
Security defects due to
implementation and interface
dependencies across multiple
source code files are difficult and
expensive to find and fix. We are
evaluating the efficacy of using
architectural modular analysis
tools to identify security defects
and the effect of refactoring on
removing security defects.
Our project’s goal is to use automated
architecture analysis to identify,
prevent, and mitigate security flaws in
code. We are retrospectively analyzing
open source software, with revision history
and issue lists that include identified
security flaws. With this data, we are
identifying correlations and building models
between the relationship of architectural
flaws and security flaws. Future work
could use this approach to identify areas
of code to refactor for architectural and
security improvements.

Statistical Analysis. We evaluated the
correlations of the existence of security
flaws with the existence of different
architectural flaws. We also evaluated the
effect of refactoring for reducing security
flaws, based on the existence of security
flaws before and after major refactoring.

Our analysis has found that
some refactoring has significantly
reduced security flaws, and that
security flaws are commonly
present with some architectural
flaw types.

Potential Impact: ~50% of total effort (LoC) to fix security issues came

from fixing <10% of the security issues in Chromium.

Process for adding statistical analysis of security flaws and architectural flaws to predict yet-to-be identified security flaws, and provide confidence

and a security-ROI for refactoring.

Design Structure Matrix: Presents Relationships among Modules. This example identifies an Improper

Interface, as it has files that are related but co-change frequently (unstable), as well as files that co-change

frequently but are not related (implicit relationship).

Distribution Statement A: Approved for Public Release;� Distribution is Unlimited

P16
Robert Schiela | rschiela@sei.cmu.edu

Effort (LoC) Security Issues

> 10 files
65
7%

� 10 files
899
93%

> 10 files
36584
47%

� 10 files
41149
53%

Tools
• Understand
• Titan
[Generate design
structure matrix (DSM)]

Used in build pipeline as part of SDLC, and potentially automated
• Regular reports on architecture flaws introduced
• Indicators of security risk
• Suggestions for refactoring

Analysis:
correlations
between
architecture and
security flaws

Predictive models
for security fixes
via architectural
refactoring

• Source code
• Revision history
• Issue list

Issue list: security
flaws

• Patterns
• Guidance
• Security likelihood
• ROI for fixes

Architectural flaws
and anti-patterns

C = Call; U = Use; I = Include; T = Type; S = Set; O = Override;
Pu = Public Inherit; ,# = # concurrent check-ins

Tools
• Understand
• Titan
[Generate design
structure matrix (DSM)]

• Patterns
• Guidance

• Source code
• Revision history
• Issue list

Architectural flaws
and anti-patterns

CMU SEI Research Review 2018

Predicting Security Flaws through Architectural Flaws

Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally
funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.
Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other external and/or
commercial use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.
* These restrictions do not apply to U.S. government entities.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM18-1135

	Blank Page

