
In this study:  
• We investigate the limits of the

current state-of-the-art AI system
for detecting buffer overflows
and compare it with current
static analysis tools.

• We develop a code generator,
sa-bAbI, capable of producing
an arbitrarily large number of
code samples of controlled
complexity.

Static analysis tools considered:
• Frama-C – “A collection of scalable,

interoperable, and sound software
analyses” for ISO C99 source code. Uses
abstract interpretation.

• Clang – Based on symbolic execution and,
by default, uses unsound heuristics such
as loop unrolling to contend with state
space explosion.

• Cppcheck – We believe it also uses
unsound heuristics, though little has been
published about its specific approach.

• Anonymized commercial tool – Well
known to be unsound.

sa-bAbI generator
• Modeled after bAbI from Weston et al.

2015, [1]
• Intentionally very simple

• Valid C code
• Conditionals
• Loops
• Unknown values such as rand()

• Complements existing software assurance
datasets for training AI

• Will be included in NIST SARD

A memory network based on Choi et al., 2016 [2]

We found: 
• Static analysis engines have

good precision but poor recall on
our dataset.

• The state-of-the-art AI system can
achieve similar performance to the
static analysis engines, but it requires
an exhaustive amount of training
data to do so.

Our future work:
• Using representations of code that can

capture appropriate scope information.
• Using deep learning methods that are 

able to perform arithmetic operations. 

Example Code
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Input:

• A program code X [N × J ], consisting of N
linesX1, . . . , XN , where each lineXi is a list of
integer tokens w1

i , . . . , w
J
i

• A query line q [1×J ], equal to one of the lines
Xi encoding a buffer write

Embedding: We fix an embedding dimension
d and establish two learnable embedding
matrices Eval and Eaddr, both of dimension V ×
d. Letting A represent both Eval and Eaddr, we
encode each integer token twice, letting Awj

i

[1 × d] be the wj
i -th row of A. For i = 1, . . . , N ,

define mi [1× d] by

mi = Dropout0.3(
J∑

j=1

lj · Awj
i )

lkj = (1− j/J)− (k/d)(1− 2j/J)

We store the linesmi encoded byEval in amatrix
Mval [N×d], and store the lines encoded by Eaddr
in a matrixMaddr. We embed the query line q by
Eaddr and store the result in u1 [1× d].

Memory search: For each “hop number” h =
1, . . . , H in a fixed number of “hops” H:

p [N × 1] = softmax(Maddru
T )

o [1× d] =

N∑
i=1

pi(Mval)i

(∗) r [1× d] = Rho

(∗) s [1× d] = Normh(r)

uh+1 [1× d] = uh + s

where Rh [d × d] is an internal learnable weight
matrix

Classification:
ŷ [2× 1] = softmax(W (uH)T )

whereW [2× d] is a learnable weight matrix.

The forward pass is effectively an iterative
inner-product search matching the current
query line uh, which changes with each
processing hop, against each line mi of the
stored memory, which remains fixed.
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