
DoD sustainment organizations want to 
adopt agile practices and realize the benefits 
of DevOps and infrastructure as code (IaC). 
They must first recover the technical baseline 
for the software deployment. This project 
has prototyped technology to automatically 
recover the deployment baseline and create 
the needed IaC artifacts, with minimal manual 
intervention and no specialized knowledge 
about the design of the deployed system.
IaC is the process and technology to manage and 
provision computers and networks (physical or virtual) 
through scripts. IaC is a foundation of integrated 
development and operations (DevOps) that provides 
automated deployment to the integration environment 
and repeatability through immutable infrastructure, 
enables exploration and experimentation by providing 
environment versioning and rollback, and ensures parity 
of test and integration environments across locations 
and organizations. IaC is usually associated with Agile and 
DevOps, but it can provide benefits outside of Agile.

Our approach has four elements. We crawl through an 
instance of the deployed system and inspect each node 
to create an inventory of software. Next, we analyze the 
inventory and “make sense of it” — identify which software 
is part of the operating system, which other packages are 
installed, and which is the application software. From this 
analysis, we populate a deployment model of the system. 
From the deployment model, we generate the scripts 
needed by the infrastructure as code tools, which execute 
the scripts to create a new deployment of the system

Crawl: Our crawler uses a novel  
approach to execute a script written  
in the Python programming language on  
the source system without installing 
additional software.

Analyze: We first determine the source 
repository for each installed package and 
associate files to installed packages. We 
then run a set of heuristic rules that uses file 
patterns to identify configuration files and 
pattern matching within configuration files 
to identify directories and files added to the 
system outside of installed packages.

Heuristics classify files by source. The heuristic 
rules infer identity and source of files that are 
not installed with a package, such as:

• Content served up by an installed web server
• Scripts or services delivered from an installed  

web container like nginx or Apache Tomcat
• Configuration and schema definition 

files for an installed database
• Standalone user services or applications

The deployment model is a 
relational schema that represents 
all of the facts and inferences.

Generate: Our prototype generates a 
set of scripts for the open source Ansible 
automation tool. The prototype can be 
extended to generate scripts for other tools.

Limitations and future work: Our approach is limited 
to Linux-based systems. We have demonstrated 
an initial set of heuristics rules covering a number 
of inference types and patterns, with extensibility 
to add new rules to broaden coverage. 

Software sustainment organizations can use this tool 
to quickly understand a system, and create and run 
automated deployment scripts to enable exploration 
and evolution.
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Approach: Crawl, analyze, populate a model, and 
generate IaC artifacts.

Today
• Automated deployment
• Immutable infrastructure
• Versioning and rollback
• Environment parity

Future
• Portability across IaaS
• Assurance evidence
• Moving target defense
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