
RESEARCH REVIEW 2019

We are developing automated
techniques to repair C source
code to eliminate memory-
safety vulnerabilities.

Software vulnerabilities constitute
a major threat to DoD. Memory
violations are among the most
common and most severe types
of vulnerabilities.

The main technique that we use
(fat pointers) has been previously
researched as a compiler pass
to repair the intermediate
representation (IR) of a program.
Our work is novel in applying it as a
source-code repair, which poses the
difficulty of translating the repairs
at the IR level back to source code.

Repair of source code As a compiler pass

Repairs can be easily
audited if desired.

Must trust the tool.

Repairs can be
manually tweaked to
improve performance.

Difficult to remediate
performance issues
caused by repair.

Changes to the source
code are frequent and
easily handled.

Changes to the build
process may be difficult
and costly.

The C preprocessor can include
or exclude pieces of C code
depending on the configuration
chosen at compile time. We repair
configurations separately and
merge the results, as illustrated in
Figure 3.

Will Klieber | weklieber@cert.org
Ryan Steele, Matt Churilla, Derek Leung, David Svoboda, Mike McCall, Ruben Martins

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

P4

#define BUF_SIZE 256

char nondet_char();

int main() {

 char* p = malloc(BUF_SIZE);

 char c;

 while ((c = nondet_char()) != 0) {

 *p = c;

p = p + 1;

 }

 return 0;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

#include "fat_header.h"

#include "fat_stdlib.h"

#define BUF_SIZE 256

char nondet_char();

int main() {

 FatPtr_char p = fatmalloc_char(BUF_SIZE);

 char c;

 while ((c = nondet_char()) != 0) {

*bound_check(p) = c;

p = fatp_add(p, 1);

 }

 return 0;

}

We ensure spatial memory safety
by replacing raw pointers with
fat pointers, which include bound
information.

Before dereferencing a fat pointer, a
bounds check is performed.

For each pointer type T*, we introduce
a new struct definition:
struct FatPtr_T {
 T* rp; /* raw pointer */
 char* base; /* of mem region */
 size_t size; /* in bytes */

};

Pointers stored in heap memory that
is reachable by external binary code
cannot be fattened. We identify such
pointers using a whole-program
points-to analysis with an allocation-
site abstraction.

Limitations: No guarantee of memory
safety in the presence of concurrency
and things that interact poorly with
fat pointers.

Current status: Our tool works
on small test cases. We are fixing
remaining bugs and adding missing
features to handle the SPEC2006
benchmarks.

FY20: Optimize to remove unnecessary
fattenings and bound checks.

Future: Extend to other types
of repairs and increase level of
automation. Work with additional
DoD transition partners.

Figure 3. Merging of repairs for multiple build configurations.Figure 2. Pipeline for repair of source code

Figure 1(a): Original Source Code Figure 1(b): Repaired Source Code

Figure 4. Example of fattening a pointer

Automated Code Repair to Ensure Memory Safety

Source
Code

Abstract
Syntax Tree

(AST)

Intermediate
Representation (IR)map map

2. Record
AST IR
mapping

3. Perform analysis
and repair at
IR level

4. Map repaired IR
back to AST

5. Map repaired AST
back to source

1. Record
Source AST
mapping

Original:

foo(

#ifdef LONG

long* x

#else

int* x

#endif

)

Repaired Config 1:

foo(

#ifdef LONG

FatPtr_long x

#else

int* x

#endif

)

Repaired Config 2:

foo(

#ifdef LONG

long* x

#else

FatPtr_int x

#endif

)

Merged:

foo(

#ifdef LONG

FatPtr_long x

#else

FatPtr_int x

#endif

)

h e l l o w o r l d
Original: p

p.rp
p.base
(p.base + p.size)

Repaired:

04_Automated_Code_Repair_to_Ensure_Memory_Safety_2.indd 1 10/10/19 4:30 PM

Copyright 2019 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF
THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other external and/or commercial use.
Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-1029

	Blank Page

