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TriangleCount()

void tc(int *res, int *IJ) {
  for(...) {
    // VMV product
  }
}

Accum_VMV( TriangleCount() )

BB(
  Accum(i4, 1, X.N-1,
    Accum_X(i6, [i4, 0], i4,
      Dot([i6, add(i4, V(1)) ], [ i4, add(i4, V(1))], 

sub(sub(X.N, i4), V(1)))
)))

program(
func(TVoid, “transform”, [ res, IJ ],

decl([ i6, j131, j1765, j1m31, j231, j2m31, jm32, rf63, rf64 ],
chain(

assign(deref(res), V(0)),
loopf(i4, 1, 262110,

chain(
assign(rf63, V(0)),
assign(j1765, add(V(262112), IJ, nth(IJ, i4))),
assign(jm32, add(V(262112), IJ, nth(IJ, add(i4, V(1))))),
loopw(logic_and(lt(j1765, jm32), lt(deref(j1765), V(0))),

assign(j1765, add(j1765, V(1)))
),
loopw(logic_and(lt(j1765, jm32), lt(deref(j1765), i4)),

// dot product
),
assign(deref(res), add(deref(res), rf63))

) ) ) ) ) )

Research Problem
Turning mathematical 
graph algorithms into actual 
implementations that run at  
speed is complicated. It requires:

1. algorithmic design to
identify the appropriate
implementable algorithms

2. tuned implementations
that consider data storage
formats and available
hardware features

Target Problem
Using triangle counting as an example, 
we demonstrate our approach to 
generating graph algorithms from 
their mathematical specification.

Proposed Solution
Encode expert knowledge about 
algorithm design and optimization into an 
automated system (SPIRAL) to generate 
tuned implementations automatically. 
Allow the use of GraphBLAS formulae for 
providing mathematical specifications.

Mathematical Specification

Algorithmic Design
Formally deriving algorithms from the 
mathematical specification.

Example: Triangle Counting

Original graph split into two subgraphs:  
processed (red) and unprocessed (yellow)

Category I Category II

Category III Category IV

Intuition
Counting different categories of 
triangles as we iterate over the different 
vertices yields different algorithms.

Illustration
Counting Category I and II triangles, 
where red vertices have been processed.

Automatic Code Generation
Formalize the algorithm and implementation techniques into SPIRAL
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