most 
common and most severe types  
of vulnerabilities.

The main technique that we use 
(fat pointers) has been previously 
researched as a compiler pass 
to repair the intermediate 
representation (IR) of a program.  
Our work is novel in applying it as a 
source-code repair, which poses the 
difficulty of translating the repairs 
at the IR level back to source code.

Repair of source code As a compiler pass

Repairs can be easily 
audited if desired.

Must trust the tool.

Repairs can be 
manually tweaked to 
improve performance.

Difficult to remediate 
performance issues 
caused by repair.

Changes to the source 
code are frequent and 
easily handled.

Changes to the build 
process may be difficult 
and costly.

The C preprocessor can include 
or exclude pieces of C code 
depending on the configuration 
chosen at compile time.  We repair 
configurations separately and 
merge the results, as illustrated in 
Figure 3.
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#define BUF_SIZE 256

char nondet_char();

int main() {

    char* p = malloc(BUF_SIZE);

    char c;

    while ((c = nondet_char()) != 0) {

        *p = c;

p = p + 1;

    }

    return 0;

}
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#include "fat_header.h"

#include "fat_stdlib.h"

#define BUF_SIZE 256

char nondet_char();

int main() {

 FatPtr_char p = fatmalloc_char(BUF_SIZE);

    char c;

    while ((c = nondet_char()) != 0) {

*bound_check(p) = c;

p = fatp_add(p, 1);

    }

    return 0;

}

We ensure spatial memory safety  
by replacing raw pointers with  
fat pointers, which include bound 
information.

Before dereferencing a fat pointer, a 
bounds check is performed.

For each pointer type T*, we introduce 
a new struct definition:
struct FatPtr_T {
  T*     rp;   /* raw pointer */ 
  char*  base; /* of mem region */ 
  size_t size; /* in bytes */ 

};

Pointers stored in heap memory that 
is reachable by external binary code 
cannot be fattened. We identify such 
pointers using a whole-program 
points-to analysis with an allocation-
site abstraction. 

Limitations: No guarantee of memory 
safety in the presence of concurrency 
and things that interact poorly with  
fat pointers. 

Current status: Our tool works 
on small test cases. We are fixing 
remaining bugs and adding missing 
features to handle the SPEC2006 
benchmarks. 

FY20: Optimize to remove unnecessary 
fattenings and bound checks.

Future: Extend to other types 
of repairs and increase level of 
automation. Work with additional 
DoD transition partners.

Figure 3.  Merging of repairs for multiple build configurations.Figure 2.  Pipeline for repair of source code

Figure 1(a): Original Source Code Figure 1(b): Repaired Source Code

Figure 4. Example of fattening a pointer
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Original:

foo(

#ifdef LONG

long* x

#else

int* x

#endif

)

Repaired Config 1:

foo(

#ifdef LONG

FatPtr_long x

#else

int* x

#endif

)

Repaired Config 2:

foo(

#ifdef LONG

long* x

#else

FatPtr_int x

#endif

)

Merged:

foo(

#ifdef LONG

FatPtr_long x

#else

FatPtr_int x

#endif

)

h e l l o w o r l d
Original: p

p.rp
p.base
(p.base + p.size)

Repaired:
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