
Security defects due to 
implementation and interface 
dependencies across multiple 
source code files are difficult and 
expensive to find and fix. We are 
evaluating the efficacy of using 
architectural modular analysis 
tools to identify security defects 
and the effect of refactoring on 
removing security defects.
Our project’s goal is to use automated 
architecture analysis to identify, 
prevent, and mitigate security flaws in 
code. We are retrospectively analyzing  
open source software, with revision history 
and issue lists that include identified 
security flaws. With this data, we are 
identifying correlations and building models 
between the relationship of architectural 
flaws and security flaws. Future work  
could use this approach to identify areas 
of code to refactor for architectural and 
security improvements.

Statistical Analysis.  We evaluated the 
correlations of the existence of security 
flaws with the existence of different 
architectural flaws. We also evaluated the 
effect of refactoring for reducing security 
flaws, based on the existence of security 
flaws before and after major refactoring.

Our analysis has found that 
some refactoring has significantly 
reduced security flaws, and that 
security flaws are commonly 
present with some architectural 
flaw types. 

Potential Impact: ~50% of total effort (LoC) to fix security issues came 

from fixing <10% of the security issues in Chromium.

Process for adding statistical analysis of security flaws and architectural flaws to predict yet-to-be identified security flaws, and provide confidence 

and a security-ROI for refactoring.

Design Structure Matrix: Presents Relationships among Modules. This example identifies an Improper 

Interface, as it has files that are related but co-change frequently (unstable), as well as files that co-change 

frequently but are not related (implicit relationship).
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Tools
• Understand
• Titan
[Generate design
structure matrix (DSM)]

Used in build pipeline as part of SDLC, and potentially automated
• Regular reports on architecture flaws introduced
• Indicators of security risk
• Suggestions for refactoring

Analysis: 
correlations 
between 
architecture and 
security flaws

Predictive models
for security fixes
via architectural 
refactoring

• Source code
• Revision history
• Issue list

Issue list: security 
flaws

• Patterns
• Guidance
• Security likelihood
• ROI for fixes

Architectural flaws 
and anti-patterns

C = Call;  U = Use; I = Include; T = Type; S = Set; O = Override;
Pu = Public Inherit; ,# = # concurrent check-ins

Tools
• Understand
• Titan
[Generate design 
structure matrix (DSM)]

• Patterns
• Guidance

• Source code
• Revision history 
• Issue list

Architectural flaws 
and anti-patterns
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