
Obsidian
 A Safer Blockchain Programming Language

Michael Coblenz mcoblenz@cs.cmu.edu
Eliezer Kanal ekanal@cert.org

P13

Annotated example code

Status and Upcoming Work

• An initial compiler translates Obsidian code to Java
(for execution on a mock blockchain) and to Dafny
(for verification).

• The compiler includes a typechecker based on
a draft typesystem.

• We plan to port Obsidian to Hyperledger Fabric and
complete the compiler.

• Our evaluation will ask users to write programs in
Obsidian and either Hyperledger Composer or Solidity
(existing blockchain development tools) and compare task
completion times and rates and kinds of bugs.

• We are iteratively evaluating portions of the language
design in the context of Java so that we can isolate those
parts of the design for study.

Research Review 2017

What is a blockchain?
• Blockchain programming environments provide shared,

global state on untrusted, distributed computing nodes.
• Global state consists of smart contracts, which

include both data structures and transactions that
manipulate them.

• Transactions can deploy smart contracts to the
blockchain (initializing their state), or invoke code
implemented in specific deployed smart contracts.

• “Code is law”: a principle that suggests that a contract’s
code specifies an agreement between parties. This
principle implies that contracts are immutable; bugs in
them cannot be fixed after deployment.

One blockchain network node

The nodes execute a consensus protocol by which they agree
on which transactions have been processed and in what
order. After consensus is reached, all nodes agree on the
transactions and their ordering.

Blockchain facts Consequences Design approach
Smart contracts can
hold resources.

Bugs can transfer
resources to the wrong
party or lose them
entirely. A bug was
recently exploited to
steal over US$40M
from a contract.

Obsidian models
resources with linear
types, which statically
restrict lifecycles, so
that resources cannot
be accidentally lost.

Modifying a contract’s
code could change an
agreement that parties
have settled on.

Smart contracts are
immutable once
deployed, but this
means that bugs are
not fixable.

Support developer-
authored
specifications and
use verification
tools to prove that
the code satisfies the
specifications. Use
a strong, static type
system to detect as
many bugs as possible
at compile time.

Proposed application
domains, such as
finance and medical
records, cannot
tolerate serious bugs.

Correct software is
paramount.

Many proposed
applications are
inherently stateful.

Blockchain applications
commonly implement
state machines.
Behavior and available
transactions depend
on the current state.

Obsidian is a
typestate-oriented
language, represent-
ing state in types and
statically preventing
some invalid invo-
cations. For exam-
ple, a Bond that has
been bought is in the
Bought state and can-
not be bought again.

A 3-block blockchain

Key-value store with state of all contracts

transaction 1

transaction 2

transaction 3

transaction 4

transaction 5

transaction 6

transaction 7

transaction 8

interface account { transaction pay (money m); }
resource contract money {…};
contract Bond {
 account seller;
 Bond(account s) {
 seller = s;
 -> Offered();
 }
 state Offered {
 transaction buy(money m, account b) {
 seller.pay(m);
 -> Sold({buyer = b});
 }
 }
 state Sold {
 account buyer;
 transaction makePayment(money m) {
 buyer.pay(m);
 }
 }
}
contract ErroneousClient {
 transaction badTransaction() {
 Bond.Offered b = new Bond(…);
 b.buy(…);
 b.buy(…);
 }
}

Transition to Sold state with buyer
field set to b.

After this line, the transaction no longer owns m.

Instances of resource contracts,
unlike other contracts, always have
exactly one owning reference.

The constructor transitions to
Offered state at the end.

Compile error: b is of type Bond.Sold, which has no
buy() transaction.

Type of b after this line is Bond.Sold due to buy() invocation.

Copyright 2017 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for
internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM17-0741
Obsidian: A Safer Blockchain Programming Language

	Blank Page

