
DoD sustainment organizations want to
adopt agile practices and realize the benefits
of DevOps and infrastructure as code (IaC).
They must first recover the technical baseline
for the software deployment. This project
has prototyped technology to automatically
recover the deployment baseline and create
the needed IaC artifacts, with minimal manual
intervention and no specialized knowledge
about the design of the deployed system.
IaC is the process and technology to manage and
provision computers and networks (physical or virtual)
through scripts. IaC is a foundation of integrated
development and operations (DevOps) that provides
automated deployment to the integration environment
and repeatability through immutable infrastructure,
enables exploration and experimentation by providing
environment versioning and rollback, and ensures parity
of test and integration environments across locations
and organizations. IaC is usually associated with Agile and
DevOps, but it can provide benefits outside of Agile.

Our approach has four elements. We crawl through an
instance of the deployed system and inspect each node
to create an inventory of software. Next, we analyze the
inventory and “make sense of it” — identify which software
is part of the operating system, which other packages are
installed, and which is the application software. From this
analysis, we populate a deployment model of the system.
From the deployment model, we generate the scripts
needed by the infrastructure as code tools, which execute
the scripts to create a new deployment of the system

Crawl: Our crawler uses a novel
approach to execute a script written
in the Python programming language on
the source system without installing
additional software.

Analyze: We first determine the source
repository for each installed package and
associate files to installed packages. We
then run a set of heuristic rules that uses file
patterns to identify configuration files and
pattern matching within configuration files
to identify directories and files added to the
system outside of installed packages.

Heuristics classify files by source. The heuristic
rules infer identity and source of files that are
not installed with a package, such as:

• Content served up by an installed web server
• Scripts or services delivered from an installed

web container like nginx or Apache Tomcat
• Configuration and schema definition

files for an installed database
• Standalone user services or applications

The deployment model is a
relational schema that represents
all of the facts and inferences.

Generate: Our prototype generates a
set of scripts for the open source Ansible
automation tool. The prototype can be
extended to generate scripts for other tools.

Limitations and future work: Our approach is limited
to Linux-based systems. We have demonstrated
an initial set of heuristics rules covering a number
of inference types and patterns, with extensibility
to add new rules to broaden coverage.

Software sustainment organizations can use this tool
to quickly understand a system, and create and run
automated deployment scripts to enable exploration
and evolution.

Infrastructure as Code
Feasibility of recovery of software deployment architecture

Agile

DevOps

Continuous Delivery/Integration

Enables

Infrastructure as code

Original System
Instance

Copy of Original
System

VALIDATION

EXECUTE

POPULATE

DEPLOY

2. Analyzer

Inventory

3. Recovered
Deployment
Model

4. Generator f(model,
tools, target)

IaC Deployment
Automation Tools

Infrastructure as
Code Scripts

1. Crawl and
Inspect

Approach: Crawl, analyze, populate a model, and
generate IaC artifacts.

Today
• Automated deployment
• Immutable infrastructure
• Versioning and rollback
• Environment parity

Future
• Portability across IaaS
• Assurance evidence
• Moving target defense

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

P13
Dr. John Klein | jklein@sei.cmu.edu

CMU SEI Research Review 2018

Infrastructure as Code
Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.
Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other external and/or
commercial use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.
* These restrictions do not apply to U.S. government entities.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM18-1132

	Blank Page

