
In this study:
• We investigate the limits of the

current state-of-the-art AI system
for detecting buffer overflows
and compare it with current
static analysis tools.

• We develop a code generator,
sa-bAbI, capable of producing
an arbitrarily large number of
code samples of controlled
complexity.

Static analysis tools considered:
• Frama-C – “A collection of scalable,

interoperable, and sound software
analyses” for ISO C99 source code. Uses
abstract interpretation.

• Clang – Based on symbolic execution and,
by default, uses unsound heuristics such
as loop unrolling to contend with state
space explosion.

• Cppcheck – We believe it also uses
unsound heuristics, though little has been
published about its specific approach.

• Anonymized commercial tool – Well
known to be unsound.

sa-bAbI generator
• Modeled after bAbI from Weston et al.

2015, [1]
• Intentionally very simple

• Valid C code
• Conditionals
• Loops
• Unknown values such as rand()

• Complements existing software assurance
datasets for training AI

• Will be included in NIST SARD

A memory network based on Choi et al., 2016 [2]

We found:
• Static analysis engines have

good precision but poor recall on
our dataset.

• The state-of-the-art AI system can
achieve similar performance to the
static analysis engines, but it requires
an exhaustive amount of training
data to do so.

Our future work:
• Using representations of code that can

capture appropriate scope information.
• Using deep learning methods that are

able to perform arithmetic operations.

Example Code

Performance comparison of memory network and static analyzers
commercial
tool

frama-c

0.925

0.900

0.875

0.850

0.825

0.800

0.775

0.750

0.725

cppcheck

clang_sa

Training set size (number of files)

F1
 S

co
re

9600 19200 38400 76800 153600

Input:

• A program code X [N × J], consisting of N
linesX1, . . . , XN , where each lineXi is a list of
integer tokens w1

i , . . . , w
J
i

• A query line q [1×J], equal to one of the lines
Xi encoding a buffer write

Embedding: We fix an embedding dimension
d and establish two learnable embedding
matrices Eval and Eaddr, both of dimension V ×
d. Letting A represent both Eval and Eaddr, we
encode each integer token twice, letting Awj

i

[1 × d] be the wj
i -th row of A. For i = 1, . . . , N ,

define mi [1× d] by

mi = Dropout0.3(
J∑

j=1

lj · Awj
i)

lkj = (1− j/J)− (k/d)(1− 2j/J)

We store the linesmi encoded byEval in amatrix
Mval [N×d], and store the lines encoded by Eaddr
in a matrixMaddr. We embed the query line q by
Eaddr and store the result in u1 [1× d].

Memory search: For each “hop number” h =
1, . . . , H in a fixed number of “hops” H:

p [N × 1] = softmax(Maddru
T)

o [1× d] =

N∑
i=1

pi(Mval)i

(∗) r [1× d] = Rho

(∗) s [1× d] = Normh(r)

uh+1 [1× d] = uh + s

where Rh [d × d] is an internal learnable weight
matrix

Classification:
ŷ [2× 1] = softmax(W (uH)T)

whereW [2× d] is a learnable weight matrix.

The forward pass is effectively an iterative
inner-product search matching the current
query line uh, which changes with each
processing hop, against each line mi of the
stored memory, which remains fixed.

2

[1] J. Weston et al., “Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks,” arXiv:1502.05698 [cs.AI], 19-Feb-2015.

[2] M.-J. Choi, S. Jeong, H. Oh, and J. Choo, “End-to-End Prediction of Buffer Overruns from Raw Source Code via Neural Memory Networks,”
arXiv:1703.02458 [cs.SE], 07-Mar-2017.

 Towards Security Defect Prediction with AI
CMU SEI Research Review 2018

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

P11
Dr. Nathan VanHoudnos | nmvanhoudnos@cert.org

Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-
D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as
an official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please
see Copyright notice for non-US Government use and distribution.
Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other external and/or commercial
use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.
* These restrictions do not apply to U.S. government entities.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM18-1147

	Blank Page

