
Today no organizations build
software-intensive systems
from the ground up; everyone
builds applications on top of
existing platforms, frameworks,
components, and tools. Hence
today’s software development
paradigm challenges developers
to build trusted systems that
include increasing numbers of
untrusted components.

The software industry as a whole has
increasingly adopted open source and
commercial components as fundamental
building-blocks of their systems. The U.S.
Army has recently created an initiative
to deliver capability more quickly—the
Rapid Capability Office. While third-party
components, including open source
components, have long been one of the
foundations for DoD software, there is a
recognition that we may need to adopt
greater numbers of such components, and
in a more agile fashion. There is likewise a
recognition that, to deliver capabilities more
rapidly, we may need to take on more risk.

Our research challenge is: how to speed
up the component qualification, analysis,
and evaluation process while choosing
appropriate levels of risk? Component
scorecards, automatically constructed, can
provide rapid insight into many important
quality attributes and community attributes.
These indicators can then be used to
determine risk and to plan additional
(human-intensive) analyses [1].

In this research we have shown how to
increase both the speed and confidence
of the component selection process. We
have provided component scorecards
based on project health measures and
quality attribute indicators that enable the
automated early assessment of external
components with greater developer
confidence, supporting rapid software
delivery. Our approach is to apply existing
automated analysis techniques and tools
(e.g., code and software project repository
analyses), following the current industry
trend towards DevOps, mapping the
extracted information to common quality
indicators from DoD projects.

Such scorecards are not the end of
analysis, but rather the beginning.
They can give rapid insight that allows
architects to do triage, quickly and
with confidence eliminating some
components and providing a context
for additional deeper analysis on the
remaining components. Raw scores can
be aggregated using weighting functions
that reflect the importance of each
measure to the project, for example

Score = (wM1 * wM2)

+ 2(wP1 * log wP2)

+ 3(wS1)

Furthermore, by automating the
analyses, components can be re-qualified
every time they change for relatively
low incremental costs. If an indicator
changes in a non-trivial way, a deeper
analysis can then be performed.

In this way we can balance the needs
of agility with the needs of proper
component qualification.

QUALITY ATTRIBUTE TOOL INDICATOR COMPONENT

Dlib 19.10 OpenCV 3.3.1

Performance Instrumentation Time (ms) 44,172 55,978

gperf Time (ms) 47,480 58,400

valgrind callgrind Instructions (billions) 491 272

Memory Memcheck Bytes lost 288 17,127

Memcheck Heap usage (Mbytes) 4,591 1,093

Modifiability DV8 Decoupling level 0.51 0.79

DV8 Propagation cost 0.31 0.14

Understand SLOC 276,825 783,344

Security FlawfinderRaw Hits 3+ 162 676

Community CodeMaat Authors >5 commits 13 234

Total commits 7,191 18,272

Example Component Scorecard

[1] H. Cervantes, J. Ryoo, R. Kazman, “Data-driven selection
of application frameworks during architectural design,”
Proceedings of HICSS 52, January 2019

CMU SEI Research Review 2018

Rapid Software Composition by Assessing
Untrusted Components

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

P18
Dr. Rick Kazman | rkazman@sei.cmu.edu

Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless
designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE
MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.
Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the copyright and “No Warranty” statements
are included with all reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission
is required for any other external and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.
* These restrictions do not apply to U.S. government entities.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM18-1141

	Blank Page

