
Problem
Static analysis alerts for security-related code flaws require too
much manual effort to triage, and there is little use of automated
alert classifier technology because of barriers of cost, expertise,
and lack of labeled data.

Solution
Develop extensible architecture for classification and advanced
prioritization, building on novel test-suite data method we developed.

• Implement prototype
• Enable organizations to quickly start using classifiers and advanced

prioritization by making API calls from their alert auditing tools
• Develop adaptive heuristics for classifier to adapt as it learns from

test suite and “natural program” data

Approach
1. Design architecture
2. Develop API definition
3. Implement prototype system
4. Develop adaptive heuristics
5. Test adaptive heuristics with datasets combining

test suite and real-world (DoD) data
6. Collaborators test architecture and prototype

Juliet test suite classifiers: initial results (hold-out data)
All four classification methods had high accuracy.

CLASSIFIER ACCURACY PRECISION RECALL AUROC

Random Forest 0.938 0.893 0.875 0.991

Lightgbm 0.942 0.902 0.882 0.992

Xgboost 0.932 0.941 0.798 0.987

Lasso 0.925 0.886 0.831 0.985

Artifacts
Code and Test Results
• API definition (swagger, RESTful)
• SCALe v2 static analysis alert auditing tool with new features

required for collaborators to generate data (also published
on GitHub)

• SCALe v3 released Aug. 2018 (collaborators-only) with
advanced prioritization schemes and features for classification

• Code development for prototype system
• Expanded archive of auto-labeled alerts
• Test results from cross-taxonomy test suite classifiers

using precise mappings
• Code enabling novel “speculative mapping” method

for tools without mappings to test suite metadata’s
code flaw taxonomy

• Adaptive heuristic development and testing results
(in progress)

Non-Code Publications + Papers
Architecture API definition and new SCALe features
• Special Report: “Integration of Automated Static Analysis

Alert Classification and Prioritization with Auditing Tools”
(Aug. 2018)

• Technical Report: public version (Sep. 2018)
• SEI blog post: “SCALe: A Tool for Managing Output from

Static Code Analyzers” (Sep. 2018)

Classifier development research methods and results:
• Paper “Prioritizing Alerts from Multiple Static Analysis Tools,

using Classification Models,” SQUADE (ICSE workshop)
• SEI blog post: “Test Suites as a Source of Training Data for

Static Analysis Alert Classifiers” (Apr. 2018)
• SEI Podcast (video): “Static Analysis Alert Classification with

Test Suites” (Sep. 2018)
• In-progress conference papers (4): precise mapping,

architecture for rapid alert classification, test suites for
classifier training data, API development

Precise mappings on CERT C Standard wiki
• Metadata for Juliet (created to test CWEs) to test CERT

rule coverage
• Per-rule precise CWE mapping

FY16
• Issue addressed: classifier accuracy
• Novel approach: multiple static analysis tools as

features
• Result: increased accuracy

FY17
• Issue addressed: too little labeled data for accurate

classifiers for some conditions (CWEs, coding rules)
• Novel approach: use test suites to automate

production of labeled (True/False) alert archives for
many conditions

• Result: high accuracy for more conditions

FY18
• Issue addressed: little use of automated alert

classifier technology (requires $$, data, experts)
• Novel approach: develop extensible architecture with

novel test-suite data method
• Result: extensible architecture, API definition, software

to instantiate architecture, adaptive heuristic research

Continuing in FY19
Using test suite data for classifiers, research:
Adaptive heuristics
• How classifiers incorporate new data
• Test suite vs. non-test-suite data
• Weighting recent data

Semantic features for cross-project prediction
• Test suites as different projects

This project developed an architecture
and API definition for static analysis
alert classification and advanced alert
prioritization, plus major parts of a
prototype system.

UI Module

• Store local projects
• Display project and alert data

Statistics Module

• Store, create, and run classifier algorithms
• Store adaptive heuristics algorithms
• Store automatic hyper-parameter optimization algorithms

Prioritization Module

• Store and evaluate prioritization formulas

DataHub Module

• Store tool and alert information
• Store test suite metadata and alert determinations
• Speculative mapping generation

API Calls

API CallsAPI Calls

API Calls

User
Interface

Architecture

Problem and Goal
Today

Project Goal

Architecture that classifies alerts using
auto-labeled and organization-audited data,
that accurately classifies most of the alerts as:

Expected True Positive (e-TP) or
Expected False Positive (e-FP),
 and
the rest as Indeterminate (I)

Alerts

Alerts

Alerts

Codebases

Analyzer

Analyzer

Analyzer

50,000

40,000

30,000

20,000

10,000

TP

3,147

11,772

48,690

FP Susp
0

50,000

40,000

30,000

20,000

10,000

e-TP

12,076

45,172

6,361

e-FP I
0

Problem: Too many alerts
Solution: Automate handling

Research Review 2018

Rapid Construction of Accurate Automatic Alert
Handling System: Architecture and Prototype

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

P17
 Lori Flynn| lflynn@sei.cmu.edu

Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other
documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.
Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any
other external and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.
* These restrictions do not apply to U.S. government entities.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM18-1140

	Blank Page

