
Program
Specification

Algorithm
Choice

Algorithm
Derivation

Abstract Code

C Code

TriangleCount()

void tc(int *res, int *IJ) {
 for(...) {
 // VMV product
 }
}

Accum_VMV(TriangleCount())

BB(
 Accum(i4, 1, X.N-1,
 Accum_X(i6, [i4, 0], i4,
 Dot([i6, add(i4, V(1))], [i4, add(i4, V(1))],

sub(sub(X.N, i4), V(1)))
)))

program(
func(TVoid, “transform”, [res, IJ],

decl([i6, j131, j1765, j1m31, j231, j2m31, jm32, rf63, rf64],
chain(

assign(deref(res), V(0)),
loopf(i4, 1, 262110,

chain(
assign(rf63, V(0)),
assign(j1765, add(V(262112), IJ, nth(IJ, i4))),
assign(jm32, add(V(262112), IJ, nth(IJ, add(i4, V(1))))),
loopw(logic_and(lt(j1765, jm32), lt(deref(j1765), V(0))),

assign(j1765, add(j1765, V(1)))
),
loopw(logic_and(lt(j1765, jm32), lt(deref(j1765), i4)),

// dot product
),
assign(deref(res), add(deref(res), rf63))

))))))

Research Problem
Turning mathematical
graph algorithms into actual
implementations that run at
speed is complicated. It requires:

1. algorithmic design to
identify the appropriate
implementable algorithms

2. tuned implementations
that consider data storage
formats and available
hardware features

Target Problem
Using triangle counting as an example,
we demonstrate our approach to
generating graph algorithms from
their mathematical specification.

Proposed Solution
Encode expert knowledge about
algorithm design and optimization into an
automated system (SPIRAL) to generate
tuned implementations automatically.
Allow the use of GraphBLAS formulae for
providing mathematical specifications.

Mathematical Specification

Algorithmic Design
Formally deriving algorithms from the
mathematical specification.

Example: Triangle Counting

Original graph split into two subgraphs:
processed (red) and unprocessed (yellow)

Category I Category II

Category III Category IV

Intuition
Counting different categories of
triangles as we iterate over the different
vertices yields different algorithms.

Illustration
Counting Category I and II triangles,
where red vertices have been processed.

Automatic Code Generation
Formalize the algorithm and implementation techniques into SPIRAL

�= Γ(𝐴3)¹6

�= Γ(𝐴3)¹6

𝐿=𝑡𝑟𝑖𝑙(𝐴)
𝐶=𝐿𝐿∘𝐿
�=𝑅𝑒𝑑𝑢𝑐𝑒(𝐶)

�=�+ 𝛼10 𝐴00𝛼01¹2

SPIRAL

CMU SEI Research Review 2018

Automatic Code Generation for Graph Algorithms

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

P7
Dr. Scott McMillan | smcmillan@sei.cmu.edu

with Paul Brouwer, Dr. Daniele Spampinato, Dr. Jason Larkin, Dr. Tze Meng Low, and Dr. Franz Franchetti

Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation
of the Software Engineering Institute, a federally funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision,
unless designated by other documentation.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.
Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the copyright and “No Warranty”
statements are included with all reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission.
Permission is required for any other external and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.
* These restrictions do not apply to U.S. government entities.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM18-1129

	Blank Page

