
Measuring Performance of Big Learning Workloads

Scott McMillan | smcmillan@sei.cmu.edu
P17

Big Learning platforms—large scale 
hardware and software systems 
designed to perform large-scale 
machine learning (ML) workloads 
on big data—are extremely 
complex and lack consistent and 
sufficient reporting of performance 
metrics. These difficulties can slow 
DoD adoption of new advances in 
machine learning. A key obstacle to 
overcome is in the collection and 
analysis of these metrics. 

The Big Learning cluster consists of 42 compute nodes each 
with CPU and GPU processing units, complex storage system 
and fast networking.  It supports research in the development 
of parallel ML computing frameworks as well as development 
and testing of large-scale metrics collection systems.

Big Learning Cluster. 
The Big Learning cluster, located at the 
Carnegie Mellon University Parallel Data 
Lab, was designed to support research in 
evaluating existing Big Learning platforms 
and developing new platforms for a wide 
variety of large-scale ML applications.  It 
is a distributed cluster with CPU and GPU 
processors, a complex storage hierarchy, 
a high-bandwidth/low latency network for 
communication, and a large persistent store.

Performance Measurement Workbench. 
We developed the Performance 
Measurement Workbench (PMW) to collect 
metrics about the performance of  
hardware components (CPU, memory, disk, 
network, etc.) and the performance of  
the ML algorithms (accuracy, convergence, 
iteration times, etc.) that run on the Big 
Learning cluster.

Goal: Ease of Use. 
PMW provides a simple, web-based portal 
for researchers and users to configure and 
submit jobs, collect and store metrics, and 
analyze data both during computation and 
in post mortem.

Goal: Reproducibility. 
PMW not only collects the performance 
metrics for each job, but it can also collect 
and store the configuration of the operating 
system, the ML platform, and the algorithm 
being run. With this information reproducible 
experiments are achievable.

With the Performance Measurement 
Workbench—combining a few open-source 
software packages (especially Elastic Stack) 
—we have demonstrated how consistent and 
complete measurement metrics for complex 
Big Learning systems can be collected.   
PMW has the added benefit of supporting 
collection of configuration aimed at 
reproducibility of results.
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Component Per Node Totals (42 nodes)

CPU, Xeon E5, 2 GHz 16 cores, 32 threads 672 cores, 1344 threads

GPU, Titan X 3072 cores, 12 GB RAM 129K cores

RAM, DDR4 64 GB 2688 GB

NVMe storage 400 GB 16.8 TB

HDD storage 8 TB 336 TB

Network 40 GB

Persistent storage 432 TB

Performance Measurement Workbench system architecture. PMW provides a simple, web-based portal for submitting jobs, 
operating system images with collection tools preconfigured, and persistent database query and visualization services using the 
open-source Elastic Stack.

PMW’s dashboard display using Grafana integrates with Elastic Stack to achieve complex visualizations. This example shows 
system metrics for a Spark MLlib job that uses one “head” node (displayed on the left) and eight worker nodes to perform a 
logistic regression algorithm (displayed on the right).
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